Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors

Abstract

Cornerstone for an efficient cardiac gene therapy is the need for a vector system, which enables selective and long-term expression of the gene of interest. In rodent animal models adeno-associated viral (AAV) vectors like AAV-6 have been shown to efficiently transduce cardiomyocytes. However, since significant species-dependent differences in transduction characteristics exist, large animal models are of imminent need for preclinical evaluations. We compared gene transfer efficiencies of AAV-6 and heparin binding site-deleted AAV-2 vectors in a porcine model. Application of the AAVs was performed by pressure-regulated retroinfusion of the anterior interventricular cardiac vein, which has been previously shown to efficiently deliver genes to the myocardium (3.5 × 1010 viral genomes per animal; n=5 animals per group). All vectors harbored a luciferase reporter gene under control of a cytomegalovirus (CMV)-enhanced 1.5 kb rat myosin light chain promoter (CMV-MLC2v). Expression levels were evaluated 4 weeks after gene transfer by determining luciferase activities. To rule out a systemic spillover peripheral tissue was analyzed by PCR for the presence of vector genomes. Selective retroinfusion of AAV serotype 6 vectors into the anterior cardiac vein substantially increased reporter gene expression in the targeted distal left anterior descending (LAD) territory (65 943±31 122 vs control territory 294±69, P<0.05). Retroinfusion of AAV-2 vectors showed lower transgene expression, which could be increased with coadministration of recombinant human vascular endothelial growth factor (1365±707 no vascular endothelial growth factor (VEGF) vs 38 760±2448 with VEGF, P<0.05). Significant transgene expression was not detected in other organs than the heart, although vector genomes were detected also in the lung and liver. Thus, selective retroinfusion of AAV-6 into the coronary vein led to efficient long-term myocardial reporter gene expression in the targeted LAD area of the porcine heart. Coapplication of VEGF significantly increased transduction efficiency of AAV-2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ . Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci USA 2000; 97: 5428–5433.

    Article  CAS  Google Scholar 

  2. Chu D, Thistlethwaite PA, Sullivan CC, Grifman MS, Weitzman MD . Gene delivery to the mammalian heart using AAV vectors. Methods Mol Biol (Clifton, NJ) 2004; 246: 213–224.

    CAS  Google Scholar 

  3. Burdorf L, Schuhmann N, Postrach J, Thein E, Hallek M, Reichart et al. AAV-mediated gene transfer to cardiac cells in a heterotopic rat heart transplantation model. Transplant Proc 2007; 39: 567–568.

    Article  CAS  Google Scholar 

  4. Kaspar BK, Roth DM, Lai NC, Drumm JD, Erickson DA, McKirnan MD et al. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 2005; 7: 316–324.

    Article  CAS  Google Scholar 

  5. Nykanen AI, Pajusola K, Krebs R, Keranen MA, Raisky O, Koskinen PK et al. Common protective and diverse smooth muscle cell effects of AAV-mediated angiopoietin-1 and -2 expression in rat cardiac allograft vasculopathy. Circ Res 2006; 98: 1373–1380.

    Article  Google Scholar 

  6. Hou D, Maclaughlin F, Thiesse M, Panchal VR, Bekkers BC, Wilson EA et al. Widespread regional myocardial transfection by plasmid encoding Del-1 following retrograde coronary venous delivery. Catheter Cardiovasc Interv 2003; 58: 207–211.

    Article  Google Scholar 

  7. Giordano FJ, Ping P, McKirnan MD, Nozaki S, DeMaria AN, Dillmann WH et al. Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996; 2: 534–539.

    Article  CAS  Google Scholar 

  8. Sakata S, Lebeche D, Sakata N, Sakata Y, Chemaly ER, Liang LF et al. Restoration of mechanical and energetic function in failing aortic-banded rat hearts by gene transfer of calcium cycling proteins. J Mol Cell Cardiol 2007; 42: 852–861.

    Article  CAS  Google Scholar 

  9. Maurice JP, Hata JA, Shah AS, White DC, McDonald PH, Dolber PC et al. Enhancement of cardiac function after adenoviral-mediated in vivo intracoronary beta2-adrenergic receptor gene delivery. J Clin Invest 1999; 104: 21–29.

    Article  CAS  Google Scholar 

  10. Davidson MJ, Jones JM, Emani SM, Wilson KH, Jaggers J, Koch WJ et al. Cardiac gene delivery with cardiopulmonary bypass. Circulation 2001; 104: 131–133.

    Article  CAS  Google Scholar 

  11. Logeart D, Hatem SN, Rucker-Martin C, Chossat N, Nevo N, Haddada H et al. Highly efficient adenovirus-mediated gene transfer to cardiac myocytes after single-pass coronary delivery. Hum Gene Ther 2000; 11: 1015–1022.

    Article  CAS  Google Scholar 

  12. Tevaearai HT, Eckhart AD, Shotwell KF, Wilson K, Koch WJ . Ventricular dysfunction after cardioplegic arrest is improved after myocardial gene transfer of a beta-adrenergic receptor kinase inhibitor. Circulation 2001; 104: 2069–2074.

    Article  CAS  Google Scholar 

  13. Boekstegers P, von Degenfeld G, Giehrl W, Heinrich D, Hullin R, Kupatt C et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy 2000; 7: 232–240.

    Article  CAS  Google Scholar 

  14. Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 2004; 44: 1124–1129.

    Article  CAS  Google Scholar 

  15. Boekstegers P, Giehrl W, von Degenfeld G, Steinbeck G . Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1998; 31: 1525–1533.

    Article  CAS  Google Scholar 

  16. Pohl T, Giehrl W, Reichart B, Kupatt C, Raake P, Paul S et al. Retroinfusion-supported stenting in high-risk patients for percutaneous intervention and bypass surgery: results of the prospective randomized myoprotect I study. Catheter Cardiovasc Interv 2004; 62: 323–330.

    Article  Google Scholar 

  17. Kupatt C, Hinkel R, Vachenauer R, Horstkotte J, Raake P, Sandner T et al. VEGF165 transfection decreases postischemic NF-kappa B-dependent myocardial reperfusion injury in vivo: role of eNOS phosphorylation. FASEB J 2003; 17: 705–707.

    Article  CAS  Google Scholar 

  18. Kupatt C, Dessy C, Hinkel R, Raake P, Daneau G, Bouzin C et al. Heat shock protein 90 transfection reduces ischemia-reperfusion-induced myocardial dysfunction via reciprocal endothelial NO synthase serine 1177 phosphorylation and threonine 495 dephosphorylation. Arterioscler ThrombVasc Biol 2004; 24: 1435–1441.

    Article  CAS  Google Scholar 

  19. von Degenfeld G, Raake P, Kupatt C, Lebherz C, Hinkel R, Gildehaus FJ et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003; 42: 1120–1128.

    Article  CAS  Google Scholar 

  20. Chu D, Sullivan CC, Weitzman MD, Du L, Wolf PL, Jamieson SW et al. Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors. J Thorac Cardiovasc Surg 2003; 126: 671–679.

    Article  CAS  Google Scholar 

  21. Vassalli G, Bueler H, Dudler J, von Segesser LK, Kappenberger L . Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo: a comparative study with adenovirus vectors. Int J Cardiol 2003; 90: 229–238.

    Article  Google Scholar 

  22. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  Google Scholar 

  23. Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  Google Scholar 

  24. Nakai H, Fuess S, Storm TA, Muramatsu S, Nara Y, Kay MA . Unrestricted hepatocyte transduction with adeno-associated virus serotype 8 vectors in mice. J Virol 2005; 79: 214–224.

    Article  CAS  Google Scholar 

  25. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  Google Scholar 

  26. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  Google Scholar 

  27. Zhu T, Zhou L, Mori S, Wang Z, McTiernan CF, Qiao C et al. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 2005; 112: 2650–2659.

    Article  CAS  Google Scholar 

  28. Sun B, Zhang H, Franco LM, Brown T, Bird A, Schneider A et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005; 11: 889–898.

    Article  CAS  Google Scholar 

  29. Palomeque J, Chemaly ER, Colosi P, Wellman JA, Zhou S, Del Monte F et al. Efficiency of eight different AAV serotypes in transducing rat myocardium in vivo. Gene Therapy 2007; 14: 1055.

    Article  CAS  Google Scholar 

  30. Logeart D, Hatem SN, Heimburger M, Le Roux A, Michel JB, Mercadier JJ . How to optimize in vivo gene transfer to cardiac myocytes: mechanical or pharmacological procedures? Hum Gene Ther 2001; 12: 1601–1610.

