Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients

Abstract

Epidermal growth factor (EGF) comprises a structurally related family of proteins containing heparin-binding EGF-like growth factor (HB-EGF) and transforming growth factor alpha (TGFα) that regulates the development of dopaminergic neurons as well as monoamine metabolism. We assessed the contribution of EGF to schizophrenia by measuring EGF family protein levels in postmortem brains and in fresh serum of schizophrenic patients and control subjects. EGF protein levels were decreased in the prefrontal cortex and striatum of schizophrenic patients, whereas the levels of HB-EGF and TGFα were not significantly different in any of the regions examined. Conversely, EGF receptor expression was elevated in the prefrontal cortex. Serum EGF levels were markedly reduced in schizophrenic patients, even in young, drug-free patients. Chronic treatment of animals with the antipsychotic drug haloperidol had no influence on EGF levels in the brain or serum. These findings suggest that there is abnormal EGF production in various central and peripheral tissues of patients with both acute and chronic schizophrenia. EGF might thus provide a molecular substrate for the pathologic manifestation of the illness, although additional studies are required to determine a potential link between impaired EGF signaling and the pathology/etiology of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Groenen LC, Nice EC, Burgess AW . Structure-function relationships for the EGF/TGFa family of mitogens Growth Factors 1994; 11: 235–257

    Article  CAS  Google Scholar 

  2. King LE Jr, Gates RE, Nanney LB, Stoscheck CM . Epidermal growth factor (EGF) regulates non-mitogenic functions in differentiated mammalian tissues In: Bernsttein IA, Hirone T (ed) Processes in Cutaneous Epidermal Differentiation Praeger Scientific: New York 1987; pp 233–251

    Google Scholar 

  3. Xian CJ, Zhou XF . Roles of transforming growth factor-alpha and related molecules in the nervous system Mol Neurobiol 2000; 20: 157–183

    Article  Google Scholar 

  4. Ferrari G, Toffano G, Skaper SD . Epidermal growth factor exerts neuronotrophic effects on dopaminergic and GABAergic CNS neurons: comparison with basic fibroblast growth factor J Neurosci Res 1991; 30: 493–497

    Article  CAS  Google Scholar 

  5. Ishiyama J, Saito H, Abe K . Epidermal growth factor and basic fibroblast growth factor promote the generation of long-term potentiation in the dentate gyrus of anaesthetized rats Neurosci Res 1991; 12: 403–411

    Article  CAS  Google Scholar 

  6. Morrison RS, Kornblum HI, Leslie FM, Bradshaw RA . Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor Science 1987; 238: 72–75

    Article  CAS  Google Scholar 

  7. Nakagawa T, Sasahara M, Hayase Y, Haneda M, Yasuda H, Kikkawa R et al. Neuronal and glial expression of heparin-binding EGF-like growth factor in central nervous system of prenatal and early-postnatal rat Dev Brain Res 1998; 108: 263–272

    Article  CAS  Google Scholar 

  8. Seroogy KB, Lundgren KH, Lee DC, Guthrie KM, Gall CM . Cellular localization of transforming growth factor-alpha mRNA in rat forebrain J Neurochem 1993; 60: 1777–1782

    Article  CAS  Google Scholar 

  9. Scalabrino G, Nicolini G, Buccellato FR, Peracchi M, Tredici G, Manfridi A, Pravettoni G . Epidermal growth factor as a local mediator of the neurotrophic action of vitamin B(12) (cobalamin) in the rat central nervous system FASEB J 1999; 13: 2083–2090

    Article  CAS  Google Scholar 

  10. Adamson ED, Meek J . The ontogeny of epidermal growth factor receptors during mouse development Dev Biol 1984; 103: 62–70

    Article  CAS  Google Scholar 

  11. Gomez-Pinilla F, Knauer DJ, Nieto-Sampedro M . Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization Brain Res 1988; 438: 385–390

    Article  CAS  Google Scholar 

  12. Werner MH, Nanney LB, Stoscheck CM, King LE . Localization of immunoreactive epidermal growth factor receptors in human nervous system J Histochem Cytochem 1988; 36: 81–86

    Article  CAS  Google Scholar 

  13. Casper D, Mytilineou C, Blum M . EGF enhances the survival of dopamine neurons in rat embryonic mesencephalon primary cell culture J Neurosci Res 1991; 30: 372–381

    Article  CAS  Google Scholar 

  14. Casper D, Blum M . Epidermal growth factor and basic fibroblast growth factor protect dopaminergic neurons from glutamate toxicity in culture J Neurochem 1995; 65: 1016–1026

    Article  CAS  Google Scholar 

  15. Ventrella LL . Effect of intracerebroventricular infusion of epidermal growth factor in rats hemitransected in the nigro-striatal pathway J Neurosurg Sci 1993; 37: 1–8

    CAS  PubMed  Google Scholar 

  16. Alexi T, Hefti F . Trophic actions of transforming growth factor alpha on mesencephalic dopaminergic neurons developing in culture Neuroscience 1993; 55: 903–918

    Article  CAS  Google Scholar 

  17. Sibilia M, Steinbach JP, Stingl L, Aguzzi A, Wagner EF . A strain-independent postnatal neurodegeneration in mice lacking the EGF receptor EMBO J 1998; 17: 719–731

    Article  CAS  Google Scholar 

  18. Blum M . A null mutation in TGF-alpha leads to a reduction in midbrain dopaminergic neurons in the substantia nigra Nat Neurosci 1998; 1: 374–377

    Article  CAS  Google Scholar 

  19. Hilakivi-Clarke LA, Goldberg R . Effects of tryptophan and serotonin uptake inhibitors on behavior in male transgenic transforming growth factor alpha mice Eur J Pharmacol 1993; 237: 101–108

    Article  CAS  Google Scholar 

  20. Hilakivi-Clarke LA, Corduban TD, Taira T, Hitri A, Deutsch S, Korpi ER et al. Alterations in brain monoamines and GABAA receptors in transgenic mice overexpressing TGF alpha Pharmacol Biochem Behav 1995; 50: 593–600

    Article  CAS  Google Scholar 

  21. Cirulli F, Alleva E . Effects of repeated administrations of EGF and TGF-alpha on mouse neurobehavioral development Neurotoxicology 1994; 15: 819–825

    CAS  PubMed  Google Scholar 

  22. Kubota N, Kiuchi Y, Nemoto M, Oyamada H, Ohno M, Funahashi H et al. Regulation of serotonin transporter gene expression in human glial cells by growth factors Eur J Pharmacol 2001; 417: 69–76

    Article  CAS  Google Scholar 

  23. Van Setten GB, Edstrom L, Stibler H, Rasmussen S, Schultz G . Levels of transforming growth factor alpha (TGF-alpha) in human cerebrospinal fluid Int J Dev Neurosci 1999; 17: 131–134

    Article  CAS  Google Scholar 

  24. Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from Parkinsonian patients Neurosci Lett 1994; 180: 147–150

    Article  CAS  Google Scholar 

  25. Muller N, Ackenheil M . Psychoneuroimmunology and the cytokine action in the CNS: implications for psychiatric disorders Prog Neuropsychopharmacol Biol Psychiatry 1998; 22: 1–33

    Article  CAS  Google Scholar 

  26. Prolo P, Licinio J . Cytokines in affective disorders and schizophrenia: new clinical and genetic findings Mol Psychiatry 1999; 4: 396

    Article  CAS  Google Scholar 

  27. Licinio J, Wong ML . The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection Mol Psychiatry 1999; 4: 317–327

    Article  CAS  Google Scholar 

  28. Jankowsky JL, Patterson PH . Cytokine and growth factor involvement in long-term potentiation Mol Cell Neurosci 1999; 14: 273–286

    CAS  PubMed  Google Scholar 

  29. Nawa H, Takahashi M, Patterson PH . Cytokine and growth factor involvement in schizophrenia—support for the developmental model Mol Psychiatry 2000; 5: 594–603

    Article  CAS  Google Scholar 

  30. Takei N, Sasaoka K, Inoue K, Takahashi M, Endo Y, Hatanaka H . Brain-derived neurotrophic factor increases the stimulation-evoked release of glutamate and the levels of exocytosis-associated proteins in cultured cortical neurons from embryonic rats J Neurochem 1997; 68: 370–375

    Article  CAS  Google Scholar 

  31. Narisawa-Saito M, Silva AJ, Yamaguchi T, Hayashi T, Yamamoto T, Nawa H . Growth factor-mediated Fyn signaling regulates alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons Proc Natl Acad Sci USA 1999; 96: 2461–2466

    Article  CAS  Google Scholar 

  32. Xiong H, Narisawa-Saito M, Jourdi H, Nawa H . The glutamate receptor-mediated regulation of brain-derived neurotrophic factor production by cytokines in central nervous system Soc Neurosci Abst 1999; 25: 407.10

    Google Scholar 

  33. Namba H, Nagana T, Xiong H, Futamura T, Otsu Y, Takei N et al. Neurotrophins and cytokines positively and negatively regulate expression of glutamate receptor on forebrain inhibitory neurons Soc Neurosci Abst 2000; 26: 223.15

    Google Scholar 

  34. Wakabayashi K, Narisawa-Saito M, Iwakura Y, Arai T, Ikeda K, Takahashi H et al. Phenotypic down-regulation of glutamate receptor subunit GluR1 in Alzheimer's disease Neurobiol Aging 1999; 20: 287–295

    Article  CAS  Google Scholar 

  35. Nieuwenhunhuys R, Voogd J, van Huijzen Chr . The Human Central Nervous System—A Synopsis and Atlas Springer-Verlag: Berlin 1988

    Book  Google Scholar 

  36. Takahashi M, Shirakawa O, Toyooka K, Kitamura N, Hashimoto T, Maeda K et al. Abnormal expression of brain-derived neurotrophic factor and its receptor in the corticolimbic system of schizophrenic patients Mol Psychiatry 2000; 5: 293–300

    Article  CAS  Google Scholar 

  37. Yamada A, Kawata S, Tamura S, Kiso S, Higashiyama S, Umeshita K et al. Plasma heparin-binding EGF-like growth factor levels in patients after partial hepatectomy as determined with an enzyme-linked immunosorbent assay Biochem Biophys Res Commun 1998; 246: 783–787

    Article  CAS  Google Scholar 

  38. Ozaki M, Kishigami S, Yano R . Expression of receptors for neuregulins, ErbB2, ErbB3 and ErbB4, in developing mouse cerebellum Neurosci Res 1998; 30: 351–354

    Article  CAS  Google Scholar 

  39. Godfrey D, Pearlson M, Laura M . Structural brain imaging in schizophrenia: a selective review Biol Psychiatry 1999; 46: 627–649

    Article  Google Scholar 

  40. Canesi L, Malatesta M, Battistelli S, Ciacci C, Gallo G, Gazzanelli G . Immunoelectron microscope analysis of epidermal growth factor receptor (EGFR) in isolated Mytilus galloprovincialis (Lam.) digestive gland cells: evidence for ligand-induced changes in EGFR intracellular distribution J Exp Zool 2000; 286: 690–698

    Article  CAS  Google Scholar 

  41. Walker RA . The erbB/HER type 1 tyrosine kinase receptor family J Pathol 1998; 185: 234–235

    Article  CAS  Google Scholar 

  42. Ullrich A, Schlessinger J . Signal transduction by receptors with tyrosine kinase activity Cell 1990; 61: 202–212

    Article  Google Scholar 

  43. Earp HS, Dawson TL, Li X, Yu H . Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research Breast Cancer Res Treat 1995; 35: 115–132

    Article  CAS  Google Scholar 

  44. Yamada M, Ikeuchi T, Hatanaka H . The neurotrophic action and signalling of epidermal growth factor Prog Neurobiol 1997; 51: 19–37

    Article  CAS  Google Scholar 

  45. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells Nature 1984; 309: 418–425

    Article  CAS  Google Scholar 

  46. Fries G, Perneczky A, Kempski O . Glioblastoma-associated circulating monocytes and the release of epidermal growth factor J Neurosurg 1996; 85: 642–647

    Article  CAS  Google Scholar 

  47. Sokolov BP . Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of ‘neuroleptic-free’ schizophrenics: evidence on reversible up-regulation by typical neuroleptics J Neurochem 1998; 71: 2454–2464

    Article  CAS  Google Scholar 

  48. McAllister CG, van Kammen DP, Rehn TJ, Miller AL, Gurklis J, Kelley ME et al. Increases in CSF levels of interleukin-2 in schizophrenia: effects of recurrence of psychosis and medication status Am J Psychiatry 1995; 152: 1291–1297

    Article  CAS  Google Scholar 

  49. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation Brain 1999; 122: 593–624

    Article  Google Scholar 

  50. Tokumaru S, Higashiyama S, Endo T, Nakagawa T, Miyagawa Ji, Yamamori K et al. Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing J Cell Biol 2000; 151: 209–220

    Article  CAS  Google Scholar 

  51. Subramanian SV, Fitzgerald ML, Bernfield M . Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation J Biol Chem 1997; 272: 14713–14720

    Article  CAS  Google Scholar 

  52. Waksal HW . Role of an anti-epidermal growth factor receptor in treating cancer Cancer Metastasis Rev 1999; 18: 427–436

    Article  CAS  Google Scholar 

  53. Catts VS, Catts SV . Apoptosis and schizophrenia: is the tumour suppressor gene, p53, a candidate susceptibility gene? Schizophr Res 2000; 41: 405–415

    Article  CAS  Google Scholar 

  54. Kerwin RW . Glutamate receptors, microtubule associated proteins and developmental anomaly in schizophrenia: an hypothesis Psychol Med 1993; 23: 547–551

    Article  CAS  Google Scholar 

  55. Weinberger DR . The biological basis of schizophrenia J Clin Psychiatry Monograph 1997; 15: 4–6

    Google Scholar 

  56. Seeman P . Schizophrenia as a brain disease. The dopamine receptor story Arch Neurol 1993; 50: 1093–1095

    Article  CAS  Google Scholar 

  57. Goldstein M, Deutch AY . Dopaminergic mechanisms in the pathogenesis of schizophrenia FASEB J 1992; 6: 2413–2421

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms E Higuchi for technical assistance. This work was supported by the Japanese Society for the Promotion of Science (RFTF-96L00203), the Targeted Research Grant for Brain Science, and grants-in-aid for Creative Scientific Research and for Basic Scientific Research (B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Nawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Futamura, T., Toyooka, K., Iritani, S. et al. Abnormal expression of epidermal growth factor and its receptor in the forebrain and serum of schizophrenic patients. Mol Psychiatry 7, 673–682 (2002). https://doi.org/10.1038/sj.mp.4001081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001081

Keywords

This article is cited by

Search

Quick links