Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The default network and the combination of cognitive processes that mediate self-generated thought

Abstract

Self-generated cognitions, such as recalling personal memories or empathizing with others, are ubiquitous and essential for our lives. Such internal mental processing is ascribed to the default mode network—a large network of the human brain—although the underlying neural and cognitive mechanisms remain poorly understood. Here, we tested the hypothesis that our mental experience is mediated by a combination of activities of multiple cognitive processes. Our study included four functional magnetic resonance imaging experiments with the same participants and a wide range of cognitive tasks, as well as an analytical approach that afforded the identification of cognitive processes during self-generated cognition. We showed that several cognitive processes functioned simultaneously during self-generated mental activity. The processes had specific and localized neural representations, suggesting that they support different aspects of internal processing. Overall, we demonstrate that internally directed experience may be achieved by pooling over multiple cognitive processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experiment 1: schematic flow of the experimental trial, results of the group-level analysis of four internal tasks and location of the ROIs.
Fig. 2: Experiment 1 (n = 36): percent signal-change time courses for the five experimental conditions in the DMN.
Fig. 3: Experiment 2 (n = 34): self-referential processing.
Fig. 4: Experiment 3 (n = 33): scene construction.
Fig. 5: Experiment 4 (n = 34): language-related processing.
Fig. 6: Summary results: neural loci of three cognitive processes.

Similar content being viewed by others

References

  1. Smallwood, J. & Schooler, J. W. The science of mind wandering: empirically navigating the stream of consciousness. Annu. Rev. Psychol. 66, 487–518 (2015).

    Article  PubMed  Google Scholar 

  2. Killingsworth, M. A. & Gilbert, D. T. A wandering mind is an unhappy mind. Science 330, 932 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Smallwood, J. Distinguishing how from why the mind wanders: a process–occurrence framework for self-generated mental activity. Psychol. Bull. 139, 519–535 (2013).

    Article  PubMed  Google Scholar 

  4. Andrews-Hanna, J. R., Smallwood, J. & Spreng, R. N. The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann. NY Acad. Sci. 1316, 29–52 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Addis, D. R., Wong, A. T. & Schacter, D. L. Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia 45, 1363–1377 (2007).

    Article  PubMed  Google Scholar 

  6. Addis, D. R., Pan, L., Vu, M.-A., Laiser, N. & Schacter, D. L. Constructive episodic simulation of the future and the past: distinct subsystems of a core brain network mediate imagining and remembering. Neuropsychologia 47, 2222–2238 (2009).

    Article  PubMed  Google Scholar 

  7. Rabin, J. S., Gilboa, A., Stuss, D. T., Mar, R. A. & Rosenbaum, R. S. Common and unique neural correlates of autobiographical memory and theory of mind. J. Cogn. Neurosci. 22, 1095–1111 (2010).

    Article  PubMed  Google Scholar 

  8. Rabin, J. S. & Rosenbaum, R. S. Familiarity modulates the functional relationship between theory of mind and autobiographical memory. Neuroimage 62, 520–529 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Axelrod, V., Rees, G., Lavidor, M. & Bar, M. Increasing propensity to mind wander with transcranial direct current stimulation. Proc. Natl Acad. Sci. USA 112, 3314–3319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R. & Schooler, J. W. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proc. Natl Acad. Sci. USA 106, 8719–8724 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stawarczyk, D., Majerus, S., Maquet, P. & D’Argembeau, A. Neural correlates of ongoing conscious experience: both task-unrelatedness and stimulus-independence are related to default network activity. PLoS ONE 6, e16997 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smallwood, J. & Schooler, J. W. The restless mind. Psychol. Bull. 132, 946–958 (2006).

    Article  PubMed  Google Scholar 

  13. Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network: anatomy, function, and relevance to disease. Ann. NY Acad. Sci. 1124, 1–38 (2008).

    Article  PubMed  Google Scholar 

  14. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Stawarczyk, D. & D’Argembeau, A. Neural correlates of personal goal processing during episodic future thinking and mind-wandering: an ALE meta-analysis. Hum. Brain Mapp. 36, 2928–2947 (2015).

    Article  PubMed  Google Scholar 

  16. Fox, K. C., Spreng, R. N., Ellamil, M., Andrews-Hanna, J. R. & Christoff, K. The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111, 611–621 (2015).

    Article  PubMed  Google Scholar 

  17. Northoff, G. et al. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    Article  PubMed  Google Scholar 

  18. Sajonz, B. et al. Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. Neuroimage 50, 1606–1617 (2010).

    Article  PubMed  Google Scholar 

  19. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  20. Qin, P. & Northoff, G. How is our self related to midline regions and the default-mode network? Neuroimage 57, 1221–1233 (2011).

    Article  PubMed  Google Scholar 

  21. Whitfield-Gabrieli, S. et al. Associations and dissociations between default and self-reference networks in the human brain. Neuroimage 55, 225–232 (2011).

    Article  PubMed  Google Scholar 

  22. Kurczek, J. et al. Differential contributions of hippocampus and medial prefrontal cortex to self-projection and self-referential processing. Neuropsychologia 73, 116–126 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moran, J. M., Kelley, W. M. & Heatherton, T. F. What can the organization of the brain’s default mode network tell us about self-knowledge? Front. Hum. Neurosci. 7, 391 (2013).

    PubMed  PubMed Central  Google Scholar 

  24. Kim, H. A dual-subsystem model of the brain’s default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. NeuroImage 61, 966–977 (2012).

  25. Palombo, D., Hayes, S., Peterson, K., Keane, M. & Verfaellie, M. Medial temporal lobe contributions to episodic future thinking: scene construction or future projection? Cereb. Cortex https://doi.org/10.1093/cercor/bhw381 (2016).

  26. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  28. Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bird, C. M., Capponi, C., King, J. A., Doeller, C. F. & Burgess, N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 30, 11688–11695 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Nyberg, L., Kim, A. S., Habib, R., Levine, B. & Tulving, E. Consciousness of subjective time in the brain. Proc. Natl Acad. Sci. USA 107, 22356–22359 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tulving, E. in Principles of Frontal Lobe Function (eds Stuss, D. T. & Knight, R. C.) Ch. 20 (Oxford Univ. Press, New York, NY, 2002).

  32. Peer, M., Salomon, R., Goldberg, I., Blanke, O. & Arzy, S. Brain system for mental orientation in space, time, and person. Proc. Natl Acad. Sci. USA 112, 11072–11077 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Binder, J. R., Desai, R. H., Graves, W. W. & Conant, L. L. Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Davey, J. et al. Automatic and controlled semantic retrieval: TMS reveals distinct contributions of posterior middle temporal gyrus and angular gyrus. J. Neurosci. 35, 15230–15239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Humphreys, G. F., Hoffman, P., Visser, M., Binney, R. J. & Ralph, M. A. L. Establishing task- and modality-dependent dissociations between the semantic and default mode networks. Proc. Natl Acad. Sci. USA 112, 7857–7862 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vatansever, D. et al. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour. Neuroimage 158, 1–11 (2017).

    Article  PubMed  Google Scholar 

  37. Sestieri, C., Corbetta, M., Romani, G. L. & Shulman, G. L. Episodic memory retrieval, parietal cortex, and the default mode network: functional and topographic analyses. J. Neurosci. 31, 4407–4420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sestieri, C., Shulman, G. L. & Corbetta, M. The contribution of the human posterior parietal cortex to episodic memory. Nat. Rev. Neurosci. 18, 183–192 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rugg, M. D. & Vilberg, K. L. Brain networks underlying episodic memory retrieval. Curr. Opin. Neurobiol. 23, 255–260 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and task-dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, J. et al. Shared memories reveal shared structure in neural activity across individuals. Nat. Neurosci. 20, 115–125 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Hirshhorn, M., Grady, C., Rosenbaum, R. S., Winocur, G. & Moscovitch, M. Brain regions involved in the retrieval of spatial and episodic details associated with a familiar environment: an fMRI study. Neuropsychologia 50, 3094–3106 (2012).

    Article  PubMed  Google Scholar 

  43. Mars, R. B. et al. On the relationship between the “default mode network” and the “social brain”. Front. Hum. Neurosci. 6, 189 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Spreng, R. & Andrews-Hanna, J. in Brain Mapping: An Encyclopedic Reference (ed. Toga, A. W.) 165–169 (Academic Press, Cambridge, MA, 2015).

  45. Schilbach, L., Eickhoff, S. B., Rotarska-Jagiela, A., Fink, G. R. & Vogeley, K. Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the “default system” of the brain. Conscious. Cogn. 17, 457–467 (2008).

    Article  PubMed  Google Scholar 

  46. Mitchell, J. P., Banaji, M. R. & Macrae, C. N. The link between social cognition and self-referential thought in the medial prefrontal cortex. J. Cogn. Neurosci. 17, 1306–1315 (2005).

    Article  PubMed  Google Scholar 

  47. Gilead, M. et al. Self-regulation via neural simulation. Proc. Natl Acad. Sci. USA 113, 10037–10042 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hill, P. F., Yi, R., Spreng, R. N. & Diana, R. A. Neural congruence between intertemporal and interpersonal self-control: evidence from delay and social discounting. Neuroimage 162, 186–198 (2017).

    Article  PubMed  Google Scholar 

  49. Saxe, R. & Kanwisher, N. People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Tusche, A., Smallwood, J., Bernhardt, B. C. & Singer, T. Classifying the wandering mind: revealing the affective content of thoughts during task-free rest periods. Neuroimage 97, 107–116 (2014).

    Article  PubMed  Google Scholar 

  51. Mayseless, N., Eran, A. & Shamay-Tsoory, S. G. Generating original ideas: the neural underpinning of originality. Neuroimage 116, 232–239 (2015).

    Article  PubMed  Google Scholar 

  52. Beaty, R. E. et al. Creativity and the default network: a functional connectivity analysis of the creative brain at rest. Neuropsychologia 64, 92–98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Laird, A. R. et al. Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J. Neurosci. 29, 14496–14505 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Leech, R., Braga, R. & Sharp, D. J. Echoes of the brain within the posterior cingulate cortex. J. Neurosci. 32, 215–222 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Mars, R. B. et al. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb. Cortex 22, 1894–1903 (2012).

    Article  PubMed  Google Scholar 

  56. Bzdok, D. et al. Subspecialization in the human posterior medial cortex. Neuroimage 106, 55–71 (2015).

    Article  PubMed  Google Scholar 

  57. Bzdok, D. et al. Characterization of the temporo-parietal junction by combining data-driven parcellation, complementary connectivity analyses, and functional decoding. Neuroimage 81, 381–392 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leech, R., Kamourieh, S., Beckmann, C. F. & Sharp, D. J. Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Dastjerdi, M. et al. Differential electrophysiological response during rest, self-referential, and non-self-referential tasks in human posteromedial cortex. Proc. Natl Acad. Sci. USA 108, 3023–3028 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Seghier, M. L., Fagan, E. & Price, C. J. Functional subdivisions in the left angular gyrus where the semantic system meets and diverges from the default network. J. Neurosci. 30, 16809–16817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Braga, R. M. & Buckner, R. L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95, 457–471.e5 (2017).

    Article  CAS  Google Scholar 

  62. Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J. & Leech, R. Echoes of the brain within default mode, association, and heteromodal cortices. J. Neurosci. 33, 14031–14039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Utevsky, A. V., Smith, D. V. & Huettel, S. A. Precuneus is a functional core of the default-mode network. J. Neurosci. 34, 932–940 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ramot, M. et al. A widely distributed spectral signature of task-negative electrocorticography responses revealed during a visuomotor task in the human cortex. J. Neurosci. 32, 10458–10469 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Bellana, B., Liu, Z. X., Diamond, N., Grady, C. & Moscovitch, M. Similarities and differences in the default mode network across rest, retrieval, and future imagining. Hum. Brain Mapp. 38, 1155–1171 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Spreng, R. N. & Grady, C. L. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J. Cogn. Neurosci. 22, 1112–1123 (2009).

    Article  Google Scholar 

  67. D’Argembeau, A. et al. The neural basis of personal goal processing when envisioning future events. J. Cogn. Neurosci. 22, 1701–1713 (2010).

    Article  PubMed  Google Scholar 

  68. Tamir, D. I., Bricker, A. B., Dodell-Feder, D. & Mitchell, J. P. Reading fiction and reading minds: the role of simulation in the default network. Soc. Cogn. Affect. Neurosci. 11, 215–224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Abraham, A., Schubotz, R. I. & von Cramon, D. Y. Thinking about the future versus the past in personal and non-personal contexts. Brain Res. 1233, 106–119 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Szpunar, K. K., Watson, J. M. & McDermott, K. B. Neural substrates of envisioning the future. Proc. Natl Acad. Sci. USA 104, 642–647 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Andrews-Hanna, J. R., Saxe, R. & Yarkoni, T. Contributions of episodic retrieval and mentalizing to autobiographical thought: evidence from functional neuroimaging, resting-state connectivity, and fMRI meta-analyses. Neuroimage 91, 324–335 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Preminger, S., Harmelech, T. & Malach, R. Stimulus-free thoughts induce differential activation in the human default network. Neuroimage 54, 1692–1702 (2011).

    Article  PubMed  Google Scholar 

  73. Harrison, B. J. et al. Consistency and functional specialization in the default mode brain network. Proc. Natl Acad. Sci. USA 105, 9781–9786 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shapira-Lichter, I., Oren, N., Jacob, Y., Gruberger, M. & Hendler, T. Portraying the unique contribution of the default mode network to internally driven mnemonic processes. Proc. Natl Acad. Sci. USA 110, 4950–4955 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Karapanagiotidis, T., Bernhardt, B. C., Jefferies, E. & Smallwood, J. Tracking thoughts: exploring the neural architecture of mental time travel during mind-wandering. Neuroimage 147, 272–281 (2017).

    Article  PubMed  Google Scholar 

  76. Smallwood, J. et al. Representing representation: integration between the temporal lobe and the posterior cingulate influences the content and form of spontaneous thought. PLoS ONE 11, e0152272 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Gorgolewski, K. J. et al. A correspondence between individual differences in the brain’s intrinsic functional architecture and the content and form of self-generated thoughts. PLoS ONE 9, e97176 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Andrews-Hanna, J. R., Reidler, J. S., Huang, C. & Buckner, R. L. Evidence for the default network’s role in spontaneous cognition. J. Neurophysiol. 104, 322–335 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Doucet, G. et al. Patterns of hemodynamic low-frequency oscillations in the brain are modulated by the nature of free thought during rest. Neuroimage 59, 3194–3200 (2012).

    Article  PubMed  Google Scholar 

  80. Poerio, G. L. et al. The role of the default mode network in component processes underlying the wandering mind. Soc. Cogn. Affect. Neurosci. 12, 1047–1062 (2017).

  81. Medea, B. et al. How do we decide what to do? Resting-state connectivity patterns and components of self-generated thought linked to the development of more concrete personal goals. Exp. Brain Res. https://doi.org/10.1007/s00221-016-4729-y (2016).

  82. De Caso, I., Poerio, G., Jefferies, E. & Smallwood, J. That’s me in the spotlight: neural basis of individual differences in self-consciousness. Soc. Cogn. Affect. Neurosci. 12, 1384–1393 (2017).

  83. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R. & Buckner, R. L. Functional-anatomic fractionation of the brain's default network. Neuron 65, 550–562 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, S., Dede, A. J., Hopkins, R. O. & Squire, L. R. Memory, scene construction, and the human hippocampus. Proc. Natl Acad. Sci. USA 112, 4767–4772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Xu, X., Yuan, H. & Lei, X. Activation and connectivity within the default mode network contribute independently to future-oriented thought. Sci. Rep. 6, 21001 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Summerfield, J. J., Hassabis, D. & Maguire, E. A. Cortical midline involvement in autobiographical memory. Neuroimage 44, 1188–1200 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Irish, M. & Piguet, O. The pivotal role of semantic memory in remembering the past and imagining the future. Front. Behav. Neurosci. 7, 27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kim, H. Default network activation during episodic and semantic memory retrieval: a selective meta-analytic comparison. Neuropsychologia 80, 35–46 (2016).

  89. Burianova, H. & Grady, C. L. Common and unique neural activations in autobiographical, episodic, and semantic retrieval. J. Cogn. Neurosci. 19, 1520–1534 (2007).

    Article  PubMed  Google Scholar 

  90. Woo, C.-W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91, 412–419 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Eklund, A., Nichols, T. E. & Knutsson, H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl Acad. Sci. USA 113, 7900–7905 (2016).

    Google Scholar 

  92. Spreng, R. N., Mar, R. A. & Kim, A. S. N. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J. Cogn. Neurosci. 21, 489–510 (2008).

    Article  Google Scholar 

  93. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kelley, W. M. et al. Finding the self? An event-related fMRI study. J. Cogn. Neurosci. 14, 785–794 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Goldberg, I. I., Harel, M. & Malach, R. When the brain loses its self: prefrontal inactivation during sensorimotor processing. Neuron 50, 329–339 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Murray, R. J., Schaer, M. & Debbané, M. Degrees of separation: a quantitative neuroimaging meta-analysis investigating self-specificity and shared neural activation between self- and other-reflection. Neurosci. Biobehav. Rev. 36, 1043–1059 (2012).

    Article  PubMed  Google Scholar 

  97. Kriegeskorte, N. & Kievit, R. A. Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17, 401–412 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Raizada, R. D. S. & Kriegeskorte, N. Pattern-information fMRI: new questions which it opens up and challenges which face it. Int. J. Imag. Syst. Technol. 20, 31–41 (2010).

    Article  Google Scholar 

  99. Oosterhof, N. N., Wiggett, A. J., Diedrichsen, J., Tipper, S. P. & Downing, P. E. Surface-based information mapping reveals crossmodal vision–action representations in human parietal and occipitotemporal cortex. J. Neurophysiol. 104, 1077–1089 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Aminoff, E. M., Kveraga, K. & Bar, M. The role of the parahippocampal cortex in cognition. Trends Cogn. Sci. 17, 379–390 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  102. Epstein, R. A. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn. Sci. 12, 388–396 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Baldassano, C., Esteva, A., Fei-Fei, L. & Beck, D. M. Two distinct scene-processing networks connecting vision and memory. eNeuro 3, 0178–16.2016 (2016).

    Article  Google Scholar 

  104. Price, C. J. A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage 62, 816–847 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fedorenko, E., Hsieh, P.-J., Nieto-Castañón, A., Whitfield-Gabrieli, S. & Kanwisher, N. New method for fMRI investigations of language: defining ROIs functionally in individual subjects. J. Neurophysiol. 104, 1177–1194 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Fedorenko, E. & Thompson-Schill, S. L. Reworking the language network. Trends Cogn. Sci. 18, 120–126 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Friederici, A. D. The brain basis of language processing: from structure to function. Physiol. Rev. 91, 1357–1392 (2011).

    Article  PubMed  Google Scholar 

  109. Seghier, M. L. The angular gyrus multiple functions and multiple subdivisions. Neuroscientist 19, 43–61 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Simony, E. et al. Dynamic reconfiguration of the default mode network during narrative comprehension. Nat. Commun. 7, 12141 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nat. Rev. Neurosci. 8, 976–987 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Ross, L. A. & Olson, I. R. What’s unique about unique entities? An fMRI investigation of the semantics of famous faces and landmarks. Cereb. Cortex 22, 2005–2015 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Axelrod, V. & Yovel, G. Successful decoding of famous faces in the fusiform face area. PLoS ONE 10, e0117126 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Wirth, M. et al. Semantic memory involvement in the default mode network: a functional neuroimaging study using independent component analysis. Neuroimage 54, 3057–3066 (2011).

    Article  PubMed  Google Scholar 

  116. Jackson, R. L., Hoffman, P., Pobric, G. & Ralph, M. A. L. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J. Neurosci. 36, 1490–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krieger-Redwood, K. et al. Down but not out in posterior cingulate cortex: deactivation yet functional coupling with prefrontal cortex during demanding semantic cognition. Neuroimage 141, 366–377 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Margulies, D. S. et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc. Natl Acad. Sci. USA 113, 12574–12579 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory: memory as an integral component of information processing. Trends Cogn. Sci. 19, 304–313 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Golland, Y. et al. Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation. Cereb. Cortex 17, 766–777 (2007).

    Article  PubMed  Google Scholar 

  121. Benoit, R. G. & Schacter, D. L. Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75, 450–457 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Grady, C. L. et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb. Cortex 20, 1432–1447 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Salomon, R., Levy, D. R. & Malach, R. Deconstructing the default: cortical subdivision of the default mode/intrinsic system during self‐related processing. Hum. Brain Mapp. 35, 1491–1502 (2013).

    Article  PubMed  Google Scholar 

  124. O’Craven, K. M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci 12, 1013–1023 (2000).

    Article  PubMed  Google Scholar 

  125. Cichy, R. M., Heinzle, J. & Haynes, J.-D. Imagery and perception share cortical representations of content and location. Cereb. Cortex 22, 372–380 (2012).

    Article  PubMed  Google Scholar 

  126. Reddy, L., Tsuchiya, N. & Serre, T. Reading the mind’s eye: decoding category information during mental imagery. Neuroimage 50, 818–825 (2010).

    Article  PubMed  Google Scholar 

  127. Bar, M., Aminoff, E., Mason, M. & Fenske, M. The units of thought. Hippocampus 17, 420–428 (2007).

    Article  PubMed  Google Scholar 

  128. Chavez, R. S. & Heatherton, T. F. Representational similarity of social and valence information in the medial pFC. J. Cogn. Neurosci. 27, 73–82 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Poldrack, R. A. et al. Scanning the horizon: towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 18, 115–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Axelrod, V. & Yovel, G. Hierarchical processing of face viewpoint in human visual cortex. J. Neurosci. 32, 2442–2452 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Axelrod, V., Bar, M., Rees, G. & Yovel, G. Neural correlates of subliminal language processing. Cereb. Cortex 25, 2160–2169 (2015).

    Article  PubMed  Google Scholar 

  132. Axelrod, V. On the domain-specificity of the visual and non-visual face-selective regions. Eur. J. Neurosci. 44, 2049–2063 (2016).

    Article  PubMed  Google Scholar 

  133. Ashburner, J. & Friston, K. J. Unified segmentation. Neuroimage 26, 839–851 (2005).

    Article  PubMed  Google Scholar 

  134. Song, X.-W. et al. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS ONE 6, e25031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Siuda-Krzywicka, K. et al. Massive cortical reorganization in sighted Braille readers. eLife 5, e10762 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Wang, L. et al. Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31, 496–504 (2006).

    Article  PubMed  Google Scholar 

  137. Zald, D. H. et al. Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J. Neurosci. 28, 14372–14378 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Brett, M., Anton, J., Valabregue, R. & Poline, J. Region of interest analysis using an SPM toolbox. Neuroimage 16, 497 (2002).

    Google Scholar 

  139. Axelrod, V. Minimizing bugs in cognitive neuroscience programming. Front. Psychol. 5, 1435 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P. & Mayberg, H. S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    Article  PubMed  Google Scholar 

  141. Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Etzel, J. A., Zacks, J. M. & Braver, T. S. Searchlight analysis: promise, pitfalls, and potential. Neuroimage 78, 261–269 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Björnsdotter, M., Rylander, K. & Wessberg, J. A Monte Carlo method for locally multivariate brain mapping. Neuroimage 56, 508–516 (2011).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Yad Hanadiv Rothschild fellowship (to V.A.), the Wellcome Trust (to G.R.) and the Israeli Center of Research Excellence in Cognitive Sciences (to M.B.). We also thank K. Siuda-Krzywicka and S. Schwarzkopf for advice, and N. Hale for technical assistance. No funders had any role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V.A. and M.B. conceived the study. V.A. designed and performed the study. V.A. analysed the data with input from G.R. and M.B. V.A., G.R. and M.B. wrote the paper.

Corresponding author

Correspondence to Vadim Axelrod.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Results, Supplementary Tables 1–2, Supplementary Figures 1–4, Supplementary References

Life Sciences Reporting Summary and MRI Studies Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axelrod, V., Rees, G. & Bar, M. The default network and the combination of cognitive processes that mediate self-generated thought. Nat Hum Behav 1, 896–910 (2017). https://doi.org/10.1038/s41562-017-0244-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41562-017-0244-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing