Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Testicular cancer

Abstract

Testicular cancer is the most common malignancy among men between 14 and 44 years of age, and its incidence has risen over the past two decades in Western countries. Both genetic and environmental factors contribute to the development of testicular cancer, for which cryptorchidism is the most common risk factor. Progress has been made in our understanding of the disease since the initial description of carcinoma in situ of the testis in 1972 (now referred to as germ cell neoplasia in situ), which has led to improved treatment options. The combination of surgery and cisplatin-based chemotherapy has resulted in a cure rate of >90% in patients with testicular cancer, although some patients become refractory to chemotherapy or have a late relapse; an improved understanding of the molecular determinants underlying tumour sensitivity and resistance may lead to the development of novel therapies for these patients. This Primer provides an overview of the biology, epidemiology, diagnosis and current treatment guidelines for testicular cancer, with a focus on germ cell tumours. We also outline areas for future research and what to expect in the next decade for testicular cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the types of testicular germ cell tumours.
Fig. 2: Timeline of major events in the treatment of testicular cancer.
Fig. 3: Rates of testicular cancer.

Data from ref.24.

Fig. 4: Normal embryonic development and the origin of the germ cell lineage.

Adapted from ref.9, Springer Nature Limited.

Fig. 5: The physiological process of male germ cell development.
Fig. 6: Proposed pathogenetic model for the formation of germ cell neoplasia in situ.
Fig. 7: Key somatic alterations occurring in type II testicular germ cell tumours.

Adapted from ref.115, Springer Nature Limited.

Fig. 8: Testicular germ cell tumours.
Fig. 9: Treatment of stage I nonseminomatous germ cell tumours.
Fig. 10: Algorithms for the treatment of advanced-stage germ cell tumours.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30 (2018).

    PubMed  Google Scholar 

  2. Ghazarian, A. A., Kelly, S. P., Altekruse, S. F., Rosenberg, P. S. & McGlynn, K. A. Future of testicular germ cell tumor incidence in the United States: forecast through 2026. Cancer 123, 2320–2328 (2017).

    CAS  PubMed  Google Scholar 

  3. Trabert, B., Chen, J., Devesa, S. S., Bray, F. & McGlynn, K. A. International patterns and trends in testicular cancer incidence, overall and by histologic subtype, 1973–2007. Andrology 3, 4–12 (2015).

    CAS  PubMed  Google Scholar 

  4. Fitzmaurice, C. et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 3, 524–548 (2017).

    PubMed  Google Scholar 

  5. Skakkebaek, N. Possible carcinoma-in-situ of the testis. Lancet 300, 516–517 (1972).

    Google Scholar 

  6. Berney, D. M. et al. Germ cell neoplasia in situ (GCNIS): evolution of the current nomenclature for testicular pre-invasive germ cell malignancy. Histopathology 69, 7–10 (2016).

    PubMed  Google Scholar 

  7. Moch, H., Cubilla, A. L., Humphrey, P. A., Reuter, V. E. & Ulbright, T. M. The 2016 WHO classification of tumours of the urinary system and male genital organs—part A: renal, penile, and testicular tumours. Eur. Urol. 70, 93–105 (2016).

    PubMed  Google Scholar 

  8. Moch, H., Humphrey, P. A., Ulbright, T. M. & Reuter, V. E. in WHO Classification of Tumours of the Urinary System and Male e Genital Organs 4th edn (eds Moch, H. & Ulbright, T. M.) (International Agency for Research on Cancer (IARC), 2016).

  9. Oosterhuis, J. W. & Looijenga, L. H. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005).

    CAS  PubMed  Google Scholar 

  10. Cheng, L., Lyu, B. & Roth, L. M. Perspectives on testicular germ cell neoplasms. Hum. Pathol. 59, 10–25 (2017).

    CAS  PubMed  Google Scholar 

  11. Albers, P. et al. Guidelines on testicular cancer: 2015 update. Eur. Urol. 68, 1054–1068 (2015). This paper presents the European Association of Urology guidelines on the treatment of testicular cancer.

    PubMed  Google Scholar 

  12. Oldenburg, J. et al. Testicular seminoma and non-seminoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24 (Suppl. 6), vi125–vi132 (2013). This paper presents the European Society for Medical Oncology guidelines on the management of testicular cancer.

    PubMed  Google Scholar 

  13. Hanna, N. H. & Einhorn, L. H. Testicular cancer —discoveries and updates. N. Engl. J. Med. 371, 2005–2016 (2014). This is a comprehensive state of the art review on testicular cancer.

    PubMed  Google Scholar 

  14. Hanna, N. & Einhorn, L. H. Testicular cancer: a reflection on 50 years of discovery. J. Clin. Oncol. 32, 3085–3092 (2014).

    CAS  PubMed  Google Scholar 

  15. Tandstad, T. et al. Practice makes perfect: the rest of the story in testicular cancer as a model curable neoplasm. J. Clin. Oncol. 35, 3525–3528 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Feldman, D. R., Bosl, G. J., Sheinfeld, J. & Motzer, R. J. Medical treatment of advanced testicular cancer. Jama 299, 672–684 (2008).

    CAS  PubMed  Google Scholar 

  17. Chovanec, M., Hanna, N., Cary, K. C., Einhorn, L. & Albany, C. Management of stage I testicular germ cell tumours. Nat. Rev. Urol. 13, 663–673 (2016).

    CAS  PubMed  Google Scholar 

  18. Fung, C. et al. Multi-institutional assessment of adverse health outcomes among North American testicular cancer survivors after modern cisplatin-based chemotherapy. J. Clin. Oncol. 35, 1211–1222 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kerns, S. L., Fung, C., Monahan, P. O., Ardeshir-Rouhani-Fard, S. & Abu Zaid, M. I. Cumulative burden of morbidity among testicular cancer survivors after standard cisplatin-based chemotherapy: a multi-institutional study. J. Clin. Oncol. 36, 1505–1512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology Testicular Cancer (version 2.2018) (NCCN, 2018).

  21. International Germ Cell Cancer Collaborative Group. International germ cell consensus classification: a prognostic factor-based staging system for metastatic germ cell cancers. J. Clin. Oncol. 15, 594–603 (1997). This is the first publication of the International Germ Cell Cancer Collaborative Group risk stratification system.

    Google Scholar 

  22. Amin, M. et al. (eds) AJCC Cancer Staging Manual. 8th edn (Springer, New York, 2017).

    Google Scholar 

  23. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–386 (2015).

    CAS  PubMed  Google Scholar 

  24. Ferlay, J. et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. International Agency for Research on Cancer http://globocan.iarc.fr (2013).

  25. Znaor, A., Lortet-Tieulent, J., Jemal, A. & Bray, F. International variations and trends in testicular cancer incidence and mortality. Eur. Urol. 65, 1095–1106 (2014).

    PubMed  Google Scholar 

  26. Ghazarian, A. A., Trabert, B., Devesa, S. S. & McGlynn, K. A. Recent trends in the incidence of testicular germ cell tumors in the United States. Andrology 3, 13–18 (2015).

    CAS  PubMed  Google Scholar 

  27. Daugaard, G. et al. Surveillance for stage I nonseminoma testicular cancer: outcomes and long-term follow-up in a population-based cohort. J. Clin. Oncol. 32, 3817–3823 (2014).

    PubMed  Google Scholar 

  28. Mortensen, M. S. et al. A nationwide cohort study of stage I seminoma patients followed on a surveillance program. Eur. Urol. 66, 1172–1178 (2014).

    PubMed  Google Scholar 

  29. Kier, M. G. et al. Prognostic factors and treatment results after bleomycin, etoposide, and cisplatin in germ cell cancer: a population-based study. Eur. Urol. 71, 290–298 (2017). This paper details a re-evaluation of prognostic factors for outcome and estimated survival in a Danish population-based cohort of 1,889 patients with testicular cancer treated with standard chemotherapy.

    CAS  PubMed  Google Scholar 

  30. Purdue, M. P., Devesa, S. S., Sigurdson, A. J. & McGlynn, K. A. International patterns and trends in testis cancer incidence. Int. J. Cancer 115, 822–827 (2005).

    CAS  PubMed  Google Scholar 

  31. Bray, F. et al. Trends in testicular cancer incidence and mortality in 22 European countries: continuing increases in incidence and declines in mortality. Int. J. Cancer 118, 3099–3111 (2006).

    CAS  PubMed  Google Scholar 

  32. Lymperi, S. & Giwercman, A. Endocrine disruptors and testicular function. Metabolism 86, 79–90 (2018).

    CAS  PubMed  Google Scholar 

  33. Skakkebaek, N. E., Rajpert-De Meyts, E. & Main, K. M. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978 (2001).

    CAS  PubMed  Google Scholar 

  34. Hemminki, K. & Li, X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur. J. Cancer 38, 2428–2434 (2002).

    CAS  PubMed  Google Scholar 

  35. Giannandrea, F. & Fargnoli, S. Environmental factors affecting growth and occurrence of testicular cancer in childhood: an overview of the current epidemiological evidence. Children 4, 1 (2017).

    PubMed Central  Google Scholar 

  36. Gurney, J. K., Stanley, J., Shaw, C. & Sarfati, D. Ethnic patterns of hypospadias in New Zealand do not resemble those observed for cryptorchidism and testicular cancer: evidence of differential aetiology? Andrology 4, 82–86 (2016).

    CAS  PubMed  Google Scholar 

  37. Bonde, J. P. et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum. Reprod. Update 23, 104–125 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Litchfield, K. et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat. Genet. 49, 1133–1140 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mucci, L. A. et al. Familial risk and heritability of cancer among twins in nordic countries. JAMA 315, 68–76 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Czene, K., Lichtenstein, P. & Hemminki, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int. J. Cancer 99, 260–266 (2002).

    CAS  PubMed  Google Scholar 

  41. Sampson, J. N. et al. Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J. Natl Cancer Inst. 107, 279 (2015).

    Google Scholar 

  42. Dong, C. & Hemminki, K. Modification of cancer risks in offspring by sibling and parental cancers from 2,112,616 nuclear families. Int. J. Cancer 92, 144–150 (2001).

    CAS  PubMed  Google Scholar 

  43. Westergaard, T. et al. Cancer risk in fathers and brothers of testicular cancer patients in Denmark. A population-based study. Int. J. Cancer 66, 627–631 (1996).

    CAS  PubMed  Google Scholar 

  44. Gundy, S., Babosa, M., Baki, M. & Bodrogi, I. Increased predisposition to cancer in brothers and offspring of testicular tumor patients. Pathol. Oncol. Res. 10, 197–203 (2004).

    PubMed  Google Scholar 

  45. Hemminki, K. & Chen, B. Familial risks in testicular cancer as aetiological clues. Int. J. Androl 29, 205–210 (2006).

    PubMed  Google Scholar 

  46. Anderson, R. E. et al. Cancer risk in first- and second-degree relatives of men with poor semen quality. Fertil. Steril. 106, 731–738 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Kier, M. G. et al. Second malignant neoplasms and cause of death in patients with germ cell cancer: a danish nationwide cohort study. JAMA Oncol. 2, 1624–1627 (2016).

    PubMed  Google Scholar 

  48. Fossa, S. D. et al. Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J. Natl Cancer Inst. 97, 1056–1066 (2005).

    PubMed  Google Scholar 

  49. Tang, W. W., Kobayashi, T., Irie, N., Dietmann, S. & Surani, M. A. Specification and epigenetic programming of the human germ line. Nat. Rev. Genet. 17, 585–600 (2016).

    CAS  PubMed  Google Scholar 

  50. Rijlaarsdam, M. A. & Looijenga, L. H. An oncofetal and developmental perspective on testicular germ cell cancer. Semin. Cancer Biol. 29, 59–74 (2014).

    CAS  PubMed  Google Scholar 

  51. Zhang, C., Berney, D. M., Hirsch, M. S., Cheng, L. & Ulbright, T. M. Evidence supporting the existence of benign teratomas of the postpubertal testis: a clinical, histopathologic, and molecular genetic analysis of 25 cases. Am. J. Surg. Pathol. 37, 827–835 (2013).

    PubMed  Google Scholar 

  52. Oosterhuis, J. W. et al. Pediatric germ cell tumors presenting beyond childhood? Andrology 3, 70–77 (2015).

    CAS  PubMed  Google Scholar 

  53. Sievers, S. et al. IGF2/H19 imprinting analysis of human germ cell tumors (GCTs) using the methylation-sensitive single-nucleotide primer extension method reflects the origin of GCTs in different stages of primordial germ cell development. Genes Chromosomes Cancer 44, 256–264 (2005).

    CAS  PubMed  Google Scholar 

  54. Herszfeld, D. et al. CD30 is a survival factor and a biomarker for transformed human pluripotent stem cells. Nat. Biotechnol. 24, 351–357 (2006).

    CAS  PubMed  Google Scholar 

  55. Fustino, N., Rakheja, D., Ateek, C. S., Neumann, J. C. & Amatruda, J. F. Bone morphogenetic protein signalling activity distinguishes histological subsets of paediatric germ cell tumours. Int. J. Androl 34, e218–e233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Amatruda, J. F. et al. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors. BMC Cancer 13, 313 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Youngren, K. K. et al. The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature 435, 360–364 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Heaney, J. D., Lam, M. Y., Michelson, M. V. & Nadeau, J. H. Loss of the transmembrane but not the soluble kit ligand isoform increases testicular germ cell tumor susceptibility in mice. Cancer Res. 68, 5193–5197 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nemark, A. I., Mazyrko, A. V. & Astakhov Iu, I. Use of plasmapheresis in multimodality correction of hemostasis disorders in patients with calculous pyelonephritis. Ter. Arkh. 61, 86–88 (1989).

    CAS  PubMed  Google Scholar 

  60. Looijenga, L. H., Stoop, H. & Biermann, K. Testicular cancer: biology and biomarkers. Virchows Arch. 464, 301–313 (2014).

    CAS  PubMed  Google Scholar 

  61. Mostert, M. et al. Comparative genomic and in situ hybridization of germ cell tumors of the infantile testis. Lab. Invest. 80, 1055–1064 (2000).

    CAS  PubMed  Google Scholar 

  62. Schneider, D. T. et al. Genetic analysis of mediastinal nonseminomatous germ cell tumors in children and adolescents. Genes Chromosomes Cancer 34, 115–125 (2002).

    CAS  PubMed  Google Scholar 

  63. Schneider, D. T. et al. Genetic analysis of childhood germ cell tumors with comparative genomic hybridization. Klin. Padiatr. 213, 204–211 (2001).

    CAS  PubMed  Google Scholar 

  64. [No authors listed.] Molecular mechanisms of neuronal responsiveness. Proceedings of a symposium. March 21–23,1986, Burlington, Vermont. Adv. Exp. Med. Biol. 221, 1–563 (1987).

    Google Scholar 

  65. Frazier, A. L. et al. Revised risk classification for pediatric extracranial germ cell tumors based on 25 years of clinical trial data from the United Kingdom and United States. J. Clin. Oncol. 33, 195–201 (2015).

    CAS  PubMed  Google Scholar 

  66. Murray, M. J. et al. A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br. J. Cancer 114, 151–162 (2016).

    CAS  PubMed  Google Scholar 

  67. Honecker, F. et al. Germ cell lineage differentiation in non-seminomatous germ cell tumours. J. Pathol. 208, 395–400 (2006).

    CAS  PubMed  Google Scholar 

  68. Rajpert-De Meyts, E., Nielsen, J. E., Skakkebaek, N. E. & Almstrup, K. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs. Folia Histochem. Cytobiol. 53, 177–188 (2015).

    CAS  Google Scholar 

  69. de Jong, J. et al. Differential expression of SOX17 and SOX2 in germ cells and stem cells has biological and clinical implications. J. Pathol. 215, 21–30 (2008).

    PubMed  Google Scholar 

  70. Irie, N. et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell 160, 253–268 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Sonne, S. B. et al. Analysis of SOX2 expression in developing human testis and germ cell neoplasia. Int. J. Dev. Biol. 54, 755–760 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Klaassen, Z. et al. Clinical disparities for minorities and foreign-born men with undescended versus descended testicular germ cell tumors. Clin. Genitourin. Cancer 14, e251–e255 (2016).

    PubMed  Google Scholar 

  73. de Graaff, W. E. et al. Ploidy of testicular carcinoma in situ. Lab. Invest. 66, 166–168 (1992).

    PubMed  Google Scholar 

  74. Killian, J. K. et al. Imprints and DPPA3 are bypassed during pluripotency- and differentiation-coupled methylation reprogramming in testicular germ cell tumors. Genome Res. 26, 1490–1504 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. van Echten, J. et al. No recurrent structural abnormalities apart from i(12p) in primary germ cell tumors of the adult testis. Genes Chromosomes Cancer 14, 133–144 (1995).

    PubMed  Google Scholar 

  76. Malek, N. P. et al. Quantification of additional short arms of chromosome 12 in germ cell tumours using the polymerase chain reaction. Eur. J. Cancer 33, 1488–1494 (1997).

    CAS  PubMed  Google Scholar 

  77. Andrews, P. W. et al. Assessing the safety of human pluripotent stem cells and their derivatives for clinical applications. Stem Cell Rep. 9, 1–4 (2017).

    Google Scholar 

  78. Looijenga, L. H., Gillis, A. J., van Gurp, R. J., Verkerk, A. J. & Oosterhuis, J. W. X inactivation in human testicular tumors. XIST expression and androgen receptor methylation status. Am. J. Pathol. 151, 581–590 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawakami, T., Okamoto, K., Ogawa, O. & Okada, Y. XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 363, 40–42 (2004).

    CAS  PubMed  Google Scholar 

  80. Litchfield, K. et al. Whole-exome sequencing reveals the mutational spectrum of testicular germ cell tumours. Nat. Commun. 6, 5973 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Cutcutache, I. et al. Exome-wide sequencing shows low mutation rates and identifies novel mutated genes in seminomas. Eur. Urol. 68, 77–83 (2015).

    CAS  PubMed  Google Scholar 

  82. Litchfield, K. et al. Rare disruptive mutations in ciliary function genes contribute to testicular cancer susceptibility. Nat. Commun. 7, 13840 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Bagrodia, A. et al. Genetic determinants of cisplatin resistance in patients with advanced germ cell tumors. J. Clin. Oncol. 34, 4000–4007 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kersemaekers, A. M. et al. Role of P53 and MDM2 in treatment response of human germ cell tumors. J. Clin. Oncol. 20, 1551–1561 (2002).

    CAS  PubMed  Google Scholar 

  85. Taylor-Weiner, A. et al. Genomic evolution and chemoresistance in germ-cell tumours. Nature 540, 114–118 (2016). This study reports genomic features that are associated with the origin and the evolution of testicular cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006).

    CAS  PubMed  Google Scholar 

  87. Gillis, A. J. et al. High-throughput microRNAome analysis in human germ cell tumours. J. Pathol. 213, 319–328 (2007).

    CAS  PubMed  Google Scholar 

  88. Rijlaarsdam, M. A. et al. Identification of known and novel germ cell cancer-specific (embryonic) miRs in serum by high-throughput profiling. Andrology 3, 85–91 (2015).

    CAS  PubMed  Google Scholar 

  89. Novotny, G. W. et al. MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr. Relat. Cancer 19, 365–379 (2012).

    CAS  PubMed  Google Scholar 

  90. Palmer, R. D. et al. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 70, 2911–2923 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, N., Long, B., Han, W., Yuan, S. & Wang, K. microRNAs: important regulators of stem cells. Stem Cell Res. Ther. 8, 110 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Radtke, A. et al. The novel biomarker of germ cell tumours, micro-RNA-371a-3p, has a very rapid decay in patients with clinical stage 1. Urol. Int. 100, 470–475 (2018).

    CAS  PubMed  Google Scholar 

  93. Dieckmann, K. P. et al. Testicular germ-cell tumours: a descriptive analysis of clinical characteristics at first presentation. Urol. Int. 100, 409–419 (2018).

    CAS  PubMed  Google Scholar 

  94. Leao, R. et al. Serum miRNA predicts viable disease after chemotherapy in patients with testicular nonseminoma germ cell tumor. J. Urol. 200, 126–135 (2018).

    CAS  PubMed  Google Scholar 

  95. Murray, M. J. et al. Identification of microRNAs from the miR-371~373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am. J. Clin. Pathol. 135, 119–125 (2011).

    CAS  PubMed  Google Scholar 

  96. Belge, G., Dieckmann, K. P., Spiekermann, M., Balks, T. & Bullerdiek, J. Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur. Urol. 61, 1068–1069 (2012).

    CAS  PubMed  Google Scholar 

  97. Dieckmann, K. P. et al. MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br. J. Cancer 107, 1754–1760 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Gillis, A. J. et al. Targeted serum miRNA (TsmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol. Oncol. 7, 1083–1092 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Spiekermann, M. et al. MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology 3, 78–84 (2015).

    CAS  PubMed  Google Scholar 

  100. Spiekermann, M., Dieckmann, K. P., Balks, T., Bullerdiek, J. & Belge, G. Is relative quantification dispensable for the measurement of microRNAs as serum biomarkers in germ cell tumors? Anticancer Res. 35, 117–121 (2015).

    CAS  PubMed  Google Scholar 

  101. Dieckmann, K. P. et al. MicroRNA miR-371a-3p-A novel serum biomarker of testicular germ cell tumors: evidence for specificity from measurements in testicular vein blood and in neoplastic hydrocele fluid. Urol. Int. 97, 76–83 (2016).

    CAS  PubMed  Google Scholar 

  102. van Agthoven, T. & Looijenga, L. H. Accurate primary germ cell cancer diagnosis using serum based microRNA detection (ampTSmiR test). Oncotarget 8, 58037–58049 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. van Agthoven, T., Eijkenboom, W. M. H. & Looijenga, L. H. J. microRNA-371a-3p as informative biomarker for the follow-up of testicular germ cell cancer patients. Cell. Oncol. 40, 379–388 (2017).

    Google Scholar 

  104. Beyer, J. et al. Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer. Ann. Oncol. 24, 878–888 (2013).

    CAS  PubMed  Google Scholar 

  105. Nathanson, K. L. et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am. J. Hum. Genet. 77, 1034–1043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kanetsky, P. A. et al. Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nat. Genet. 41, 811–815 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Rapley, E. A. et al. A genome-wide association study of testicular germ cell tumor. Nat. Genet. 41, 807–810 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kanetsky, P. A. et al. A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Hum. Mol. Genet. 20, 3109–3117 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schumacher, F. R. et al. Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Hum. Mol. Genet. 22, 2748–2753 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Chung, C. C. et al. Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nat. Genet. 45, 680–685 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Koster, R. et al. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Hum. Mol. Genet. 23, 6061–6068 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Fang, J. et al. Functional characterization of a multi-cancer risk locus on chr5p15.33 reveals regulation of TERT by ZNF148. Nat. Commun. 8, 15034 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Wang, Z. et al. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat. Genet. 49, 1141–1147 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Neumann, J. C. et al. Mutation in the type IB bone morphogenetic protein receptor Alk6b impairs germ-cell differentiation and causes germ-cell tumors in zebrafish. Proc. Natl Acad. Sci. USA 108, 13153–13158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Oosterhuis, J. W. & Looijenga, L. H. in Pathology and Biology of Human Germ Cell Tumors (eds Nogales, F. F. & Jimenez, R. E.) 23–130 (Springer, 2017).

  116. Mayer, F. et al. Aneuploidy of human testicular germ cell tumors is associated with amplification of centrosomes. Oncogene 22, 3859–3866 (2003).

    CAS  PubMed  Google Scholar 

  117. Zeron-Medina, J. et al. A polymorphic p53 response element in KIT ligand influences cancer risk and has undergone natural selection. Cell 155, 410–422 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Giannoulatou, E. et al. Whole-genome sequencing of spermatocytic tumors provides insights into the mutational processes operating in the male germline. PLOS ONE 12, e0178169 (2017).

    PubMed  PubMed Central  Google Scholar 

  119. Lim, J. et al. OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J. Pathol. 224, 473–483 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Looijenga, L. H. Spermatocytic seminoma: toward further understanding of pathogenesis. J. Pathol. 224, 431–433 (2011).

    PubMed  Google Scholar 

  121. Giannoulatou, E. et al. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. Proc. Natl Acad. Sci. USA 110, 20152–20157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Lim, J. et al. Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLOS ONE 7, e42382 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Rosenberg, C. et al. Chromosomal constitution of human spermatocytic seminomas: comparative genomic hybridization supported by conventional and interphase cytogenetics. Genes Chromosomes Cancer 23, 286–291 (1998).

    CAS  PubMed  Google Scholar 

  124. Looijenga, L. H. et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 66, 290–302 (2006).

    CAS  PubMed  Google Scholar 

  125. Dieckmann, K. P., Frey, U. & Lock, G. Contemporary diagnostic work-up of testicular germ cell tumours. Nat. Rev. Urol. 10, 703–712 (2013).

    PubMed  Google Scholar 

  126. Murray, M. J., Huddart, R. A. & Coleman, N. The present and future of serum diagnostic tests for testicular germ cell tumours. Nat. Rev. Urol. 13, 715–725 (2016). This is a comprehensive review of serum biomarker testing in the diagnosis and monitoring of testicular cancer.

    CAS  PubMed  Google Scholar 

  127. Bhardwa, J. M. et al. Assessing the size and stage of testicular germ cell tumours: 1984–2003. BJU Int. 96, 819–821 (2005).

    PubMed  Google Scholar 

  128. Matei, D. V. et al. Reliability of frozen section examination in a large cohort of testicular masses: what did we learn? Clin. Genitourin. Cancer. 15, e689–e696 (2017).

    PubMed  Google Scholar 

  129. Silverio, P. C., Schoofs, F., Iselin, C. E. & Tille, J. C. Fourteen-year experience with the intraoperative frozen section examination of testicular lesion in a tertiary university center. Ann. Diagn. Pathol. 19, 99–102 (2015).

    PubMed  Google Scholar 

  130. Williamson, S. R. et al. The World Health Organization 2016 classification of testicular germ cell tumours: a review and update from the international society of urological pathology testis consultation panel. Histopathology 70, 335–346 (2017).

    PubMed  Google Scholar 

  131. Henley, J. D., Young, R. H. & Ulbright, T. M. Malignant sertoli cell tumors of the testis: a study of 13 examples of a neoplasm frequently misinterpreted as seminoma. Am. J. Surg. Pathol. 26, 541–550 (2002).

    PubMed  Google Scholar 

  132. Cheng, L. et al. OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J. Pathol. 211, 1–9 (2007). This is a comprehensive review on the discovery and application of diagnostic biomarkers.

    CAS  PubMed  Google Scholar 

  133. Ulbright, T. M., Tickoo, S. K., Berney, D. M. & Srigley, J. R. Best practices recommendations in the application of immunohistochemistry in testicular tumors: report from the International Society of Urological Pathology consensus conference. Am. J. Surg. Pathol. 38, e50–e59 (2014).

    PubMed  Google Scholar 

  134. Cheng, L. Establishing a germ cell origin for metastatic tumors using OCT4 immunohistochemistry. Cancer 101, 2006–2010 (2004).

    PubMed  Google Scholar 

  135. Berney, D. M., Lu, Y. J., Shamash, J. & Idrees, M. Postchemotherapy changes in testicular germ cell tumours: biology and morphology. Histopathology 70, 26–39 (2017).

    PubMed  Google Scholar 

  136. Kum, J. B. et al. Molecular genetic evidence supporting the origin of somatic-type malignancy and teratoma from the same progenitor cell. Am. J. Surg. Pathol. 36, 1849–1856 (2012).

    PubMed  Google Scholar 

  137. George, D. W. et al. Update on late relapse of germ cell tumor: a clinical and molecular analysis. J. Clin. Oncol. 21, 113–122 (2003).

    PubMed  Google Scholar 

  138. Mortensen, M. S. et al. Late relapses in stage I testicular cancer patients on surveillance. Eur. Urol. 70, 365–371 (2016).

    PubMed  Google Scholar 

  139. Sobin, L. H., Gospodarowicz, M. K., Wittekind, C. (eds) UICC International Union Against Cancer: TNM Classification of Malalignant Tumours 7th edn (Wiley-Blackwell, Oxford, 2009).

    Google Scholar 

  140. Gilligan, T. D. et al. American society of clinical oncology clinical practice guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 28, 3388–3404 (2010).

    CAS  PubMed  Google Scholar 

  141. Warde, P. et al. Prognostic factors for relapse in stage I seminoma managed by surveillance: a pooled analysis. J. Clin. Oncol. 20, 4448–4452 (2002).

    PubMed  Google Scholar 

  142. Chung, P. et al. Evaluation of a prognostic model for risk of relapse in stage I seminoma surveillance. Cancer Med. 4, 155–160 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Aparicio, J. et al. Prognostic factors for relapse in stage I seminoma: a new nomogram derived from three consecutive, risk-adapted studies from the Spanish Germ Cell Cancer Group (SGCCG). Ann. Oncol. 25, 2173–2178 (2014).

    CAS  PubMed  Google Scholar 

  144. Kamba, T. et al. Outcome of different post-orchiectomy management for stage I seminoma: Japanese multi-institutional study including 425 patients. Int. J. Urol. 17, 980–987.

    PubMed  PubMed Central  Google Scholar 

  145. Dunphy, C. H., Ayala, A. G., Swanson, D. A., Ro, J. Y. & Logothetis, C. Clinical stage I nonseminomatous and mixed germ cell tumors of the testis. A clinicopathologic study of 93 patients on a surveillance protocol after orchiectomy alone. Cancer 62, 1202–1206 (1988).

    CAS  PubMed  Google Scholar 

  146. Daugaard, G. et al. Surgery after relapse in stage I nonseminomatous testicular cancer. J. Clin. Oncol. 33, 2322 (2015).

    PubMed  Google Scholar 

  147. Kollmannsberger, C. et al. Patterns of relapse in patients with clinical stage I testicular cancer managed with active surveillance. J. Clin. Oncol. 33, 51–57 (2015).

    PubMed  Google Scholar 

  148. Albers, P. et al. Risk factors for relapse in clinical stage I nonseminomatous testicular germ cell tumors: results of the German Testicular Cancer Study Group Trial. J. Clin. Oncol. 21, 1505–1512 (2003).

    PubMed  Google Scholar 

  149. Gilbert, D. C. et al. Defining a new prognostic index for stage I nonseminomatous germ cell tumors using CXCL12 expression and proportion of embryonal carcinoma. Clin. Cancer Res. 22, 1265–1273 (2016).

    CAS  PubMed  Google Scholar 

  150. Wood, H. M. & Elder, J. S. Cryptorchidism and testicular cancer: separating fact from fiction. J. Urol. 181, 452–461 (2009).

    PubMed  Google Scholar 

  151. Orchid. Testicular cancer basics. Orchid https://orchid-cancer.org.uk/wp-content/uploads/2018/06/1050-Testicular-Cancer-Basics-Z-Card-2018-4.pdf (2018).

  152. Giwercman, A., Muller, J. & Skakkebaek, N. E. Carcinoma in situ of the undescended testis. Semin. Urol. 6, 110–119 (1988).

    CAS  PubMed  Google Scholar 

  153. Skakkebaek, N. E., Berthelsen, J. G. & Muller, J. Carcinoma-in-situ of the undescended testis. Urol. Clin. North Am. 9, 377–385 (1982).

    CAS  PubMed  Google Scholar 

  154. Skakkebaek, N. E., Berthelsen, J. G., Giwercman, A. & Muller, J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int. J. Androl 10, 19–28 (1987).

    CAS  PubMed  Google Scholar 

  155. Dieckmann, K. P. & Loy, V. False-negative biopsies for the diagnosis of testicular intraepithelial neoplasia (TIN)—an update. Eur. Urol. 43, 516–521 (2003).

    PubMed  Google Scholar 

  156. Kier, M. G. et al. Screening for carcinoma in situ in the contralateral testicle in patients with testicular cancer: a population-based study. Ann. Oncol. 26, 737–742 (2015).

    CAS  PubMed  Google Scholar 

  157. Swerdlow, A. J., Huttly, S. R. & Smith, P. G. Testicular cancer and antecedent diseases. Br. J. Cancer 55, 97–103 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Kristianslund, S., Fossa, S. D. & Kjellevold, K. Bilateral malignant testicular germ cell cancer. Br. J. Urol. 58, 60–63 (1986).

    CAS  PubMed  Google Scholar 

  159. Dieckmann, K. P. & Loy, V. The value of the biopsy of the contralateral testis in patients with testicular germ cell cancer: the recent German experience. APMIS 106, 13–20 (1998).

    CAS  PubMed  Google Scholar 

  160. Jones, T. D. et al. Screening for intratubular germ cell neoplasia of the testis using OCT4 immunohistochemistry. Am. J. Surg. Pathol. 30, 1427–1431 (2006).

    PubMed  Google Scholar 

  161. van der Zwan, Y. G., Biermann, K., Wolffenbuttel, K. P., Cools, M. & Looijenga, L. H. Gonadal maldevelopment as risk factor for germ cell cancer: towards a clinical decision model. Eur. Urol. 67, 692–701 (2015).

    PubMed  Google Scholar 

  162. Cools, M. et al. Malignant testicular germ cell tumors in postpubertal individuals with androgen insensitivity: prevalence, pathology and relevance of single nucleotide polymorphism-based susceptibility profiling. Hum. Reprod. 32, 2561–2573 (2017).

    CAS  PubMed  Google Scholar 

  163. Travis, L. B. et al. Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J. Natl Cancer Inst. 97, 1354–1365 (2005).

    PubMed  Google Scholar 

  164. Horwich, A. et al. Second cancer risk and mortality in men treated with radiotherapy for stage I seminoma. Br. J. Cancer 110, 256–263 (2014).

    CAS  PubMed  Google Scholar 

  165. Oliver, R. T. et al. Radiotherapy versus single-dose carboplatin in adjuvant treatment of stage I seminoma: a randomised trial. Lancet 366, 293–300 (2005).

    CAS  PubMed  Google Scholar 

  166. Oliver, R. T. et al. Randomized trial of carboplatin versus radiotherapy for stage I seminoma: mature results on relapse and contralateral testis cancer rates in MRC TE19/EORTC 30982 study (ISRCTN27163214). J. Clin. Oncol. 29, 957–962 (2011).

    CAS  PubMed  Google Scholar 

  167. Fischer, S. et al. Outcome of men with relapse after adjuvant carboplatin for clinical stage I seminoma. J. Clin. Oncol. 35, 194–200 (2017).

    PubMed  Google Scholar 

  168. Tandstad, T. et al. Treatment of stage I seminoma, with one course of adjuvant carboplatin or surveillance, risk-adapted recommendations implementing patient autonomy: a report from the Swedish and Norwegian Testicular Cancer Group (SWENOTECA). Ann. Oncol. 27, 1299–1304 (2016).

    CAS  PubMed  Google Scholar 

  169. Hosni, A. et al. Clinical characteristics and outcomes of late relapse in stage I testicular seminoma. Clin. Oncol. 28, 648–654 (2016).

    CAS  Google Scholar 

  170. Nayan, M. et al. Conditional risk of relapse in surveillance for clinical stage I testicular cancer. Eur. Urol. 71, 120–127 (2017).

    PubMed  Google Scholar 

  171. Boormans, J. L. et al. Testicular tumour size and rete testis invasion as prognostic factors for the risk of relapse of clinical stage I seminoma testis patients under surveillance: a systematic review by the Testicular Cancer Guidelines Panel. Eur. Urol. 73, 394–405 (2017).

    PubMed  Google Scholar 

  172. Lago-Hernandez, C. A. et al. A refined risk stratification scheme for clinical stage 1 NSGCT based on evaluation of both embryonal predominance and lymphovascular invasion. Ann. Oncol. 26, 1396–1401 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Albers, P. et al. Randomized phase III trial comparing retroperitoneal lymph node dissection with one course of bleomycin and etoposide plus cisplatin chemotherapy in the adjuvant treatment of clinical stage I nonseminomatous testicular germ cell tumors: AUO trial AH 01/94 by the German Testicular Cancer Study Group. J. Clin. Oncol. 26, 2966–2972 (2008).

    CAS  PubMed  Google Scholar 

  174. Tandstad, T. et al. Risk-adapted treatment in clinical stage I nonseminomatous germ cell testicular cancer: the SWENOTECA management program. J. Clin. Oncol. 27, 2122–2128 (2009).

    PubMed  Google Scholar 

  175. Classen, J. et al. Radiotherapy for stages IIA/B testicular seminoma: final report of a prospective multicenter clinical trial. J. Clin. Oncol. 21, 1101–1106 (2003).

    PubMed  Google Scholar 

  176. Schmidberger, H. et al. Radiotherapy in stage IIA and IIB testicular seminoma with reduced portals: a prospective multicenter study. Int. J. Radiat. Oncol. Biol. Phys. 39, 321–326 (1997).

    CAS  PubMed  Google Scholar 

  177. Garcia-del-Muro, X. et al. Chemotherapy as an alternative to radiotherapy in the treatment of stage IIA and IIB testicular seminoma: a Spanish Germ Cell Cancer Group Study. J. Clin. Oncol. 26, 5416–5421 (2008).

    CAS  PubMed  Google Scholar 

  178. Winter, C., Raman, J. D., Sheinfeld, J. & Albers, P. Retroperitoneal lymph node dissection after chemotherapy. BJU Int. 104, 1404–1412 (2009).

    PubMed  Google Scholar 

  179. Donohue, J. P. Evolution of retroperitoneal lymphadenectomy (RPLND) in the management of non-seminomatous testicular cancer (NSGCT). Urol. Oncol. 21, 129–132 (2003).

    PubMed  Google Scholar 

  180. Donohue, J. P. & Foster, R. S. Retroperitoneal lymphadenectomy in staging and treatment. The development of nerve-sparing techniques. Urol. Clin. North Am. 25, 461–468 (1998).

    CAS  PubMed  Google Scholar 

  181. Wymer, K. M. et al. Adherence to National Comprehensive Cancer Network(R) guidelines for testicular cancer. J. Urol. 197, 684–689 (2017).

    PubMed  Google Scholar 

  182. Feuer, E. J. et al. After a treatment breakthrough: a comparison of trial and population-based data for advanced testicular cancer. J. Clin. Oncol. 12, 368–377 (1994).

    CAS  PubMed  Google Scholar 

  183. de Wit, R. et al. Four cycles of BEP versus an alternating regime of PVB and BEP in patients with poor-prognosis metastatic testicular non-seminoma; a randomised study of the EORTC Genitourinary Tract Cancer Cooperative Group. Br. J. Cancer 71, 1311–1314 (1995).

    PubMed  PubMed Central  Google Scholar 

  184. Culine, S. et al. Randomized trial comparing bleomycin/etoposide/cisplatin with alternating cisplatin/cyclophosphamide/doxorubicin and vinblastine/bleomycin regimens of chemotherapy for patients with intermediate- and poor-risk metastatic nonseminomatous germ cell tumors: Genito-Urinary Group of the French Federation of Cancer Centers Trial T93MP. J. Clin. Oncol. 26, 421–427 (2008).

    CAS  PubMed  Google Scholar 

  185. Cullen, M. et al. Antibacterial prophylaxis after chemotherapy for solid tumors and lymphomas. N. Engl. J. Med. 353, 988–998 (2005).

    CAS  PubMed  Google Scholar 

  186. Fizazi, K. et al. Personalised chemotherapy based on tumour marker decline in poor prognosis germ-cell tumours (GETUG 13): a phase 3, multicentre, randomised trial. Lancet Oncol. 15, 1442–1450 (2014).

    CAS  PubMed  Google Scholar 

  187. Motzer, R. J. et al. High-dose carboplatin, etoposide, and cyclophosphamide with autologous bone marrow transplantation in first-line therapy for patients with poor-risk germ cell tumors. J. Clin. Oncol. 15, 2546–2552 (1997).

    CAS  PubMed  Google Scholar 

  188. Feldman, D. R. et al. Brain metastases in patients with germ cell tumors: prognostic factors and treatment options—an analysis from the global germ cell cancer group. J. Clin. Oncol. 34, 345–351 (2016).

    PubMed  Google Scholar 

  189. Doyle, D. M. & Einhorn, L. H. Delayed effects of whole brain radiotherapy in germ cell tumor patients with central nervous system metastases. Int. J. Radiat. Oncol. Biol. Phys. 70, 1361–1364 (2008).

    PubMed  Google Scholar 

  190. Cheng, L. et al. Molecular genetic evidence supporting the neoplastic nature of fibrous stroma in testicular teratoma. Mod. Pathol. 25, 1432–1438 (2012). This study provides evidence that both epithelial and fibrous components of teratomas are derived from a common progenitor. Fibrous stroma (fibrosis) after chemotherapy is neoplastic.

    CAS  PubMed  Google Scholar 

  191. Brandli, D. W. et al. Stroma adjacent to metastatic mature teratoma after chemotherapy for testicular germ cell tumors is derived from the same progenitor cells as the teratoma. Cancer Res. 63, 6063–6068 (2003).

    CAS  PubMed  Google Scholar 

  192. Cheng, L. et al. Molecular genetic evidence supporting the neoplastic nature of stromal cells in ‘fibrosis’ after chemotherapy for testicular germ cell tumours. J. Pathol. 213, 65–71 (2007).

    CAS  PubMed  Google Scholar 

  193. Ehrlich, Y., Brames, M. J., Beck, S. D., Foster, R. S. & Einhorn, L. H. Long-term follow-up of cisplatin combination chemotherapy in patients with disseminated nonseminomatous germ cell tumors: is a postchemotherapy retroperitoneal lymph node dissection needed after complete remission? J. Clin. Oncol. 28, 531–536 (2010).

    CAS  PubMed  Google Scholar 

  194. Kollmannsberger, C. et al. Management of disseminated nonseminomatous germ cell tumors with risk-based chemotherapy followed by response-guided postchemotherapy surgery. J. Clin. Oncol. 28, 537–542 (2010).

    PubMed  Google Scholar 

  195. Lakes, J., Lusch, A., Nini, A. & Albers, P. Retroperitoneal lymph node dissection in the setting of elevated markers. Curr. Opin. Urol. 28, 435–439 (2018).

    PubMed  Google Scholar 

  196. Winter, C. et al. Residual tumor size and IGCCCG risk classification predict additional vascular procedures in patients with germ cell tumors and residual tumor resection: a multicenter analysis of the German Testicular Cancer Study Group. Eur. Urol. 61, 403–409 (2012).

    PubMed  Google Scholar 

  197. Schmoll, H. J. The role of ifosfamide in testicular cancer. Semin. Oncol. 16, 82–95 (1989).

    CAS  PubMed  Google Scholar 

  198. Nichols, C. R. Ifosfamide in the treatment of germ cell tumors. Semin. Oncol. 23, 65–73 (1996).

    CAS  PubMed  Google Scholar 

  199. Loehrer, P. J. Sr., Einhorn, L. H. & Williams, S. D. VP-16 plus ifosfamide plus cisplatin as salvage therapy in refractory germ cell cancer. J. Clin. Oncol. 4, 528–536 (1986).

    PubMed  Google Scholar 

  200. Nichols, C. R. et al. Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: an Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. J. Clin. Oncol. 16, 1287–1293 (1998).

    CAS  PubMed  Google Scholar 

  201. Lorch, A. et al. Conventional-dose versus high-dose chemotherapy as first salvage treatment in male patients with metastatic germ cell tumors: evidence from a large international database. J. Clin. Oncol. 29, 2178–2184 (2011).

    PubMed  Google Scholar 

  202. International Prognostic Factors Study Group. Prognostic factors in patients with metastatic germ cell tumors who experienced treatment failure with cisplatin-based first-line chemotherapy. J. Clin. Oncol. 28, 4906–4911 (2010). This is the first publication of the International Prognostic Factors Study Group risk classification system.

    Google Scholar 

  203. Pico, J. L. et al. A randomised trial of high-dose chemotherapy in the salvage treatment of patients failing first-line platinum chemotherapy for advanced germ cell tumours. Ann. Oncol. 16, 1152–1159 (2005).

    PubMed  Google Scholar 

  204. Oing, C., Lorch, A. & Bokenmeyer, C. Ongoing clinical trials in testicular cancer: the TIGER trial. Oncol. Res. Treat. 39, 553–556 (2016).

    Google Scholar 

  205. Rice, K. R. et al. Management of germ cell tumors with somatic type malignancy: pathological features, prognostic factors and survival outcomes. J. Urol. 192, 1403–1409 (2014).

    PubMed  Google Scholar 

  206. Sharp, D. S. et al. Clinical outcome and predictors of survival in late relapse of germ cell tumor. J. Clin. Oncol. 26, 5524–5529 (2008).

    PubMed  PubMed Central  Google Scholar 

  207. Kondagunta, G. V. et al. Combination of paclitaxel, ifosfamide, and cisplatin is an effective second-line therapy for patients with relapsed testicular germ cell tumors. J. Clin. Oncol. 23, 6549–6555 (2005).

    CAS  PubMed  Google Scholar 

  208. Oing, C., Seidel, C., von Amsberg, G., Oechsle, K. & Bokemeyer, C. Pharmacotherapeutic treatment of germ cell tumors: standard of care and recent developments. Expert Opin. Pharmacother. 17, 545–560 (2016).

    CAS  PubMed  Google Scholar 

  209. Adra, N. et al. High-dose chemotherapy and autologous peripheral-blood stem-cell transplantation for relapsed metastatic germ cell tumors: the Indiana University experience. J. Clin. Oncol. 35, 1096–1102 (2017). This large single-institution study demonstrates that HDCT followed by peripheral blood stem cell transplantation is highly effective in treating patients with relapsed metastatic germ cell tumours.

    PubMed  Google Scholar 

  210. Joly, F. et al. Quality of life in long-term survivors of testicular cancer: a population-based case-control study. J. Clin. Oncol. 20, 73–80 (2002).

    CAS  PubMed  Google Scholar 

  211. Fleer, J., Hoekstra, H. J., Sleijfer, D. T. & Hoekstra-Weebers, J. E. Quality of life of survivors of testicular germ cell cancer: a review of the literature. Support. Care Cancer 12, 476–486 (2004).

    CAS  PubMed  Google Scholar 

  212. Dahl, A. A., Mykletun, A. & Fossa, S. D. Quality of life in survivors of testicular cancer. Urol. Oncol. 23, 193–200 (2005).

    PubMed  Google Scholar 

  213. Mykletun, A. et al. Side effects and cancer-related stress determine quality of life in long-term survivors of testicular cancer. J. Clin. Oncol. 23, 3061–3068 (2005).

    PubMed  Google Scholar 

  214. Efstathiou, E. & Logothetis, C. J. Review of late complications of treatment and late relapse in testicular cancer. J. Natl Compr. Canc. Netw. 4, 1059–1070 (2006).

    CAS  PubMed  Google Scholar 

  215. Fossa, S. D., Oldenburg, J. & Dahl, A. A. Short- and long-term morbidity after treatment for testicular cancer. BJU Int. 104, 1418–1422 (2009).

    PubMed  Google Scholar 

  216. Rossen, P. B., Pedersen, A. F., Zachariae, R. & von der Maase, H. Health-related quality of life in long-term survivors of testicular cancer. J. Clin. Oncol. 27, 5993–5999 (2009).

    PubMed  Google Scholar 

  217. Glendenning, J. L. et al. Long-term neurologic and peripheral vascular toxicity after chemotherapy treatment of testicular cancer. Cancer 116, 2322–2331 (2010).

    CAS  PubMed  Google Scholar 

  218. Vidrine, D. J. et al. The effects of testicular cancer treatment on health-related quality of life. Urology 75, 636–641 (2010).

    PubMed  Google Scholar 

  219. Gilligan, T. Quality of life among testis cancer survivors. Urol. Oncol. 33, 413–419 (2015).

    PubMed  Google Scholar 

  220. Fung, C., Fossa, S. D., Williams, A. & Travis, L. B. Long-term morbidity of testicular cancer treatment. Urol. Clin. North Am. 42, 393–408 (2015).

    PubMed  Google Scholar 

  221. Kerns, S. L. et al. Cumulative burden of morbidity among testicular cancer survivors after standard cisplatin-based chemotherapy: a multi-institutional study. J. Clin. Oncol. 36, 1505–1512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Orre, I. J. et al. Chronic cancer-related fatigue in long-term survivors of testicular cancer. J. Psychosom. Res. 64, 363–371 (2008).

    PubMed  Google Scholar 

  223. Eberhard, J. et al. Sexual function in men treated for testicular cancer. J. Sex. Med. 6, 1979–1989 (2009).

    PubMed  Google Scholar 

  224. Zaid, M. A. et al. Clinical and genetic risk factors for adverse metabolic outcomes in North American testicular cancer survivors. J. Natl Compr. Canc. Netw. 16, 257–265 (2018).

    PubMed  PubMed Central  Google Scholar 

  225. O’Carrigan, B. et al. Testosterone deficiency and quality of life in Australasian testicular cancer survivors: a prospective cohort study. Intern. Med. J. 44, 813–817 (2014).

    PubMed  Google Scholar 

  226. Wiechno, P., Demkow, T., Kubiak, K., Sadowska, M. & Kaminska, J. The quality of life and hormonal disturbances in testicular cancer survivors in cisplatin era. Eur. Urol. 52, 1448–1454 (2007).

    PubMed  Google Scholar 

  227. Tuinman, M. A. et al. Testicular cancer: a longitudinal pilot study on stress response symptoms and quality of life in couples before and after chemotherapy. Support. Care Cancer 15, 279–286 (2007).

    PubMed  Google Scholar 

  228. Tuinman, M. A., Fleer, J., Hoekstra, H. J., Sleijfer, D. T. & Hoekstra-Weebers, J. E. Quality of life and stress response symptoms in long-term and recent spouses of testicular cancer survivors. Eur. J. Cancer 40, 1696–1703 (2004).

    PubMed  Google Scholar 

  229. Weijl, N. I. et al. Thromboembolic events during chemotherapy for germ cell cancer: a cohort study and review of the literature. J. Clin. Oncol. 18, 2169–2178 (2000).

    CAS  PubMed  Google Scholar 

  230. Moore, R. A. et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J. Clin. Oncol. 29, 3466–3473 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Khorana, A. A., Kuderer, N. M., Culakova, E., Lyman, G. H. & Francis, C. W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood 111, 4902–4907 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Piketty, A. C. et al. The risk of thrombo-embolic events is increased in patients with germ-cell tumours and can be predicted by serum lactate dehydrogenase and body surface area. Br. J. Cancer 93, 909–914 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Bezan, A. et al. Risk stratification for venous thromboembolism in patients with testicular germ cell tumors. PLOS ONE 12, e0176283 (2017).

    PubMed  PubMed Central  Google Scholar 

  234. Kim, C. et al. Quality of life among testicular cancer survivors: a case-control study in the United States. Qual. Life Res. 20, 1629–1637 (2011).

    PubMed  PubMed Central  Google Scholar 

  235. Lauritsen, J. et al. Germ cell cancer and multiple relapses: toxicity and survival. J. Clin. Oncol. 33, 3116–3123 (2015).

    CAS  PubMed  Google Scholar 

  236. de Wit, R. Management of germ cell cancer: lessons learned from a national database. J. Clin. Oncol. 33, 3078–3079 (2015).

    PubMed  Google Scholar 

  237. Fossa, S. D. et al. Noncancer causes of death in survivors of testicular cancer. J. Natl Cancer Inst. 99, 533–544 (2007).

    PubMed  Google Scholar 

  238. Fung, C. et al. Cardiovascular disease mortality after chemotherapy or surgery for testicular nonseminoma: a population-based study. J. Clin. Oncol. 33, 3105–3115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Baniel, J. & Sella, A. Complications of retroperitoneal lymph node dissection in testicular cancer: primary and post-chemotherapy. Semin. Surg. Oncol. 17, 263–267 (1999).

    CAS  PubMed  Google Scholar 

  240. Heidenreich, A., Thuer, D. & Polyakov, S. Postchemotherapy retroperitoneal lymph node dissection in advanced germ cell tumours of the testis. Eur. Urol. 53, 260–272 (2008).

    PubMed  Google Scholar 

  241. Mehta, A. & Sigman, M. Management of the dry ejaculate: a systematic review of aspermia and retrograde ejaculation. Fertil. Steril. 104, 1074–1081 (2015).

    PubMed  Google Scholar 

  242. Mishra, S. I., Scherer, R. W., Snyder, C., Geigle, P. & Gotay, C. Are exercise programs effective for improving health-related quality of life among cancer survivors? A systematic review and meta-analysis. Oncol. Nurs. Forum 41, E326–E342 (2014).

    PubMed  PubMed Central  Google Scholar 

  243. Kvammen, O. et al. Long-term relative survival after diagnosis of testicular germ cell tumor. Cancer Epidemiol. Biomarkers Prev. 25, 773–779 (2016).

    CAS  PubMed  Google Scholar 

  244. Oldenburg, J. et al. Personalizing, not patronizing: the case for patient autonomy by unbiased presentation of management options in stage I testicular cancer. Ann. Oncol. 26, 833–838 (2015).

    CAS  PubMed  Google Scholar 

  245. Nigam, M., Aschebrook-Kilfoy, B., Shikanov, S. & Eggener, S. Increasing incidence of testicular cancer in the United States and Europe between 1992 and 2009. World J. Urol. 33, 623–631 (2015).

    PubMed  Google Scholar 

  246. Stang, A. et al. Gonadal and extragonadal germ cell tumours in the United States, 1973–2007. Int. J. Androl 35, 616–625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018). This is a landmark TCGA study on molecular characterization of testicular cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Feldman, D. R. et al. Genetic determinants of cisplatin-resistance in advanced germ cell tumors. J. Clin. Oncol. 34, 4000–4007 (2016).

    PubMed  PubMed Central  Google Scholar 

  249. Feldman, D. R. Treatment options for stage I nonseminoma. J. Clin. Oncol. 32, 3797–3800 (2014).

    PubMed  Google Scholar 

  250. Chakraborty, C., Sharma, A. R., Sharma, G., Doss, C. G. P. & Lee, S. S. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. Nucleic Acids 8, 132–143 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Bhala, N. et al. The management and survival of patients with advanced germ-cell tumours: improving outcome in intermediate and poor prognosis patients. Clin. Oncol. 16, 40–47 (2004).

    CAS  Google Scholar 

  252. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01873326 (2018).

  253. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02582697 (2017).

  254. Beyer, J., Stenning, S., Gerl, A., Fossa, S. & Siegert, W. High-dose versus conventional-dose chemotherapy as first-salvage treatment in patients with non-seminomatous germ-cell tumors: a matched-pair analysis. Ann. Oncol. 13, 599–605 (2002).

    CAS  PubMed  Google Scholar 

  255. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02375204 (2018).

  256. [No authors listed.] Stat bite: average years of life lost from cancer. J. Natl Cancer Inst. 93, 341 (2001).

    Google Scholar 

  257. Oing, C., Seidel, C. & Bokemeyer, C. Therapeutic approaches for refractory germ cell cancer. Expert Rev. Anticancer Ther. 18, 389–397 (2018).

    CAS  PubMed  Google Scholar 

  258. Feldman, D. R. et al. Phase II trial of sunitinib in patients with relapsed or refractory germ cell tumors. Invest. New Drugs 28, 523–528 (2010).

    CAS  PubMed  Google Scholar 

  259. Oechsle, K. et al. Preclinical and clinical activity of sunitinib in patients with cisplatin-refractory or multiply relapsed germ cell tumors: a Canadian Urologic Oncology Group/German Testicular Cancer Study Group cooperative study. Ann. Oncol. 22, 2654–2660 (2011).

    CAS  PubMed  Google Scholar 

  260. Necchi, A. et al. Pazopanib in advanced germ cell tumors after chemotherapy failure: results of the open-label, single-arm, phase 2 Pazotest trial. Ann. Oncol. 28, 1346–1351 (2017).

    CAS  PubMed  Google Scholar 

  261. Skonecza, I. et al. Sorafenib monotherapy in patients with inoperable/recurrent germ cell tumors (GCT) refractory to chemotherapy: phase II study. J. Clin. Oncol. 32, 367 (2014).

    Google Scholar 

  262. Jain, A., Brames, M. J., Vaughn, D. J. & Einhorn, L. H. Phase II clinical trial of oxaliplatin and bevacizumab in refractory germ cell tumors. Am. J. Clin. Oncol. 37, 450–453 (2014).

    CAS  PubMed  Google Scholar 

  263. Kollmannsberger, C. et al. Activity of oxaliplatin in patients with relapsed or cisplatin-refractory germ cell cancer: a study of the German Testicular Cancer Study Group. J. Clin. Oncol. 20, 2031–2037 (2002).

    CAS  PubMed  Google Scholar 

  264. Adra, N. et al. Phase II trial of pembrolizumab in patients with platinum refractory germ-cell tumors: a Hoosier Cancer Research Network Study GU14-206. Ann. Oncol. 29, 209–214 (2018). This is the first reported trial evaluating immune checkpoint inhibitors for treatment of chemoresistant testicular cancer.

    CAS  PubMed  Google Scholar 

  265. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03158064 (2018).

  266. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03081923 (2017).

  267. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02689219 (2018).

  268. Necchi, A. et al. Brentuximab vedotin in CD30-expressing germ cell tumors after chemotherapy failure. Clin. Genitourin. Cancer 14, 261–264 (2016).

    PubMed  Google Scholar 

  269. Albany, C. et al. Treatment of CD30-expressing germ cell tumors and sex cord stromal tumors with brentuximab vedotin: identification and report of seven cases. Oncologist 23, 316–323 (2018).

    CAS  PubMed  Google Scholar 

  270. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02429466 (2018).

  271. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02478502 (2017).

  272. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02115165 (2016).

  273. Wheeler, H. E. et al. Variants in WFS1 and other mendelian deafness genes are associated with cisplatin-associated ototoxicity. Clin. Cancer Res. 23, 3325–3333 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.M.B. is supported by an Orchid Research Grant from the UK (https://orchid-cancer.org.uk).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (L.C.); Epidemiology (G.D.); Mechanisms/pathophysiology (L.H.J.L.); Diagnosis, screening and prevention (D.M.B.); Management (P.A.); Quality of life (T.G.); Outlook (D.R.F.); Overview of the Primer (L.C.).

Corresponding author

Correspondence to Liang Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Albers, P., Berney, D.M. et al. Testicular cancer. Nat Rev Dis Primers 4, 29 (2018). https://doi.org/10.1038/s41572-018-0029-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0029-0

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer