Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy

Abstract

Attenuated retroviruses are currently the most widely used vectors in clinical gene therapy because of their potential to effect stable and permanent gene transfer. Since gene delivery is accompanied by random insertion of foreign genetic material into the recipient chromosomal DNA, the potential for insertional mutagenesis exists. In this study, we used a defective retrovirus vector containing a selectable marker, the hygromycin phosphotransferase gene, to investigate the mutagenic effects of vector integration on the mammalian genome. V79 Chinese hamster cells were infected with virus supernatants or by coculture with virus producer cells, and provirus insertion events occurred at low and high frequencies, respectively. The frequency of hprt mutagenesis was increased by a factor of 2.3 over the spontaneous hprt mutation frequency only following multiple provirus insertions/cell genome. Multiple provirus insertions (>3/genome) resulted in instability at the hprt locus in 63% of the virally induced hprt mutants, as indicated by rearrangements at the molecular level, whereas no rearrangements were found when the provirus copy number was 1–2/genome. To demonstrate direct proviral involvement in mutagenesis, the defective MLV vector was retrieved along with flanking genomic hprt sequences from one mutant, and localized within intron 5 of the hprt gene. These data suggest that provirus copy number is a key factor when considering the potential hazards of using retrovirus vectors for gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Miller DG, Rutledge EA, Russell DW . Chromosomal effects of adeno-associated virus vector integration. Nat Genet 2002; 30: 147–148.

    Article  CAS  PubMed  Google Scholar 

  2. Neil JC, Forrest D . Mechanisms of retrovirus-induced leukaemia: selected aspects. Biochim Biophys Acta 1987; 907: 71–91.

    CAS  PubMed  Google Scholar 

  3. Jaenisch R et al. Germline integration of moloney murine leukemia virus at the Mov13 locus leads to recessive lethal mutation and early embryonic death. Cell 1983; 32: 209–216.

    Article  CAS  PubMed  Google Scholar 

  4. Jenkins NA, Copeland NG, Taylor BA, Lee BK . Dilute (d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 1981; 293: 370–374.

    Article  CAS  PubMed  Google Scholar 

  5. Selten G et al. Involvement of c-myc in MuLV-induced T cell lymphomas in mice: frequency and mechanisms of activation. EMBO J 1984; 3: 3215–3222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lazo PA, Tsichlis PN . Recombination between two integrated proviruses, one of which was inserted near c-myc in a retrovirus-induced rat thymoma: implications for tumor progression. J Virol 1988; 62: 788–794.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cuypers HT et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 1984; 37: 141–150.

    Article  CAS  PubMed  Google Scholar 

  8. Dreyfus F et al. Rearrangements of the Pim-1, c-myc, and p53 genes in Friend helper virus-induced mouse erythroleukemias. Leukemia 1990; 4: 590–594.

    CAS  PubMed  Google Scholar 

  9. Wirschubsky Z, Tsichlis P, Klein G, Sumegi J . Rearrangement of c-myc, pim-1 and Mlvi-1 and trisomy of chromosome 15 in MCF- and Moloney-MuLV-induced murine T-cell leukemias. Int J Cancer 1986; 38: 739–745.

    Article  CAS  PubMed  Google Scholar 

  10. Bergeron D, Poliquin L, Kozak CA, Rassart E . Identification of a common viral integration region in Cas-Br-E murine leukemia virus-induced non-T-, non-B-cell lymphomas. J Virol 1991; 65: 7–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ben-David Y, Lavigueur A, Cheong GY, Bernstein A . Insertional inactivation of the p53 gene during friend leukemia: a new strategy for identifying tumor suppressor genes. New Biol 1990; 2: 1015–1023.

    CAS  PubMed  Google Scholar 

  12. Hicks GG, Mowat M . Integration of Friend murine leukemia virus into both alleles of the p53 oncogene in an erythroleukemic cell line. J Virol 1988; 62: 4752–4755.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    Article  CAS  PubMed  Google Scholar 

  14. Smith JR, Ning Y, Pereira-Smith OM . Why are transformed cells immortal? Is the process reversible? Am J Clin Nutr 1992; 55: 1215S–1221S.

    Article  CAS  PubMed  Google Scholar 

  15. Su YA et al. Reversion of monochromosome-mediated suppression of tumorigenicity in malignant melanoma by retroviral transduction. Cancer Res 1996; 56: 3186–3191.

    CAS  PubMed  Google Scholar 

  16. Tanaka K et al. Suppression of tumorigenicity in human colon carcinoma cells by introduction of normal chromosome 5 or 18. Nature 1991; 349: 340–342.

    Article  CAS  PubMed  Google Scholar 

  17. Parris CN et al. Functional evidence of novel tumor suppressor genes for cutaneous malignant melanoma. Cancer Res 1999; 59: 516–520.

    CAS  PubMed  Google Scholar 

  18. Goff SP . Insertional mutagenesis to isolate genes. Methods Enzymol 1987; 151: 489–502.

    Article  CAS  PubMed  Google Scholar 

  19. King WMDP, Lobel LI, Goff SP, Nguyen-Huu MC . Insertional mutagenesis of embryonal carcinoma cells by retroviruses. Science 1985; 228: 554–558.

    Article  CAS  PubMed  Google Scholar 

  20. Rossiter BJ et al. The Chinese hamster HPRT gene: restriction map, sequence analysis, and multiplex PCR deletion screen. Genomics 1991; 9: 247–256.

    Article  CAS  PubMed  Google Scholar 

  21. Hayward WS, Neel BG, Astrin SM . Activation of a cellular oncogene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981; 290: 475–480.

    Article  CAS  PubMed  Google Scholar 

  22. Li Y, Holland CA, Hartley JW, Hopkins N . Viral integration near c-myc in 10–20% of mcf 247-induced AKR lymphomas. Proc Natl Acad Sci USA 1984; 81: 6808–6811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang LH, Jenssen D . Characterization of HAT- and HAsT-resistant HPRT mutant clones of V79 Chinese hamster cells. Mutat Res 1991; 263: 151–158.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang LH, Jenssen D . Studies on intrachromosomal recombination in SP5/V79 Chinese hamster cells upon exposure to different agents related to carcinogenesis. Carcinogenesis 1994; 15: 2303–2310.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang LH, Vrieling H, van Zeeland AA, Jenssen D . Spectrum of spontaneously occurring mutations in the hprt gene of V79 Chinese hamster cells. J Mol Biol 1992; 223: 627–635.

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi M, Kawashima A, Mai M, Ooi A . Analysis of chromosome 17p13 (p53 locus) alterations in gastric carcinoma cells by dual-color fluorescence in situ hybridization. Am J Pathol 1996; 149: 1575–1584.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Felix CA et al. Association of germline p53 mutation with MLL segmental jumping translocation in treatment-related leukemia. Blood 1998; 91: 4451–4456.

    CAS  PubMed  Google Scholar 

  28. Chou D et al. Accumulation of aberrant Y chromosomes in gamma-ray-induced thymic lymphomas lacking p53. Mol Carcinogen 1999; 26: 157–162.

    Article  CAS  Google Scholar 

  29. Lopez-Guerrero JA et al. Molecular analysis of the 9p21 locus and p53 genes in Ewing family tumors. Lab Invest 2001; 81: 803–814.

    Article  CAS  PubMed  Google Scholar 

  30. Cheung AM et al. Loss of Brca2 and p53 synergistically promotes genomic instability and deregulation of T-cell apoptosis. Cancer Res 2002; 62: 6194–6204.

    CAS  PubMed  Google Scholar 

  31. Hacein-Bey-Abina S et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 2003; 348: 255–256.

    Article  PubMed  Google Scholar 

  32. Check E . A tragic setback. Nature 2002; 420: 116–118.

    Article  CAS  PubMed  Google Scholar 

  33. Grosovsky AJ, Skandalis A, Hasegawa L, Walter BN . Insertional inactivation of the tk locus in a human B lymphoblastoid cell line by a retroviral shuttle vector. Mutat Res 1993; 289: 297–308.

    Article  CAS  PubMed  Google Scholar 

  34. Williams DA, Orkin SH, Mulligan RC . Retrovirus-mediated transfer of human adenosine deaminase gene sequences into cells in culture and into murine hematopoietic cells in vivo. Proc Natl Acad Sci USA 1986; 83: 2566–2570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palmer TD, Hock RA, Osborne WR, Miller AD . Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human. Proc Natl Acad Sci USA 1987; 84: 1055–1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miller DG, Miller AD . Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. J Virol 1992; 66: 78–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Miller AD, Rosman GJ . Improved retroviral vectors for gene transfer and expression. Biotechniques 1989; 7: 980–982, 984–986, 989–990.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ponce MR, Micol JL . PCR amplification of long DNA fragments. Nucleic Acids Res 1992; 20: 623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr JM Cunningham, Dr F Hanaoka and Dr AD Miller for kindly providing the pJET, pSV2bsr and pLHL plasmids, respectively. We also thank our colleagues Dr A Cuthbert and Dr J Arrand for helpful suggestions and support during this work and Dr B Bigger for statistical analysis. This work was supported by Grants from the Cancer Research UK SP2133/0301) and the European Commission (FIGH-CT1999-00002; QLG1-1999-01341).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Themis, M., May, D., Coutelle, C. et al. Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy. Gene Ther 10, 1703–1711 (2003). https://doi.org/10.1038/sj.gt.3302059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302059

Keywords

This article is cited by

Search

Quick links