    Article  CAS  Google Scholar 

  31. Boecker W, Bernecker OY, Wu JC, Zhu X, Sawa T, Grazette L et al. Cardiac-specific gene expression facilitated by an enhanced myosin light chain promoter. Mol Imaging 2004; 3: 69–75.

    Article  CAS  Google Scholar 

  32. Donahue JK, Kikkawa K, Johns DC, Marban E, Lawrence JH . Ultrarapid, highly efficient viral gene transfer to the heart. Proc Natl Acad Sci USA 1997; 94: 4664–4668.

    Article  CAS  Google Scholar 

  33. Donahue JK, Kikkawa K, Thomas AD, Marban E, Lawrence JH . Acceleration of widespread adenoviral gene transfer to intact rabbit hearts by coronary perfusion with low calcium and serotonin. Gene Therapy 1998; 5: 630–634.

    Article  CAS  Google Scholar 

  34. Hayase M, Del Monte F, Kawase Y, Macneill BD, McGregor J, Yoneyama R et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol 2005; 288: H2995–H3000.

    CAS  Google Scholar 

  35. Kern A, Schmidt K, Leder C, Muller OJ, Wobus CE, Bettinger K et al. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. J Virol 2003; 77: 11072–11081.

    Article  CAS  Google Scholar 

  36. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  Google Scholar 

  37. Grimm D, Kay MA, Kleinschmidt JA . Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1–6. Mol Ther 2003; 7: 839–850.

    Article  CAS  Google Scholar 

  38. Franz WM, Breves D, Klingel K, Brem G, Hofschneider PH, Kandolf R . Heart-specific targeting of firefly luciferase by the myosin light chain-2 promoter and developmental regulation in transgenic mice. Circ Res 1993; 73: 629–638.

    Article  CAS  Google Scholar 

  39. Hauswirth WW, Lewin AS, Zolotukhin S, Muzyczka N . Production and purification of recombinant adeno-associated virus. Methods Enzymol 2000; 316: 743–761.

    Article  CAS  Google Scholar 

  40. Grimm D, Kleinschmidt JA . Progress in adeno-associated virus type 2 vector production: promises and prospects for clinical use. Hum Gene Ther 1999; 10: 2445–2450.

    Article  CAS  Google Scholar 

  41. Boekstegers P, Peter W, von Degenfeld G, Nienaber CA, Abend M, Rehders TC et al. Preservation of regional myocardial function and myocardial oxygen tension during acute ischemia in pigs: comparison of selective synchronized suction and retroinfusion of coronary veins to synchronized coronary venous retroperfusion. J Am Coll Cardiol 1994; 23: 459–469.

    Article  CAS  Google Scholar 

  42. Raake P, Hinkel R, Kupatt C, von Bruhl ML, Beller S, Andrees M et al. Percutaneous approach to a stent-based ventricle to coronary vein bypass (venous VPASS): comparison to catheter-based selective pressure-regulated retro-infusion of the coronary vein. Eur Heart J 2005; 26: 1228–1234.

    Article  Google Scholar 

  43. Boekstegers P, von Degenfeld G, Giehrl W, Kupatt C, Franz W, Steinbeck G . Selective pressure-regulated retroinfusion of coronary veins as an alternative access of ischemic myocardium: implications for myocardial protection, myocardial gene transfer and angiogenesis. Z Kardiol 2000; 89 (Suppl 9): IX/109–IX/112.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the excellent technical support of Elisabeth Ronft and Susanne Helbig from the Department of Internal Medicine I, Grosshadern University Hospital. We thank Barbara Leuchs, Renate Eudenbach and the Vector Core Facility of the German Cancer Research Center for production of high-titer vector stocks. This work was supported in part by Program for Funding of Science and Teaching of the University of Munich research grant 412 (to PWR) and a grant of the Bundesministerium für Bildung und Forschung (01GU0525 to PWR and PB and 01GU0527 to OJM, JAK and HAK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Boekstegers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raake, P., Hinkel, R., Müller, S. et al. Cardio-specific long-term gene expression in a porcine model after selective pressure-regulated retroinfusion of adeno-associated viral (AAV) vectors. Gene Ther 15, 12–17 (2008). https://doi.org/10.1038/sj.gt.3303035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3303035

Keywords

This article is cited by

Search

Quick links