Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards precision medicine in heart failure

Abstract

The number of therapies for heart failure (HF) with reduced ejection fraction has nearly doubled in the past decade. In addition, new therapies for HF caused by hypertrophic and infiltrative disease are emerging rapidly. Indeed, we are on the verge of a new era in HF in which insights into the biology of myocardial disease can be matched to an understanding of the genetic predisposition in an individual patient to inform precision approaches to therapy. In this Review, we summarize the biology of HF, emphasizing the causal relationships between genetic contributors and traditional structure-based remodelling outcomes, and highlight the mechanisms of action of traditional and novel therapeutics. We discuss the latest advances in our understanding of both the Mendelian genetics of cardiomyopathy and the complex genetics of the clinical syndrome presenting as HF. In the phenotypic domain, we discuss applications of machine learning for the subcategorization of HF in ways that might inform rational prescribing of medications. We aim to bridge the gap between the biology of the failing heart, its diverse clinical presentations and the range of medications that we can now use to treat it. We present a roadmap for the future of precision medicine in HF.

Key points

  • The number of therapies for heart failure with reduced ejection fraction has nearly doubled in the past decade, with new therapies for hypertrophic and infiltrative disease emerging.

  • We are on the verge of a new era in heart failure, in which basic biology can be matched to an understanding of genetic predisposition to inform precision therapy.

  • The precision model of treatment for Mendelian disease is focused on treating the underlying mechanism, for which genetic therapy is increasingly in clinical development; genetic variants can also function as strong modifiers of complex disease, which might inform precision-based treatment of heart failure in the future.

  • Important precision medicine approaches for the diagnosis and treatment of myocardial hypertrophy caused by hypertrophic cardiomyopathy, amyloidosis, Fabry disease or Noonan syndrome are available today but are underutilized.

  • Machine learning tools to evaluate large clinical, biological and genetic data sets can be used to phenotypically group patients and improve prediction of response to therapy, providing an important mechanism to guide precision approaches to therapy.

  • We aim to bridge the gap between the basic biology of the failing heart, its diverse clinical presentations and the range of medications we can now use to treat heart failure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms and physiology of the failing heart.
Fig. 2: Heart failure therapeutics and their mechanisms of effect.
Fig. 3: From Mendelian to complex disease in heart failure.
Fig. 4: Connecting biology with data to guide precision care for heart failure.
Fig. 5: Precision medicine in heart failure.

Similar content being viewed by others

References

  1. Buckingham, M., Meilhac, S. & Zaffran, S. Building the mammalian heart from two sources of myocardial cells. Nat. Rev. Genet. 6, 826–835 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Han, P. et al. Coordinating cardiomyocyte interactions to direct ventricular chamber morphogenesis. Nature 534, 700–704 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. van den Berg, G. et al. A caudal proliferating growth center contributes to both poles of the forming heart tube. Circ. Res. 104, 179–188 (2009).

    Article  PubMed  CAS  Google Scholar 

  4. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moorman, A. F. & Christoffels, V. M. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223–1267 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Sizarov, A. et al. Formation of the building plan of the human heart: morphogenesis, growth, and differentiation. Circulation 123, 1125–1135 (2011).

    Article  PubMed  Google Scholar 

  7. Cai, W. et al. Limited regeneration potential with minimal epicardial progenitor conversions in the neonatal mouse heart after injury. Cell Rep. 28, 190–201 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haubner, B. J. et al. Complete cardiac regeneration in a mouse model of myocardial infarction. Aging 4, 966–977 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laflamme, M. A. & Murry, C. E. Heart regeneration. Nature 473, 326–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bergmann, O. et al. Evidence for cardiomyocyte renewal in humans. Science 324, 98–102 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Frank, O. Zur Dynamik des Herzmuskels. Z. Biol. 32, 370–447 (1895).

    Google Scholar 

  13. Burkhoff, D., Mirsky, I. & Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289, H501–H512 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Glower, D. D. et al. Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71, 994–1009 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Little, W. C. The left ventricular dP/dtmax-end-diastolic volume relation in closed-chest dogs. Circ. Res. 56, 808–815 (1985).

    Article  CAS  PubMed  Google Scholar 

  16. Starling, E. H. & Visscher, M. B. The regulation of the energy output of the heart. J. Physiol. 62, 243–261 (1927).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weiss, S., Wilkins, R. W. & Haynes, F. W. The nature of circulatory collapse induced by sodium nitrite. J. Clin. Invest. 16, 73–84 (1937).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cotter, G. et al. The role of cardiac power and systemic vascular resistance in the pathophysiology and diagnosis of patients with acute congestive heart failure. Eur. J. Heart Fail. 5, 443–451 (2003).

    Article  PubMed  Google Scholar 

  19. Bastos, M. B. et al. Invasive left ventricle pressure-volume analysis: overview and practical clinical implications. Eur. Heart J. 41, 1286–1297 (2020).

    Article  PubMed  Google Scholar 

  20. Sharir, T. et al. Ventricular systolic assessment in patients with dilated cardiomyopathy by preload-adjusted maximal power. Validation and noninvasive application. Circulation 89, 2045–2053 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Penicka, M. et al. Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea: a pressure-volume loop analysis. J. Am. Coll. Cardiol. 55, 1701–1710 (2010).

    Article  PubMed  Google Scholar 

  22. Udelson, J. E., Cannon, R. O. 3rd, Bacharach, S. L., Rumble, T. F. & Bonow, R. O. Beta-adrenergic stimulation with isoproterenol enhances left ventricular diastolic performance in hypertrophic cardiomyopathy despite potentiation of myocardial ischemia. Comparison to rapid atrial pacing. Circulation 79, 371–382 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Elster, S. K., Braunwald, E. & Wood, H. F. A study of C-reactive protein in the serum of patients with congestive heart failure. Am. Heart J. 51, 533–541 (1956).

    Article  CAS  PubMed  Google Scholar 

  24. Chidsey, C. A., Braunwald, E. & Morrow, A. G. Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am. J. Med. 39, 442–451 (1965).

    Article  CAS  PubMed  Google Scholar 

  25. Chidsey, C. A., Harrison, D. C. & Braunwald, E. Augmentation of the plasma nor-epinephrine response to exercise in patients with congestive heart failure. N. Engl. J. Med. 267, 650–654 (1962).

    Article  CAS  PubMed  Google Scholar 

  26. Cohn, J. N. et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N. Engl. J. Med. 311, 819–823 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Swedberg, K., Eneroth, P., Kjekshus, J. & Wilhelmsen, L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation 82, 1730–1736 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Braunwald, E. Biomarkers in heart failure. N. Engl. J. Med. 358, 2148–2159 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez, A., Schelbert, E. B., Diez, J. & Butler, J. Myocardial interstitial fibrosis in heart failure: biological and translational perspectives. J. Am. Coll. Cardiol. 71, 1696–1706 (2018).

    Article  PubMed  Google Scholar 

  30. Mohammed, S. F. et al. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 131, 550–559 (2015).

    Article  PubMed  Google Scholar 

  31. Tsagalou, E. P. et al. Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 52, 1391–1398 (2008).

    Article  PubMed  Google Scholar 

  32. Vazir, A., Fox, K., Westaby, J., Evans, M. J. & Westaby, S. Can we remove scar and fibrosis from adult human myocardium? Eur. Heart J. 40, 960–966 (2019).

    Article  PubMed  Google Scholar 

  33. Sweeney, H. L. & Holzbaur, E. L. F. Motor proteins. Cold Spring Harb. Perspect. Biol. 10, a021931 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sweeney, H. L. & Hammers, D. W. Muscle contraction. Cold Spring Harb. Perspect. Biol. 10, a023200 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Bers, D. M. Cardiac excitation-contraction coupling. Nature 415, 198–205 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Gomez, A. M. et al. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276, 800–806 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Bers, D. M. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu. Rev. Physiol. 76, 107–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kho, C. et al. SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477, 601–605 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bers, D. M. Ca2+-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm. 8, 1101–1104 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Litwin, S. E., Zhang, D. & Bridge, J. H. Dyssynchronous Ca2+ sparks in myocytes from infarcted hearts. Circ. Res. 87, 1040–1047 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wu, H. D. et al. Ultrastructural remodelling of Ca2+ signalling apparatus in failing heart cells. Cardiovasc. Res. 95, 430–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, H. B. et al. Ultrastructural uncoupling between T-tubules and sarcoplasmic reticulum in human heart failure. Cardiovasc. Res. 98, 269–276 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Guo, A. et al. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 362, eaan3303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bertero, E. & Maack, C. Metabolic remodelling in heart failure. Nat. Rev. Cardiol. 15, 457–470 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Neubauer, S. The failing heart — an engine out of fuel. N. Engl. J. Med. 356, 1140–1151 (2007).

    Article  PubMed  Google Scholar 

  46. Stanley, W. C., Recchia, F. A. & Lopaschuk, G. D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 85, 1093–1129 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Nicolas-Avila, J. A. et al. A network of macrophages supports mitochondrial homeostasis in the heart. Cell 183, 94–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. McNally, E. M. Cardiac macrophages – keeping the engine running clean. N. Engl. J. Med. 383, 2474–2476 (2020).

    Article  PubMed  Google Scholar 

  49. Doenst, T., Nguyen, T. D. & Abel, E. D. Cardiac metabolism in heart failure: implications beyond ATP production. Circ. Res. 113, 709–724 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davila-Roman, V. G. et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 40, 271–277 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Bedi, K. C. Jr et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation 133, 706–716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Munzel, T. et al. Impact of oxidative stress on the heart and vasculature: part 2 of a 3-part series. J. Am. Coll. Cardiol. 70, 212–229 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Burgoyne, J. R., Mongue-Din, H., Eaton, P. & Shah, A. M. Redox signaling in cardiac physiology and pathology. Circ. Res. 111, 1091–1106 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Bjelakovic, G., Nikolova, D., Gluud, L. L., Simonetti, R. G. & Gluud, C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842–857 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Halliwell, B. The antioxidant paradox: less paradoxical now? Br. J. Clin. Pharmacol. 75, 637–644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jian, Z. et al. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci. Signal. 7, ra27 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Petroff, M. G. et al. Endogenous nitric oxide mechanisms mediate the stretch dependence of Ca2+ release in cardiomyocytes. Nat. Cell Biol. 3, 867–873 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Prosser, B. L., Ward, C. W. & Lederer, W. J. X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333, 1440–1445 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Ashley, E. A., Sears, C. E., Bryant, S. M., Watkins, H. C. & Casadei, B. Cardiac nitric oxide synthase 1 regulates basal and β-adrenergic contractility in murine ventricular myocytes. Circulation 105, 3011–3016 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Adachi, T. et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat. Med. 10, 1200–1207 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Lancel, S. et al. Oxidative posttranslational modifications mediate decreased SERCA activity and myocyte dysfunction in Galphaq-overexpressing mice. Circ. Res. 107, 228–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lancel, S. et al. Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ. Res. 104, 720–723 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qin, F. et al. Hydrogen peroxide-mediated SERCA cysteine 674 oxidation contributes to impaired cardiac myocyte relaxation in senescent mouse heart. J. Am. Heart Assoc. 2, e000184 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ware, J. S. & Cook, S. A. Role of titin in cardiomyopathy: from DNA variants to patient stratification. Nat. Rev. Cardiol. 15, 241–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Linke, W. A. & Kruger, M. The giant protein titin as an integrator of myocyte signaling pathways. Physiology 25, 186–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Nagueh, S. F. et al. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 110, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Methawasin, M. et al. Experimentally increasing the compliance of titin through RNA binding motif-20 (RBM20) inhibition improves diastolic function in a mouse model of heart failure with preserved ejection fraction. Circulation 134, 1085–1099 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kasner, M. et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J. Am. Coll. Cardiol. 57, 977–985 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Zile, M. R. et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131, 1247–1259 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schafer, S. et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature 552, 110–115 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Corden, B. et al. Therapeutic targeting of interleukin-11 signalling reduces pressure overload-induced cardiac fibrosis in mice. J. Cardiovasc. Transl. Res. 14, 222–228 (2020).

    Article  PubMed  Google Scholar 

  72. Ng, B. et al. Interleukin-11 is a therapeutic target in idiopathic pulmonary fibrosis. Sci. Transl. Med. 11, eaaw1237 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goligorsky, M. S. Microvascular rarefaction: the decline and fall of blood vessels. Organogenesis 6, 1–10 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Perrino, C. et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 116, 1547–1560 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Murphy, S. P., Ibrahim, N. E. & Januzzi, J. L. Jr Heart failure with reduced ejection fraction: a review. JAMA 324, 488–504 (2020).

    Article  PubMed  Google Scholar 

  77. Hartupee, J. & Mann, D. L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 14, 30–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Garg, R. & Yusuf, S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. Collaborative Group on ACE Inhibitor Trials. JAMA 273, 1450–1456 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. Foody, J. M., Farrell, M. H. & Krumholz, H. M. β-Blocker therapy in heart failure: scientific review. JAMA 287, 883–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Rockman, H. A., Koch, W. J. & Lefkowitz, R. J. Seven-transmembrane-spanning receptors and heart function. Nature 415, 206–212 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Cresci, S. et al. Heart failure in the era of precision medicine: a scientific statement from the American Heart Association. Circ. Genom. Precis. Med. 12, 458–485 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. McMurray, J. J. et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371, 993–1004 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Nougue, H. et al. Effects of sacubitril/valsartan on neprilysin targets and the metabolism of natriuretic peptides in chronic heart failure: a mechanistic clinical study. Eur. J. Heart Fail. 21, 598–605 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Pavo, I. J. et al. Heart failure with reduced ejection fraction is characterized by systemic NEP downregulation. JACC Basic Transl. Sci. 5, 715–726 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Singh, J. S. S. et al. Sacubitril/valsartan: beyond natriuretic peptides. Heart 103, 1569–1577 (2017).

    Article  CAS  PubMed  Google Scholar 

  88. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Packer, M. et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 383, 1413–1424 (2020).

    Article  CAS  PubMed  Google Scholar 

  90. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    Article  CAS  PubMed  Google Scholar 

  92. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    Article  CAS  PubMed  Google Scholar 

  93. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Zelniker, T. A. & Braunwald, E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors: JACC state-of-the-art review. J. Am. Coll. Cardiol. 75, 422–434 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60, 568–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Iborra-Egea, O. et al. Unraveling the molecular mechanism of action of empagliflozin in heart failure with reduced ejection fraction with or without diabetes. JACC Basic Transl. Sci. 4, 831–840 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Packer, M., Anker, S. D., Butler, J., Filippatos, G. & Zannad, F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2, 1025–1029 (2017).

    Article  PubMed  Google Scholar 

  98. Mustroph, J. et al. Empagliflozin reduces Ca/calmodulin-dependent kinase II activity in isolated ventricular cardiomyocytes. ESC Heart Fail. 5, 642–648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ferrannini, E., Mark, M. & Mayoux, E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Article  PubMed  Google Scholar 

  100. Hattori, Y. Insulin resistance and heart failure during treatment with sodium glucose cotransporter 2 inhibitors: proposed role of ketone utilization. Heart Fail. Rev. 25, 403–408 (2020).

    Article  CAS  PubMed  Google Scholar 

  101. Mudaliar, S., Alloju, S. & Henry, R. R. Can a shift in fuel energetics explain the beneficial cardiorenal outcomes in the EMPA-REG OUTCOME study? A unifying hypothesis. Diabetes Care 39, 1115–1122 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Evgenov, O. V. et al. NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential. Nat. Rev. Drug Discov. 5, 755–768 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Murad, F. Nitric oxide and cyclic GMP in cell signaling and drug development. N. Engl. J. Med. 355, 2003–2011 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Stasch, J. P., Pacher, P. & Evgenov, O. V. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation 123, 2263–2273 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Munzel, T., Daiber, A. & Mulsch, A. Explaining the phenomenon of nitrate tolerance. Circ. Res. 97, 618–628 (2005).

    Article  PubMed  CAS  Google Scholar 

  106. Cole, R. T. et al. Hydralazine and isosorbide dinitrate in heart failure: historical perspective, mechanisms, and future directions. Circulation 123, 2414–2422 (2011).

    Article  PubMed  Google Scholar 

  107. Cohn, J. N. et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N. Engl. J. Med. 314, 1547–1552 (1986).

    Article  CAS  PubMed  Google Scholar 

  108. Cohn, J. N. et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N. Engl. J. Med. 325, 303–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  109. Taylor, A. L. et al. Combination of isosorbide dinitrate and hydralazine in blacks with heart failure. N. Engl. J. Med. 351, 2049–2057 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Masuyama, H. et al. Soluble guanylate cyclase stimulation on cardiovascular remodeling in angiotensin II-induced hypertensive rats. Hypertension 48, 972–978 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Masuyama, H. et al. Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart. Hypertens. Res. 32, 597–603 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Armstrong, P. W. et al. Vericiguat in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 382, 1883–1893 (2020).

    Article  CAS  PubMed  Google Scholar 

  113. Malik, F. I. & Morgan, B. P. Cardiac myosin activation part 1: from concept to clinic. J. Mol. Cell Cardiol. 51, 454–461 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, L. C., Dorhout, B., van der Meer, P., Teerlink, J. R. & Voors, A. A. Omecamtiv mecarbil: a new cardiac myosin activator for the treatment of heart failure. Expert Opin. Investig. Drugs 25, 117–127 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Teerlink, J. R. et al. Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction: rationale and design of GALACTIC-HF. JACC Heart Fail. 8, 329–340 (2020).

    Article  PubMed  Google Scholar 

  116. Teerlink, J. R. et al. Cardiac myosin activation with omecamtiv mecarbil in systolic heart failure. N. Engl. J. Med. 384, 105–116 (2020).

    Article  PubMed  Google Scholar 

  117. Diaz, A., Bourassa, M. G., Guertin, M. C. & Tardif, J. C. Long-term prognostic value of resting heart rate in patients with suspected or proven coronary artery disease. Eur. Heart J. 26, 967–974 (2005).

    Article  PubMed  Google Scholar 

  118. Koruth, J. S., Lala, A., Pinney, S., Reddy, V. Y. & Dukkipati, S. R. The clinical use of ivabradine. J. Am. Coll. Cardiol. 70, 1777–1784 (2017).

    Article  PubMed  Google Scholar 

  119. Psotka, M. A. & Teerlink, J. R. Ivabradine: role in the chronic heart failure armamentarium. Circulation 133, 2066–2075 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Swedberg, K. et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376, 875–885 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Gertz, M. A., Dispenzieri, A. & Sher, T. Pathophysiology and treatment of cardiac amyloidosis. Nat. Rev. Cardiol. 12, 91–102 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Ruberg, F. L. et al. Prospective evaluation of the morbidity and mortality of wild-type and V122I mutant transthyretin amyloid cardiomyopathy: the Transthyretin Amyloidosis Cardiac Study (TRACS). Am. Heart J. 164, 222–228 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Maurer, M. S. et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 379, 1007–1016 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Solomon, S. D. et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation 139, 431–443 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Castano, A., Bokhari, S. & Maurer, M. S. Unveiling wild-type transthyretin cardiac amyloidosis as a significant and potentially modifiable cause of heart failure with preserved ejection fraction. Eur. Heart J. 36, 2595–2597 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Castano, A. et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur. Heart J. 38, 2879–2887 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Green, E. M. et al. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 351, 617–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Olivotto, I. et al. Mavacamten for treatment of symptomatic obstructive hypertrophic cardiomyopathy (EXPLORER-HCM): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 396, 759–769 (2020).

    Article  CAS  PubMed  Google Scholar 

  130. Ho, C. Y. et al. Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 75, 2649–2660 (2020).

    Article  CAS  PubMed  Google Scholar 

  131. Ortiz, A. et al. Fabry disease revisited: management and treatment recommendations for adult patients. Mol. Genet. Metab. 123, 416–427 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Platt, F. M., d’Azzo, A., Davidson, B. L., Neufeld, E. F. & Tifft, C. J. Lysosomal storage diseases. Nat. Rev. Dis. Prim. 4, 27 (2018).

    Article  PubMed  Google Scholar 

  133. Echevarria, L. et al. X-chromosome inactivation in female patients with Fabry disease. Clin. Genet. 89, 44–54 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Eng, C. M. et al. Safety and efficacy of recombinant human α-galactosidase A replacement therapy in Fabry’s disease. N. Engl. J. Med. 345, 9–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. Schiffmann, R. et al. Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285, 2743–2749 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Germain, D. P. et al. Analysis of left ventricular mass in untreated men and in men treated with agalsidase-β: data from the Fabry Registry. Genet. Med. 15, 958–965 (2013).

    Article  CAS  PubMed  Google Scholar 

  137. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Ashley, E. A. The precision medicine initiative: a new national effort. JAMA 313, 2119–2120 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Ashley, E. A. Towards precision medicine. Nat. Rev. Genet. 17, 507–522 (2016).

    Article  CAS  PubMed  Google Scholar 

  140. Ashley, E. A. et al. Clinical assessment incorporating a personal genome. Lancet 375, 1525–1535 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Lee, D. S. et al. Association of parental heart failure with risk of heart failure in offspring. N. Engl. J. Med. 355, 138–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Lindgren, M. P. et al. A Swedish nationwide adoption study of the heritability of heart failure. JAMA Cardiol. 3, 703–710 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lindgren, M. P. et al. Sibling risk of hospitalization for heart failure – a nationwide study. Int. J. Cardiol. 223, 379–384 (2016).

    Article  PubMed  Google Scholar 

  145. Nikpay, M. et al. A comprehensive 1,000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Arvanitis, M. et al. Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure. Nat. Commun. 11, 1122 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dominguez, F. et al. Dilated cardiomyopathy due to BLC2-associated athanogene 3 (BAG3) mutations. J. Am. Coll. Cardiol. 72, 2471–2481 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Feldman, A. M. et al. BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes. J. Mol. Cell Cardiol. 92, 10–20 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Chiu, C. et al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J. Am. Coll. Cardiol. 55, 1127–1135 (2010).

    Article  CAS  PubMed  Google Scholar 

  154. Aung, N. et al. Genome-wide analysis of left ventricular image-derived phenotypes identifies fourteen loci associated with cardiac morphogenesis and heart failure development. Circulation 140, 1318–1330 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Meyer, H. V. et al. Genetic and functional insights into the fractal structure of the heart. Nature 584, 589–594 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pirruccello, J. P. et al. Analysis of cardiac magnetic resonance imaging in 36,000 individuals yields genetic insights into dilated cardiomyopathy. Nat. Commun. 11, 2254 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wild, P. S. et al. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J. Clin. Invest. 127, 1798–1812 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. McNally, E. M. & Mestroni, L. Dilated cardiomyopathy: genetic determinants and mechanisms. Circ. Res. 121, 731–748 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rosenbaum, A. N., Agre, K. E. & Pereira, N. L. Genetics of dilated cardiomyopathy: practical implications for heart failure management. Nat. Rev. Cardiol. 17, 286–297 (2020).

    Article  PubMed  Google Scholar 

  161. Yacoub, M. H. Decade in review — cardiomyopathies: cardiomyopathy on the move. Nat. Rev. Cardiol. 11, 628–629 (2014).

    Article  PubMed  Google Scholar 

  162. Liew, C. C. & Dzau, V. J. Molecular genetics and genomics of heart failure. Nat. Rev. Genet. 5, 811–825 (2004).

    Article  CAS  PubMed  Google Scholar 

  163. Walsh, R., Tadros, R. & Bezzina, C. R. When genetic burden reaches threshold. Eur. Heart J. 41, 3849–3855 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Abdulrahim, J. W. et al. Identification of undetected monogenic cardiovascular disorders. J. Am. Coll. Cardiol. 76, 797–808 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Fahed, A. C. et al. Polygenic background modifies penetrance of monogenic variants for tier 1 genomic conditions. Nat. Commun. 11, 3635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Harper, A. R. et al. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat. Genet. 53, 135–142 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Tadros, R. et al. Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nat. Genet. 53, 128–134 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Genetic Modifiers of Huntington’s Disease (GeM-HD) Consortium. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162, 516–526 (2015).

    Article  CAS  Google Scholar 

  169. Craig, J. E. et al. Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nat. Genet. 52, 160–166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Oetjens, M. T., Kelly, M. A., Sturm, A. C., Martin, C. L. & Ledbetter, D. H. Quantifying the polygenic contribution to variable expressivity in eleven rare genetic disorders. Nat. Commun. 10, 4897 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Choi, S. H. et al. Monogenic and polygenic contributions to atrial fibrillation risk: results from a national biobank. Circ. Res. 126, 200–209 (2020).

    Article  CAS  PubMed  Google Scholar 

  172. Chemello, F., Bassel-Duby, R. & Olson, E. N. Correction of muscular dystrophies by CRISPR gene editing. J. Clin. Invest. 130, 2766–2776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pirruccello, J. P. et al. Titin truncating variants in adults without known congestive heart failure. J. Am. Coll. Cardiol. 75, 1239–1241 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Haggerty, C. M. et al. Genomics-first evaluation of heart disease associated with titin-truncating variants. Circulation 140, 42–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Schafer, S. et al. Titin-truncating variants affect heart function in disease cohorts and the general population. Nat. Genet. 49, 46–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Roberts, A. M. et al. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease. Sci. Transl. Med. 7, 270ra276 (2015).

    Article  CAS  Google Scholar 

  178. Povysil, G. et al. Assessing the role of rare genetic variation in patients with heart failure. JAMA Cardiol. 6, 379–386 (2020).

    Article  PubMed Central  Google Scholar 

  179. Gramlich, M. et al. Antisense-mediated exon skipping: a therapeutic strategy for titin-based dilated cardiomyopathy. EMBO Mol. Med. 7, 562–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mega, J. L. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 360, 354–362 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Johnson, J. A. & Liggett, S. B. Cardiovascular pharmacogenomics of adrenergic receptor signaling: clinical implications and future directions. Clin. Pharmacol. Ther. 89, 366–378 (2011).

    Article  CAS  PubMed  Google Scholar 

  182. Daly, A. K. Genome-wide association studies in pharmacogenomics. Nat. Rev. Genet. 11, 241–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  183. Giacomini, K. M. et al. Genome-wide association studies of drug response and toxicity: an opportunity for genome medicine. Nat. Rev. Drug Discov. 16, 70 (2017).

    Article  CAS  Google Scholar 

  184. Mason, D. A., Moore, J. D., Green, S. A. & Liggett, S. B. A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor. J. Biol. Chem. 274, 12670–12674 (1999).

    Article  CAS  PubMed  Google Scholar 

  185. de Groote, P. et al. Association between beta-1 and beta-2 adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet. Genomics 15, 137–142 (2005).

    Article  PubMed  Google Scholar 

  186. Liggett, S. B. et al. A polymorphism within a conserved β1-adrenergic receptor motif alters cardiac function and β-blocker response in human heart failure. Proc. Natl Acad. Sci. USA 103, 11288–11293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Chen, L. et al. Arg389Gly-β1-adrenergic receptors determine improvement in left ventricular systolic function in nonischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet. Genomics 17, 941–949 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Mialet Perez, J. et al. β1-Adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat. Med. 9, 1300–1305 (2003).

    Article  PubMed  CAS  Google Scholar 

  189. Terra, S. G. et al. β1-Adrenergic receptor polymorphisms and left ventricular remodeling changes in response to beta-blocker therapy. Pharmacogenet. Genomics 15, 227–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  190. Cooper, G. M. et al. A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose. Blood 112, 1022–1027 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Perez, M. V. et al. Systems genomics identifies a key role for hypocretin/orexin receptor-2 in human heart failure. J. Am. Coll. Cardiol. 66, 2522–2533 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jiang, H. et al. A pilot study of angiogenin in heart failure with preserved ejection fraction: a novel potential biomarker for diagnosis and prognosis? J. Cell Mol. Med. 18, 2189–2197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Smith, J. G. & Gerszten, R. E. Emerging affinity-based proteomic technologies for large-scale plasma profiling in cardiovascular disease. Circulation 135, 1651–1664 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Cao, T. H. et al. Plasma proteomic approach in patients with heart failure: insights into pathogenesis of disease progression and potential novel treatment targets. Eur. J. Heart Fail. 22, 70–80 (2020).

    Article  CAS  PubMed  Google Scholar 

  195. Ferreira, J. P. et al. Proteomic bioprofiles and mechanistic pathways of progression to heart failure. Circ. Heart Fail. 12, e005897 (2019).

    Article  CAS  PubMed  Google Scholar 

  196. Hage, C. et al. Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circ. Cardiovasc. Genet. 10, e001633 (2017).

    Article  CAS  PubMed  Google Scholar 

  197. Stenemo, M. et al. Circulating proteins as predictors of incident heart failure in the elderly. Eur. J. Heart Fail. 20, 55–62 (2018).

    Article  CAS  PubMed  Google Scholar 

  198. Hollander, Z. et al. Proteomic biomarkers of recovered heart function. Eur. J. Heart Fail. 16, 551–559 (2014).

    Article  CAS  PubMed  Google Scholar 

  199. Wells, Q. S. et al. Accelerating biomarker discovery through electronic health records, automated biobanking, and proteomics. J. Am. Coll. Cardiol. 73, 2195–2205 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Egerstedt, A. et al. Profiling of the plasma proteome across different stages of human heart failure. Nat. Commun. 10, 5830 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 18–37 (2020).

    Google Scholar 

  202. Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. JAMA 319, 1317–1318 (2018).

    Article  PubMed  Google Scholar 

  203. Ahmad, T. et al. Clinical implications of chronic heart failure phenotypes defined by cluster analysis. J. Am. Coll. Cardiol. 64, 1765–1774 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Hedman, A. K. et al. Identification of novel pheno-groups in heart failure with preserved ejection fraction using machine learning. Heart 106, 342–349 (2020).

    Article  PubMed  Google Scholar 

  205. Segar, M. W. et al. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning-based unsupervised cluster analysis. Eur. J. Heart Fail. 22, 148–158 (2020).

    Article  CAS  PubMed  Google Scholar 

  206. Shah, S. J. et al. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131, 269–279 (2015).

    Article  PubMed  Google Scholar 

  207. Cikes, M. et al. Machine learning-based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur. J. Heart Fail. 21, 74–85 (2019).

    Article  PubMed  Google Scholar 

  208. Moss, A. J. et al. Cardiac-resynchronization therapy for the prevention of heart-failure events. N. Engl. J. Med. 361, 1329–1338 (2009).

    Article  PubMed  Google Scholar 

  209. Ahmad, T. et al. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J. Am. Heart Assoc. 7, e008081 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Shah, N. H., Milstein, A. & Bagley Ph, D. S. Making machine learning models clinically useful. JAMA 322, 1351–1352 (2019).

    Article  PubMed  Google Scholar 

  211. Chirinos, J. A. et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 75, 1281–1295 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. McMurray, J. J. V. & Packer, M. How should we sequence the treatments for heart failure and a reduced ejection fraction? A redefinition of evidence-based medicine. Circulation 143, 875–877 (2021).

    Article  PubMed  Google Scholar 

  213. Calcagni, G. et al. Clinical presentation and natural history of hypertrophic cardiomyopathy in RASopathies. Heart Fail. Clin. 14, 225–235 (2018).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed substantially to all aspects of this article.

Corresponding author

Correspondence to Euan A. Ashley.

Ethics declarations

Competing interests

E.A.A. is a co-founder of Deepcell, Personalis and SVEXA; a board member of AstraZeneca; and an adviser to Apple, Foresite Labs, Nuevocor and Sequencebio. C.S.W. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks L. Stevenson, F. Zannad and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weldy, C.S., Ashley, E.A. Towards precision medicine in heart failure. Nat Rev Cardiol 18, 745–762 (2021). https://doi.org/10.1038/s41569-021-00566-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-021-00566-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing