Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Clinical significance of adaptive thermogenesis

Abstract

The epidemic of obesity is developing faster than the scientific understanding of an efficient way to overcome it, as reflected by the low success rate of short- and long-term weight loss interventions. From a clinical standpoint, this suggests that the body tends to defend a set point of possible genetic origin in the context of a weight-reducing program. As described in this paper, this limited therapeutic success may depend on adaptive thermogenesis, which represents in this case the decrease in energy expenditure (EE) beyond what could be predicted from the changes in fat mass or fat-free mass under conditions of standardized physical activity in response to a decrease in energy intake. This issue has been documented in recent studies that have shown in obese individuals adhering to a weight reduction program a greater than predicted decrease in EE, which in some cases was quantitatively sufficient to overcome the prescribed energy restriction, suggesting a role for adaptive thermogenesis in unsuccessful weight loss interventions and reduced body weight maintenance. As also discussed in this paper, this ‘adaptive thermogenesis’ can be influenced by environmental factors, which have not been frequently considered up to now. This is potentially the case for plasma organochlorine concentration and oxygen desaturation in obstructive sleep apnea syndrome. It is concluded that health professionals should be aware that in some vulnerable individuals, adaptive thermogenesis can be multi-causal, and has the capacity to compensate, at least partly, for the prescribed energy deficit, possibly going beyond any good compliance of some patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. World Health Organisation. (2003) Obesity and overweight: Fact sheet. http://www.who.int/nutrition/topics/obesity/en/index.html.

  2. Wing RR, Phelan S . Long-term weight loss maintenance. Am J Clin Nutr 2005; 82: 222S–225S.

    Article  CAS  PubMed  Google Scholar 

  3. Doucet E, St Pierre S, Almeras N, Despres JP, Bouchard C, Tremblay A . Evidence for the existence of adaptive thermogenesis during weight loss. Br J Nutr 2001; 85: 715–723.

    Article  CAS  PubMed  Google Scholar 

  4. Leibel RL, Rosenbaum M, Hirsch J . Changes in energy expenditure resulting from altered body weight. N Engl J Med 1995; 332: 621–628.

    Article  CAS  PubMed  Google Scholar 

  5. Prentice AM, Goldberg GR, Jebb SA, Black AE, Murgatroyd PR, Diaz EO . Physiological responses to slimming. Proc Nutr Soc 1991; 50: 441–458.

    Article  CAS  PubMed  Google Scholar 

  6. Ravussin E, Lillioja S, Anderson TE, Christin L, Bogardus C . Determinants of 24-h energy expenditure in man. Methods and results using a respiratory chamber. J Clin Invest 1986; 78: 1568–1578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dulloo AG, Jacquet J . Adaptive reduction in basal metabolic rate in response to food deprivation in humans: a role for feedback signals from fat stores. Am J Clin Nutr 1998; 68: 599–606.

    Article  CAS  PubMed  Google Scholar 

  8. Ferraro R, Lillioja S, Fontvieille AM, Rising R, Bogardus C, Ravussin E . Lower sedentary metabolic rate in women compared with men. J Clin Invest 1992; 90: 780–784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Astrup A, Buemann B, Christensen NJ, Madsen J, Gluud C, Bennett P . et al. The contribution of body composition, substrates, and hormones to the variability in energy expenditure and substrate utilization in premenopausal women. J Clin Endocrinol Metab 1992; 74: 279–286.

    CAS  PubMed  Google Scholar 

  10. Dionne I, Despres JP, Bouchard C, Tremblay A . Gender difference in the effect of body composition on energy metabolism. Int J Obes Relat Metab Disord 1999; 23: 312–319.

    Article  CAS  PubMed  Google Scholar 

  11. Doucet E, Imbeault P, St Pierre S, Almeras N, Mauriege P, Despres JP et al. Greater than predicted decrease in energy expenditure during exercise after body weight loss in obese men. Clin Sci (London) 2003; 105: 89–95.

    Article  Google Scholar 

  12. Tremblay A, Pelletier C, Doucet E, Imbeault P . Thermogenesis and weight loss in obese individuals: a primary association with organochlorine pollution. Int J Obes Relat Metab Disord 2004; 28: 936–939.

    Article  CAS  PubMed  Google Scholar 

  13. Apfelbaum M, Bostsarron J, Lacatis D . Effect of caloric restriction and excessive caloric intake on energy expenditure. Am J Clin Nutr 1971; 24: 1405–1409.

    Article  CAS  PubMed  Google Scholar 

  14. Benedict FG, Miles WR, ROth P, Smith M . Human Vitality and Efficiency Under Prolonged Restricted Diet. Carnegie Institution of Washington:Washington, DC, 1919.

    Google Scholar 

  15. Grande F, Anderson JT, Keys A . Changes of basal metabolic rate in man in semistarvation and refeeding. J Appl Physiol 1958; 12: 230–238.

    Article  CAS  PubMed  Google Scholar 

  16. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL . The Biology of Human Starvation. University of Minnesota Press: Minnesota, 1950.

    Book  Google Scholar 

  17. Garrow JS . Energy Balance and Obesity in Man. Eslevier/North-Holland Biomedical Press: Amsterdam, 1978.

    Google Scholar 

  18. Neumman DS . Experimentelle Beitrage Zur Lehre von dem taglichen Nahrungsbedarf des Menschen unter besondere Beruckischtigung der not wendigen Eiweissmenge. Arch Hyg 1902; 45: 1–87.

    Google Scholar 

  19. Gulick A . A study of weight regulation in the adult human body during over-nutrition. Am J Physiol 1922; 60: 371–395.

    Article  CAS  Google Scholar 

  20. Wiley FH, Newburgh LH . The doubtful nature of ‘luxuskonsumption’. J Clin Invest 1931; 10: 733–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Forbes GB, Kreipe RE, Lipinski B . Body composition and the energy cost of weight gain. Hum Nutr Clin Nutr 1982; 36: 485–487.

    CAS  PubMed  Google Scholar 

  22. Stock MJ . Gluttony and thermogenesis revisited. Int J Obes Relat Metab Disord 1999; 23: 1105–1117.

    Article  CAS  PubMed  Google Scholar 

  23. Rothwell NJ, Stock MJ . Brown adipose tissue and diet-induced thermogenesis. In: P Trayhurn, DG Nicholls (eds). Brown Adipose Tissue. Edward Arnold: London, 1986. pp 269–298.

    Google Scholar 

  24. Trayhurn P . Brown adipose tissue and energy balance. In: P Trayhurn, DG Nicholls (eds). Brown Adipose Tissue. Edward Arnold: London, 1986. pp 299–338.

    Google Scholar 

  25. Sjöström L . A review of weight maintenance and weight changes in relation to energy metabolism and body composition. In: J Hirsch, BT Van Itallie (eds). Recent Advances in Obesity Research:IV. John Libbey and Company Limited: London, 1983. pp 82–94.

    Google Scholar 

  26. Weyer C, Walford RL, Harper IT, Milner M, MacCallum T, Tataranni PA et al. Energy metabolism after 2 year of energy restriction: the biosphere 2 experiment. Am J Clin Nutr 2000; 72: 946–953.

    Article  CAS  PubMed  Google Scholar 

  27. Astrup A, Gotzsche PC, van de Werken K, Ranneries C, Toubro S, Raben A et al. Meta-analysis of resting metabolic rate in formerly obese subjects. Am J Clin Nutr 1999; 69: 1117–1122.

    Article  CAS  PubMed  Google Scholar 

  28. Weyer C, Pratley RE, Salbe AD, Bogardus C, Ravussin E, Tataranni PA . Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab 2000; 85: 1087–1094.

    Article  CAS  PubMed  Google Scholar 

  29. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Theriault G et al. The response to long-term overfeeding in identical twins. N Engl J Med 1990; 322: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  30. Bouchard C, Tremblay A, Despres JP, Nadeau A, Lupien PJ, Moorjani S et al. Overfeeding in identical twins: 5-year postoverfeeding results. Metabolism 1996; 45: 1042–1050.

    Article  CAS  PubMed  Google Scholar 

  31. Wadden TA, Foster GD, Letizia KA . One-year behavioral treatment of obesity: comparison of moderate and severe caloric restriction and the effects of weight maintenance therapy. J Consult Clin Psychol 1994; 62: 165–171.

    Article  CAS  PubMed  Google Scholar 

  32. Dulloo AG . Strategies to counteract readjustments toward lower metabolic rates during obesity management. Nutrition 1993; 9: 366–372.

    CAS  PubMed  Google Scholar 

  33. Lazzer S, Boirie Y, Montaurier C, Vernet J, Meyer M, Vermorel M . A weight reduction program preserves fat-free mass but not metabolic rate in obese adolescents. Obes Res 2004; 12: 233–240.

    Article  PubMed  Google Scholar 

  34. Tremblay A, Poehlman ET, Despres JP, Theriault G, Danforth E, Bouchard C . Endurance training with constant energy intake in identical twins: changes over time in energy expenditure and related hormones. Metabolism 1997; 46: 499–503.

    Article  CAS  PubMed  Google Scholar 

  35. Macias AE . Experimental demonstration of human weight homeostasis:implications for understanding obesity. Br J Nutr 2004; 91: 479–484.

    Article  CAS  PubMed  Google Scholar 

  36. Tremblay A, Sauve L, Despres JP, Nadeau A, Theriault G, Bouchard C . Metabolic characteristics of postobese individuals. Int J Obes 1989; 13: 357–366.

    CAS  PubMed  Google Scholar 

  37. Astrup A, Bulow J, Madsen J, Christensen NJ . Contribution of BAT and skeletal muscle to thermogenesis induced by ephedrine in man. Am J Physiol 1985; 248: E507–E515.

    CAS  PubMed  Google Scholar 

  38. Astrup A, Buemann B, Toubro S, Ranneries C, Raben A . Low resting metabolic rate in subjects predisposed to obesity: a role for thyroid status. Am J Clin Nutr 1996; 63: 879–883.

    Article  CAS  PubMed  Google Scholar 

  39. Doucet E, St Pierre S, Almeras N, Mauriege P, Richard D, Tremblay A . Changes in energy expenditure and substrate oxidation resulting from weight loss in obese men and women: is there an important contribution of leptin? J Clin Endocrinol Metab 2000; 85: 1550–1556.

    CAS  PubMed  Google Scholar 

  40. Doucet E, Tremblay A, Simoneau JA, Joanisse DR . Skeletal muscle enzymes as predictors of 24-h energy metabolism in reduced-obese persons. Am J Clin Nutr 2003; 78: 430–435.

    Article  CAS  PubMed  Google Scholar 

  41. Rosenbaum M, Hirsch J, Murphy E, Leibel RL . Effects of changes in body weight on carbohydrate metabolism, catecholamine excretion, and thyroid function. Am J Clin Nutr 2000; 71: 1421–1432.

    Article  CAS  PubMed  Google Scholar 

  42. Rothwell NJ, Stock MJ . Regulation of energy balance. In: WJ Darby, HP Broquist and RE Olson (eds). Annual Review of Nutrition. Annual Reviews Inc.: Palo Alto, CA, 1981. pp 235–256.

    Google Scholar 

  43. Toubro S, Sorensen TI, Ronn B, Christensen NJ, Astrup A . Twenty-four-hour energy expenditure: the role of body composition, thyroid status, sympathetic activity, and family membership. J Clin Endocrinol Metab 1996; 81: 2670–2674.

    CAS  PubMed  Google Scholar 

  44. Webber J, Macdonald IA . Signalling in body-weight homeostasis: neuroendocrine efferent signals. Proc Nutr Soc 2000; 59: 397–404.

    Article  CAS  PubMed  Google Scholar 

  45. Rosenbaum M, Murphy EM, Heymsfield SB, Matthews DE, Leibel RL . Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. J Clin Endocrinol Metab 2002; 87: 2391–2394.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL . Effects of weight change on plasma leptin concentrations and energy expenditure. J Clin Endocrinol Metab 1997; 82: 3647–3654.

    CAS  PubMed  Google Scholar 

  47. Porte Jr D, Baskin DG, Schwartz MW . Leptin and insulin action in the central nervous system. Nutr Rev 2002; 60: S20–S29.

    Article  PubMed  Google Scholar 

  48. Schwartz MW, Figlewicz DP, Baskin DG, Woods SC, Porte Jr D . Insulin in the brain: a hormonal regulator of energy balance. Endocr Rev 1992; 13: 387–414.

    CAS  PubMed  Google Scholar 

  49. Dulloo AG, Jacquet J . An adipose-specific control of thermogenesis in body weight regulation. Int J Obes Relat Metab Disord 2001; 25 (Suppl 5): S22–S29.

    Article  PubMed  Google Scholar 

  50. Dulloo AG, Gubler M, Montani JP, Seydoux J, Solinas G . Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. Int J Obes Relat Metab Disord 2004; 28 (Suppl 4): S29–S37.

    Article  CAS  PubMed  Google Scholar 

  51. Himms-Hagen J . Brown adipose tissue thermogenesis and obesity. Prog Lipid Res 1989; 28: 67–115.

    Article  CAS  PubMed  Google Scholar 

  52. Landsberg L, Saville ME, Young JB . Sympathoadrenal system and regulation of thermogenesis. Am J Physiol 1984; 247: E181–E189.

    CAS  PubMed  Google Scholar 

  53. Lowell BB, Spiegelman BM . Towards a molecular understanding of adaptive thermogenesis. Nature 2000; 404: 652–660.

    Article  CAS  PubMed  Google Scholar 

  54. Saris WH . Effects of energy restriction and exercise on the sympathetic nervous system. Int J Obes Relat Metab Disord 1995; 19 (Suppl 7): S17–S23.

    PubMed  Google Scholar 

  55. Trayhurn P, Jones PM, McGuckin MM, Goodbody AE . Effects of overfeeding on energy balance and brown fat thermogenesis in obese (ob/ob) mice. Nature 1982; 295: 323–325.

    Article  CAS  PubMed  Google Scholar 

  56. Rolfe DF, Brown GC . Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 1997; 77: 731–758.

    Article  CAS  PubMed  Google Scholar 

  57. Silva JE . Thermogenic mechanisms and their hormonal regulation. Physiol Rev 2006; 86: 435–464.

    Article  CAS  PubMed  Google Scholar 

  58. Argyropoulos G, Harper ME . Uncoupling proteins and thermoregulation. J Appl Physiol 2002; 92: 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  59. Rosenbaum M, Vandenborne K, Goldsmith R, Simoneau JA, Heymsfield S, Joanisse DR et al. Effects of experimental weight perturbation on skeletal muscle work efficiency in human subjects. Am J Physiol Regulat Integr Comp Physiol 2003; 285: R183–R192.

    Article  CAS  Google Scholar 

  60. Hins J, Series F, Almeras N, Tremblay A . Relationship between severity of nocturnal desaturation and adaptive thermogenesis: preliminary data of apneic patients tested in a whole-body indirect calorimetry chamber. Int J Obes (London) 2006; 30: 574–577.

    Article  CAS  Google Scholar 

  61. Pelletier C, Doucet E, Imbeault P, Tremblay A . Associations between weight loss-induced changes in plasma organochlorine concentrations, serum T(3) concentration, and resting metabolic rate. Toxicol Sci 2002; 67: 46–51.

    Article  CAS  PubMed  Google Scholar 

  62. Pelletier C, Imbeault P, Tremblay A . Energy balance and pollution by organochlorines and polychlorinated biphenyls. Obes Rev 2003; 4: 17–24.

    Article  CAS  PubMed  Google Scholar 

  63. MacLean PS, Higgins JA, Johnson GC, Fleming-Elder BK, Donahoo WT, Melanson EL et al. Enhanced metabolic efficiency contributes to weight regain after weight loss in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2004; 287: R1306–R1315.

    Article  CAS  PubMed  Google Scholar 

  64. MacLean PS, Higgins JA, Johnson GC, Fleming-Elder BK, Peters JC, Hill JO . Metabolic adjustments with the development, treatment, and recurrence of obesity in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2004; 287: R288–R297.

    Article  CAS  PubMed  Google Scholar 

  65. Brownell KD, Greenwood MR, Stellar E, Shrager EE . The effects of repeated cycles of weight loss and regain in rats. Physiol Behav 1986; 38: 459–464.

    Article  CAS  PubMed  Google Scholar 

  66. MacLean PS, Higgins JA, Jackman MR, Johnson GC, Fleming-Elder BK, Wyatt HR et al. Peripheral metabolic responses to prolonged weight reduction that promote rapid, efficient regain in obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1577–R1588.

    Article  CAS  PubMed  Google Scholar 

  67. Reed DR, Contreras RJ, Maggio C, Greenwood MR, Rodin J . Weight cycling in female rats increases dietary fat selection and adiposity. Physiol Behav 1988; 42: 389–395.

    Article  CAS  PubMed  Google Scholar 

  68. Boyle PC, Storlien LH, Harper AE, Keesey RE . Oxygen consumption and locomotor activity during restricted feeding and realimentation. Am J Physiol 1981; 241: R392–R397.

    CAS  PubMed  Google Scholar 

  69. St Pierre S, Roy B, Tremblay A . A case study on energy balance during an expedition through Greenland. Int J Obes Relat Metab Disord 1996; 20: 493–495.

    CAS  PubMed  Google Scholar 

  70. Wadden TA, Foster GD, Stunkard AJ, Conill AM . Effects of weight cycling on the resting energy expenditure and body composition of obese women. Int J Eat Disord 1996; 19: 5–12.

    Article  CAS  PubMed  Google Scholar 

  71. Klassen CD . Casarett and Doull's Toxicology: The Basic Science of Poisons. McGraw-Hill, Health Professions Division: New York, 1996.

    Google Scholar 

  72. Travis C, Arms AD . The food chain as a source of toxic chemical exposure. In: LB Lave, AC Upton (eds). Toxic Chemicals, Health, and the Environment. John Hopkins University Press: Baltimore, 1987. pp 95–113.

    Google Scholar 

  73. Pelletier C, Despres JP, Tremblay A . Plasma organochlorine concentrations in endurance athletes and obese individuals. Med Sci Sports Exerc 2002; 34: 1971–1975.

    Article  CAS  PubMed  Google Scholar 

  74. Imbeault P, Chevrier J, Dewailly E, Ayotte P, Despres JP, Tremblay A et al. Increase in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord 2001; 25: 1585–1591.

    Article  CAS  PubMed  Google Scholar 

  75. Irigaray P, Mejean L, Laurent F . Behaviour of dioxin in pig adipocytes. Food Chem Toxicol 2005; 43: 457–460.

    Article  CAS  PubMed  Google Scholar 

  76. Backman L, Kolmodin-Hedman B . Concentration of DDT and DDE in plasma and subcutaneous adipose tissue before and after intestinal bypass operation for treatment of obesity. Toxicol Appl Pharmacol 1978; 46: 663–669.

    Article  CAS  PubMed  Google Scholar 

  77. Chevrier J, Dewailly E, Ayotte P, Mauriege P, Despres JP, Tremblay A . Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int J Obes Relat Metab Disord 2000; 24: 1272–1278.

    Article  CAS  PubMed  Google Scholar 

  78. Walford RL, Mock D, MacCallum T, Laseter JL . Physiologic changes in humans subjected to severe, selective calorie restriction for two years in biosphere 2: health, aging, and toxicological perspectives. Toxicol Sci 1999; 52: 61–65.

    CAS  PubMed  Google Scholar 

  79. Koopman-Esseboom C, Morse DC, Weisglas-Kuperus N, Lutkeschipholt IJ, van der Paauw CG, Tuinstra LG et al. Effects of dioxins and polychlorinated biphenyls on thyroid hormone status of pregnant women and their infants. Pediatr Res 1994; 36: 468–473.

    Article  CAS  PubMed  Google Scholar 

  80. Asawasinsopon R, Prapamontol T, Prakobvitayakit O, Vaneesorn Y, Mangklabruks A, Hock B . The association between organochlorine and thyroid hormone levels in cord serum: a study from northern Thailand. Environ Int 2006; 32: 554–559.

    Article  CAS  PubMed  Google Scholar 

  81. Sala M, Sunyer J, Herrero C, To-Figueras J, Grimalt J . Association between serum concentrations of hexachlorobenzene and polychlorobiphenyls with thyroid hormone and liver enzymes in a sample of the general population. Occup Environ Med 2001; 58: 172–177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Imbeault P, Tremblay A, Simoneau JA, Joanisse DR . Weight loss-induced rise in plasma pollutant is associated with reduced skeletal muscle oxidative capacity. Am J Physiol Endocrinol Metab 2002; 282: E574–E579.

    Article  CAS  PubMed  Google Scholar 

  83. Grun F, Blumberg B . Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology 2006; 147: S50–S55.

    Article  CAS  PubMed  Google Scholar 

  84. Young T, Peppard PE, Gottlieb DJ . Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 2002; 165: 1217–1239.

    Article  PubMed  Google Scholar 

  85. Phillips BG, Hisel TM, Kato M, Pesek CA, Dyken ME, Narkiewicz K et al. Recent weight gain in patients with newly diagnosed obstructive sleep apnea. J Hypertens 1999; 17: 1297–1300.

    Article  CAS  PubMed  Google Scholar 

  86. Phillips BG, Kato M, Narkiewicz K, Choe I, Somers VK . Increases in leptin levels, sympathetic drive, and weight gain in obstructive sleep apnea. Am J Physiol Heart Circ Physiol 2000; 279: H234–H237.

    Article  CAS  PubMed  Google Scholar 

  87. Traviss KA, Barr SI, Fleming JA, Ryan CF . Lifestyle-related weight gain in obese men with newly diagnosed obstructive sleep apnea. J Am Diet Assoc 2002; 102: 703–706.

    Article  PubMed  Google Scholar 

  88. Vgontzas AN, Tan TL, Bixler EO, Martin LF, Shubert D, Kales A . Sleep apnea and sleep disruption in obese patients. Arch Intern Med 1994; 154: 1705–1711.

    Article  CAS  PubMed  Google Scholar 

  89. Bonnet MH, Berry RB, Arand DL . Metabolism during normal, fragmented, and recovery sleep. J Appl Physiol 1991; 71: 1112–1118.

    Article  CAS  PubMed  Google Scholar 

  90. Smith ML, Niedermaier ON, Hardy SM, Decker MJ, Strohl KP . Role of hypoxemia in sleep apnea-induced sympathoexcitation. J Auton Nerv Syst 1996; 56: 184–190.

    Article  CAS  PubMed  Google Scholar 

  91. Somers VK, Dyken ME, Clary MP, Abboud FM . Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995; 96: 1897–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lin CC, Chang KC, Lee KS . Effects of treatment by laser-assisted uvuloplasty on sleep energy expenditure in obstructive sleep apnea patients. Metabolism 2002; 51: 622–627.

    Article  CAS  PubMed  Google Scholar 

  93. Stenlof K, Grunstein R, Hedner J, Sjostrom L . Energy expenditure in obstructive sleep apnea: effects of treatment with continuous positive airway pressure. Am J Physiol 1996; 271: E1036–E1043.

    CAS  PubMed  Google Scholar 

  94. White MD, Bouchard G, Buemann B, Almeras N, Després JP, Bouchard C et al. Reproducibility of 24-h energy expenditure and macronutrient oxidation rates in an indirect calorimeter. J Appl Physiol 1996; 80: 133–139.

    Article  CAS  PubMed  Google Scholar 

  95. Weitzenblum E, Racineux J-L . Syndrome d'apnées obstructives du sommeil 2nd ed. Masson: Paris, 2004.

    Google Scholar 

  96. Somers VK, Dyken ME, Clary MP, Abboud FM . Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 1995; 96: 1897–1904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK . Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 1998; 98: 772–776.

    Article  CAS  PubMed  Google Scholar 

  98. Narkiewicz K, Somers VK . Sympathetic nerve activity in obstructive sleep apnoea. Acta Physiol Scand 2003; 177: 385–390.

    Article  CAS  PubMed  Google Scholar 

  99. Grote L, Kraiczi H, Hedner J . Reduced alpha- and beta(2)-adrenergic vascular response in patients with obstructive sleep apnea. Am J Respir Crit Care Med 2000; 162: 1480–1487.

    Article  CAS  PubMed  Google Scholar 

  100. Blaak EE, van Baak MA, Kempen KP, Saris WH . Role of alpha- and beta-adrenoceptors in sympathetically mediated thermogenesis. Am J Physiol 1993; 264: E11–E17.

    CAS  PubMed  Google Scholar 

  101. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J . Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 2000; 284: 3015–3021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Geneviève C Major is a recipient of a studentship from the Heart and Stroke Foundation of Canada in collaboration with the Canadian Institute of Nutrition, Metabolism and Diabetes and of Cancer Research, and the Canadian Diabetes Association. Angelo Tremblay is partly funded by the Canada Research Chair on Physical Activity, Nutrition and Energy Balance. Paul Trayhurn is funded by grants from the BBSRC (UK) and the European Union (Ob-Age: OLK6-CT-2002-02288). Eric Doucet is a recipient of a CIHR/Merck-Frosst New Investigator Award and CFI/OIT New Opportunities Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Tremblay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Major, G., Doucet, E., Trayhurn, P. et al. Clinical significance of adaptive thermogenesis. Int J Obes 31, 204–212 (2007). https://doi.org/10.1038/sj.ijo.0803523

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803523

Keywords

This article is cited by

Search

Quick links