Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Social and population health science approaches to understand the human microbiome

Abstract

The microbiome is now considered our ‘second genome’ with potentially comparable importance to the genome in determining human health. There is, however, a relatively limited understanding of the broader environmental factors, particularly social conditions, that shape variation in human microbial communities. Fulfilling the promise of microbiome research — particularly the microbiome’s potential for modification — will require collaboration between biologists and social and population scientists. For life scientists, the plasticity and adaptiveness of the microbiome calls for an agenda to understand the sensitivity of the microbiome to broader social environments already known to be powerful predictors of morbidity and mortality. For social and population scientists, attention to the microbiome may help answer nagging questions about the underlying biological mechanisms that link social conditions to health. We outline key substantive and methodological advances that can be made if collaborations between social and population health scientists and life scientists are strategically pursued.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed relationships between social conditions, the gut microbiome, and morbidity and mortality.

Similar content being viewed by others

References

  1. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 14, e1002533 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Foster, J. & Neufeld, K. A. Gut-brain axis: how the microbiome influences anxiety and depression. Int. J. Neuropsychopharmacol. 17, 27–27 (2014).

    Google Scholar 

  7. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Stilling, R. M., Bordenstein, S. R., Dinan, T. G. & Cryan, J. F. Friends with social benefits: host–microbe interactions as a driver of brain evolution and development? Front. Cell Infect. Microbiol. 4, 147 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stamper, C. E. et al. The microbiome of the built environment and human behavior: implications for emotional health and well-being in postmodern Western societies. Int. Rev. Neurobiol. 131, 289–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Rook, G. A., Raison, C. L. & Lowry, C. A. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin. Exp. Immunol. 177, 1–12 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finlay, B. B. & Arrietta, M. C. Let Them Eat Dirt: Saving Our Children from an Oversanitized World 304 (Greystone Books, New York, 2016).

  14. McDade, T. W. The ecologies of human immune function. Annu. Rev. Anthropol. 21, 495–521 (2005).

    Article  Google Scholar 

  15. Coe, C. L. & Laudenslager, M. L. Psychosocial influences on immunity, including effects on immune maturation and senescence. Brain Behav. Immun. 21, 1000–1008 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fagundes, C. P., Glaser, R. & Kiecolt-Glaser, J. K. Stressful early life experiences and immune dysregulation across the lifespan. Brain Behav. Immun. 27, 8–12 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Dennis, C. L. Breastfeeding initiation and duration: a 1990–2000 literature review. J. Obstet. Gynecol. Neonatal Nurs. 31, 12–32 (2002).

    Article  PubMed  Google Scholar 

  18. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mueller, N. T. et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int. J. Obes. 39, 665–670 (2015).

    Article  CAS  Google Scholar 

  20. Kramer, M. S., Sequin, L., Lydon, J. & Goulet, L. Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly? Paediatr. Perinat. Epidemiol. 14, 194–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Joseph, K. S., Liston, R. M., Dodds, L., Dahlgren, L. & Allen, A. C. Socioeconomic status and perinatal outcomes in a setting with universal access to essential health care services. CMAJ 177, 583–590 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. van den Berg, G., van Eijsden, M., Vrijkotte, T. G. & Gemke, R. J. Educational inequalities in perinatal outcomes: the mediating effect of smoking and environmental tobacco exposure. PLoS ONE 7, e37002 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Anstey, E. H., Chen, J., Elam-Evans, L. D. & Perrine, C. G. Racial and geographic differences in breastfeeding — United States, 2011–2015. MMWR Morb. Mortal. Wkly Rep. 66, 723–727 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Codagnone, M. G. et al. Programming bugs: microbiota and the developmental origins of brain health and disease. Biol. Psychiatry https://doi.org/10.1016/j.biopsych.2018.06.014 (2018).

  25. Blanton, L. V. et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science 351, aad3311 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Yang, Y. C. et al. Social relationships and physiological determinants of longevity across the human life span. Proc. Natl Acad. Sci. USA 113, 578–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Bennett, G. et al. Host age, social group, and habitat type influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am. J. Primatol. 78, 883–892 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 4, e05224 (2015).

    Article  PubMed Central  Google Scholar 

  30. Amaral, W. Z. et al. Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom. Med. 79, 888–897 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lewin-Epstein, O., Aharonov, R. & Hadany, L. Microbes can help explain the evolution of host altruism. Nat. Commun. 8, 14040 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Archie, E. A. & Tung, J. Social behavior and the microbiome. Curr. Opin. Behav. Sci. 6, 28–34 (2015).

    Article  Google Scholar 

  33. Johnson, K. V. & Foster, K. R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 16, 647–655 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rostron, B. L., Boies, J. L. & Arias, E. Education reporting and classification on death certificates in the United States. Vital Health Stat. 2, 1–21 (2010).

    Google Scholar 

  37. Perna, L., Thien-Seitz, U., Ladwig, K. H., Meisinger, C. & Mielck, A. Socio-economic differences in life expectancy among persons with diabetes mellitus or myocardial infarction: results from the German MONICA/KORA study. BMC Public Health 10, 135 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ogden, C. L. et al. Prevalence of obesity among adults, by household income and education — United States, 2011–2014. MMWR Morb. Mortal. Wkly Rep. 66, 1369–1373 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Allen, A. P., Dinan, T. G., Clarke, G. & Cryan, J. F. A psychology of the human brain-gut-microbiome axis. Soc. Personal. Psychol. Compass 11, e12309 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lach, G., Schellekens, H., Dinan, T. G. & Cryan, J. F. Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15, 36–59 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Marmot, M. & Wilkinson, R. G. Psychosocial and material pathways in the relation between income and health: a response to Lynch. et al. BMJ 322, 1233–1236 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bailey, M. T. et al. Exposure to a social stressor alters the structure of the intestinal microbiota: implications for stressor-induced immunomodulation. Brain Behav. Immun. 25, 397–407 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Bailey, M. T. Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation. Adv. Exp. Med. Biol. 817, 255–276 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Bailey, M. T. & Coe, C. L. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev. Psychobiol. 35, 146–155 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. O’Mahony, S. M. et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol. Psychiatry 65, 263–267 (2009).

    Article  PubMed  Google Scholar 

  47. Jasarevic, E., Howerton, C. L., Howard, C. D. & Bale, T. L. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology 156, 3265–3276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Goyal, M. S., Venkatesh, S., Milbrandt, J., Gordon, J. I. & Raichle, M. E. Feeding the brain and nurturing the mind: linking nutrition and the gut microbiota to brain development. Proc. Natl Acad. Sci. USA 112, 14105–14112 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 113, S1–S5 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

  52. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Preliminary Characterization of the American Gut Population (American Gut Project, 2014); http://americangut.org/wp-content/uploads/2016/02/mod1_main.pdf

  55. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Moayyeri, A., Hammond, C. J., Hart, D. J. & Spector, T. D. The UK Adult Twin Registry (TwinsUK Resource). Twin Res. Hum. Genet. 16, 144–149 (2013).

    Article  PubMed  Google Scholar 

  57. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jackson, M. A. et al. Signatures of early frailty in the gut microbiota. Genome Med. 8, 8 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Beaumont, M. et al. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol. 17, 189 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Menni, C. et al. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int. J. Obes. 41, 1099–1105 (2017).

    Article  CAS  Google Scholar 

  63. Fu, J. et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ. Res. 117, 817–824 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Falk, E. B. et al. What is a representative brain? Neuroscience meets population science. Proc. Natl Acad. Sci. USA 110, 17615–17622 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LeWinn, K. Z., Sheridan, M. A., Keyes, K. M., Hamilton, A. & McLaughlin, K. A. Sample composition alters associations between age and brain structure. Nat. Commun. 8, 874 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morgan, S. L. & Winship, C. Counterfactuals and Causal Inference: Analytical Methods for Social Research. Social Research, 1st edn. (Cambridge Univ. Press, Cambridge, 2014).

  67. Herd, P. et al. The influence of social conditions across the life course on the human gut microbiota: a pilot project with the Wisconsin Longitudinal Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 73, 124–133 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Barker, D. J. P. Mothers, Babies, and Health in Later Life. 2nd edn. (Vol. ix, Churchill Livingstone, Edinburgh, 1998) .

  69. Gluckman, P. & Hanson, M. The Fetal Matrix: Evolution, Development and Disease (Cambridge Univ. Press, Cambridge, 2004).

  70. Langley-Evans, S. C. Fetal Nutrition and Adult Disease: Programming of Chronic Disease Through Fetal Exposure to Undernutrition (CABI Publishing, Wallingford, 2004).

  71. Bateson, P. & Gluckman, P. Plasticity, Robustness, Development and Evolution (Cambridge Univ. Press, Cambridge, 2011).

  72. Gluckman, P., Beedle, A., Buklijas, T., Low, F. & Hanson, M. Principles of Evolutionary Medicine 2nd edn, 400 (Oxford Univ. Press, Oxford, 2016).

  73. Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wamala, S. P., Lynch, J. & Kaplan, G. A. Women’s exposure to early and later life socioeconomic disadvantage and coronary heart disease risk: the Stockholm Female Coronary Risk Study. Int. J. Epidemiol. 30, 275–284 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Pensola, T. H. & Martikainen, P. Cumulative social class and mortality from various causes of adult men. J. Epidemiol. Community Health 57, 745–751 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luo, Y. & Waite, L. J. The impact of childhood and adult SES on physical, mental, and cognitive well-being in later life. J. Gerontol. B Psychol. Sci. Soc. Sci. 60, S93–S101 (2005).

    Article  PubMed  Google Scholar 

  77. Lynch, J. W. et al. Childhood and adult socioeconomic status as predictors of mortality in Finland. Lancet 343, 524–527 (1994).

    Article  CAS  PubMed  Google Scholar 

  78. Cortese, R., Lu, L., Yu, Y., Ruden, D. & Claud, E. C. Epigenome–microbiome crosstalk: a potential new paradigm influencing neonatal susceptibility to disease. Epigenetics 11, 205–215 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Harris, R. A. et al. Colonic mucosal epigenome and microbiome development in children and adolescents. J. Immunol. Res. 2016, 9170162 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Indrio, F. et al. Epigenetic matters: the link between early nutrition, microbiome, and long-term health development. Front. Pediatr. 5, 178 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Monk, C., Spicer, J. & Champagne, F. A. Linking prenatal maternal adversity to developmental outcomes in infants: the role of epigenetic pathways. Dev. Psychopathol. 24, 1361–1376 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Barker, D. J., Eriksson, J. G., Forsen, T. & Osmond, C. Fetal origins of adult disease: strength of effects and biological basis. Int. J. Epidemiol. 31, 1235–1239 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Smith, M. I. et al. Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339, 548–554 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Meaney, M. J. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu. Rev. Neurosci. 24, 1161–1192 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Mcewen, B. S. Protective and damaging effects of stress mediators: allostasis and allostatic load. N. Engl. J. Med. 338, 171–179 (1998).

    Article  CAS  PubMed  Google Scholar 

  86. Knudsen, E. I., Heckman, J. J., Cameron, J. L. & Shonkoff, J. P. Economic, neurobiological, and behavioral perspectives on building America’s future workforce. Proc. Natl Acad. Sci. USA 103, 10155–10162 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Forsdahl, A. Commentary: childhood deprivation and adult mortality. Int. J. Epidemiol. 31, 308–308 (2002).

    Article  Google Scholar 

  88. Hayward, M. D. & Gorman, B. K. The long arm of childhood: the influence of early-life social conditions on men’s mortality. Demography 41, 87–107 (2004).

    Article  PubMed  Google Scholar 

  89. Bengtsson, T. & Lindstrom, M. Childhood misery and disease in later life: the effects on mortality in old age of hazards experienced in early life, southern Sweden, 1760–1894. Popul. Stud. 54, 263–277 (2000).

    Article  CAS  Google Scholar 

  90. Almond, D. & Currie, J. Killing me softly: the fetal origins hypothesis. J. Econ. Perspect. 25, 153–172 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Finch, C. The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans 1st edn (Academic Press, San Diego, 2007).

  92. Fong, I. W. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ 163, 49–56 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kermack, W. O. & McKendrick, A. G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 115, 700–721 (1927).

    Article  Google Scholar 

  94. McDade, T. W., Rutherford, J., Adair, L. & Kuzawa, C. W. Early origins of inflammation: microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proc. Biol. Sci. 277, 1129–1137 (2010).

    CAS  PubMed  Google Scholar 

  95. Lumey, L. H. et al. Cohort profile: the Dutch Hunger Winter families study. Int. J. Epidemiol. 36, 1196–1204 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Li, C. & Lumey, L. H. Exposure to the Chinese famine of 1959–61 in early life and long-term health conditions: a systematic review and meta-analysis. Int. J. Epidemiol. 46, 1157–1170 (2017).

    Article  PubMed  Google Scholar 

  97. Tobi, E. W. et al. DNA methylation as a mediator of the association between prenatal adversity and risk factors for metabolic disease in adulthood. Sci. Adv. 4, eaao4364 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Roseboom, T., de Rooij, S. & Painter, R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev. 82, 485–491 (2006).

    Article  PubMed  Google Scholar 

  99. Painter, R. C. et al. Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115, 1243–1249 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Mother's money. The Economist (3 May 2018).

  101. Rivera, J. A., Sotres-Alvarez, D., Habicht, J. P., Shamah, T. & Villalpando, S. Impact of the Mexican program for education, health, and nutrition (Progresa) on rates of growth and anemia in infants and young children: a randomized effectiveness study. JAMA 291, 2563–2570 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Behrman, J. R. & Todd, P. E. Randomness in the Experimental Samples of Progresa Working Paper 38. (International Food Policy Research Institute, Washington DC, 1999) .

  103. Chetty, R. et al. The association between income and life expectancy in the United States, 2001–2014. JAMA 315, 1750–1766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Crimmins, E., Jung, Ki,K. & Sarinnapha, V. Biodemography: new approaches to understanding trends and differences in population health and mortality. Demography 47, S41–S64 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. McInerney, M., Mellor, J. M. & Nicholas, L. H. Recession depression: mental health effects of the 2008 stock market crash. J. Health Econ. 32, 1090–1104 (2013).

    Article  PubMed  Google Scholar 

  106. Glymour, M. M., Kawachi, I., Jencks, C. S. & Berkman, L. F. Does childhood schooling affect old age memory or mental status? Using state schooling laws as natural experiments. J. Epidemiol. Community Health 62, 532–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Davies, N. M., Dickson, M., Davey Smith, G., van den Berg, G. & Windmeijer, F. Preprint at bioRxiv https://doi.org/10.1101/074815 (2016).

  108. Tillmann, T. et al. Education and coronary heart disease: Mendelian randomisation study. BMJ 358, j3542 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  109. House, J. S., Landis, K. R. & Umberson, D. Social relationships and health. Science 241, 540–545 (1988).

    Article  CAS  PubMed  Google Scholar 

  110. Umberson, D., Crosnoe, R. & Reczek, C. Social relationships and health behavior across life course. Annu. Rev. Sociol. 36, 139–157 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Holt-Lunstad, J., Smith, T. B. & Layton, J. B. Social relationships and mortality risk: a meta-analytic review. PLoS Med. 7, e1000316 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Cao, X. Intestinal inflammation induced by oral bacteria. Science 358, 308–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Herd, P., Carr, D. & Roan, C. Cohort profile: Wisconsin Longitudinal Study (WLS). Int. J. Epidemiol. 43, 34–41 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Dill-McFarland, K. A. et al. Social relationships, social isolation, and the human gut microbiota. Preprint at bioRxiv https://doi.org/10.1101/428938 (2018).

  115. Lawlor, D. A., Clark, H., Davey Smith, G. & Leon, D. A. Childhood intelligence, educational attainment and adult body mass index: findings from a prospective cohort and within sibling-pairs analysis. Int. J. Obes. 30, 1758–1765 (2006).

    Article  CAS  Google Scholar 

  116. Meyler, D., Stimpson, J. P. & Peek, M. K. Health concordance within couples: a systematic review. Soc. Sci. Med. 64, 2297–2310 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Rey Laboratory for their insights and support. This work was supported by the National Institute of Food and Agriculture, US Department of Agriculture (2016-67017-24416, FER), the National Institute on Aging, National Institutes of Health (NIH) (AG041868, PH), the Center for the Demography of Health and Aging (AG017266, PH), and the Clinical and Translational Science Award (CTSA), NIH National Center for Advancing Translational Sciences (NCATS) (UL1TR000427, ZZT). Additional support was provided by the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

P.H., J.B.D. and A.P. contributed to the conceptualization and writing of the manuscript. F.R. contributed to the conceptualization of the manuscript.

Corresponding author

Correspondence to Pamela Herd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herd, P., Palloni, A., Rey, F. et al. Social and population health science approaches to understand the human microbiome. Nat Hum Behav 2, 808–815 (2018). https://doi.org/10.1038/s41562-018-0452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-018-0452-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing