Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges

Abstract

Background:

Prostate-specific membrane antigen (PSMA) is a cell surface enzyme that is highly expressed in prostate cancer (PCa) and is currently being extensively explored as a promising target for molecular imaging in a variety of clinical contexts. Novel antibody and small-molecule PSMA radiotracers labeled with a variety of radionuclides for positron emission tomography (PET) imaging applications have been developed and explored in recent studies.

Methods:

A great deal of progress has been made in defining the clinical utility of this class of PET agents through predominantly small and retrospective clinical studies. The most compelling data to date has been in the setting of biochemically recurrent PCa, where PSMA-targeted radiotracers have been found to be superior to conventional imaging and other molecular imaging agents for the detection of locally recurrent and metastatic PCa.

Results:

Early data, however, suggest that initial lymph node staging before definitive therapy in high-risk primary PCa patients may be limited, although intraoperative guidance may still hold promise. Other examples of potential promising applications for PSMA PET imaging include non-invasive characterization of primary PCa, staging and treatment planning for PSMA-targeted radiotherapeutics, and guidance of focal therapy for oligometastatic disease.

Conclusions:

However, all of these indications and applications for PCa PSMA PET imaging are still lacking and require large, prospective, systematic clinical trials for validation. Such validation trials are needed and hopefully will be forthcoming as the fields of molecular imaging, urology, radiation oncology and medical oncology continue to define and refine the utility of PSMA-targeted PET imaging to improve the management of PCa patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A . Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5–29.

    Article  PubMed  Google Scholar 

  2. Kiess AP, Banerjee SR, Mease RC, Rowe SP, Rao A, Foss CA et al. Prostate-specific membrane antigen as a target for cancer imaging and therapy. Q J Nucl Med Mol Imaging 2015; 59: 241–268.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, Petrylak D et al. Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 1996; 48: 326–334.

    Article  PubMed  Google Scholar 

  4. Sweat SD, Pacelli A, Murphy GP, Bostwick DG . Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 1998; 52: 637–640.

    Article  CAS  PubMed  Google Scholar 

  5. Chang SS, Reuter VE, Heston WD, Gaudin PB . Comparison of anti-prostate-specific membrane antigen antibodies and other immunomarkers in metastatic prostate carcinoma. Urology 2001; 57: 1179–1183.

    Article  CAS  PubMed  Google Scholar 

  6. Noss KR, Wolfe SA, Grimes SR . Upregulation of prostate specific membrane antigen/folate hydrolase transcription by an enhancer. Gene 2002; 285: 247–256.

    Article  CAS  PubMed  Google Scholar 

  7. Ross JS, Sheehan CE, Fisher HA, Kaufman RP Jr, Kaur P, Gray K et al. Correlation of primary tumor prostate-specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res 2003; 9: 6357–6362.

    CAS  PubMed  Google Scholar 

  8. Perner S, Hofer MD, Kim R, Shah RB, Li H, Möller P et al. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum Pathol 2007; 38: 696–701.

    Article  CAS  PubMed  Google Scholar 

  9. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA 2011; 108: 9578–9582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sodee DB, Nelson AD, Faulhaber PF, Maclennan GT, Resnick MI, Bakale G . Update on fused capromab pendetide imaging of prostate cancer. Clin Prostate Cancer 2005; 3: 230–238.

    Article  CAS  PubMed  Google Scholar 

  11. Mohammed AA, Shergill IS, Vandal MT, Gujral SS . ProstaScint and its role in the diagnosis of prostate cancer. Expert Rev Mol Diagn 2007; 7: 345–349.

    Article  CAS  PubMed  Google Scholar 

  12. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS . 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med 2010; 51: 1293–1300.

    Article  CAS  PubMed  Google Scholar 

  13. Mease RC, Dusich CL, Foss CA, Ravert HT, Dannals RF, Seidel J et al. N-[N-[(S)-1,3-Dicarboxypropyl]carbamoyl]-4-[18F]fluorobenzyl-L-cysteine, [18F]DCFBC: a new imaging probe for prostate cancer. Clin Cancer Res 2008; 14: 3036–3043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Banerjee SR, Pullambhatla M, Byun Y, Nimmagadda S, Green G, Fox JJ et al. 68Ga-labeled inhibitors of prostate-specific membrane antigen (PSMA) for imaging prostate cancer. J Med Chem 2010; 53: 5333–5341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin Cancer Res 2011; 17: 7645–7653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vallabhajosula S, Nikolopoulou A, Babich JW, Osborne JR, Tagawa ST, Lipai I et al. 99mTc-labeled small-molecule inhibitors of prostate-specific membrane antigen: pharmacokinetics and biodistribution studies in healthy subjects and patients with metastatic prostate cancer. J Nucl Med 2014; 55: 1791–1798.

    Article  CAS  PubMed  Google Scholar 

  17. Hillier SM, Kern AM, Maresca KP, Marquis JC, Eckelman WC, Joyal JL et al. 123I-MIP-1072, a small-molecule inhibitor of prostate-specific membrane antigen, is effective at monitoring tumor response to taxane therapy. J Nucl Med 2011; 52: 1087–1093.

    Article  CAS  PubMed  Google Scholar 

  18. Pandit-Taskar N, O’Donoghue JA, Jurack JC, Lyashchenko SK, Cheal SM, Beylergil V et al. A phase I/II study for analytic validation of 89Zr-J591 immunoPET as a molecular imaging agent for metastatic prostate cancer. Clin Cancer Res 2015; 21: 5277–5285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Viola-Villegas NT, Sevak KK, Carlin SD, Doran MG, Evans HW, Bartlett DW et al. Noninvasive imaging of PSMA in prostate tumors with 89Zr-labeled huJ591 engineered antibody fragments: the faster alternatives. Mol Pharm 2014; 11: 3965–3973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging 2013; 40: 797–798.

    Article  Google Scholar 

  21. Afshar-Oromieh A, Avtzi E, Giesel FL, Holland-Letz T, Linhart HG, Eder M et al. The diagnostic value of PET/CT imaging with the 68Ga-labelled PSMA ligand HBED-CC in the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42: 197–209.

    Article  CAS  PubMed  Google Scholar 

  22. Eiber M, Maurer T, Souvatzoglou M, Beer AJ, Ruffani A, Haller B et al. Evaluation of hybrid 68Ga-PSMA ligand PET/CT in 248 patients with biochemical recurrence after radical prostatectomy. J Nucl Med 2015; 56: 668–674.

    Article  PubMed  Google Scholar 

  23. Cho SY, Gage KL, Mease RC, Senthamizhchelvan S, Holt DP, Jeffrey-Kwanisai A et al. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J Nucl Med 2012; 53: 1883–1891.

    Article  CAS  PubMed  Google Scholar 

  24. Szabo Z, Mena E, Rowe SP, Plyku D, Nidal R, Eisenberger MA et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol 2015; 17: 565–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sanchez-Crespo A . Comparison of Gallium-68 and Fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 2013; 76: 55–62.

    Article  CAS  PubMed  Google Scholar 

  26. National Comprehensive Cancer Network. Prostate Cancer (Version 1.2016). Available at http://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf. Accessed 1 November 2015.

  27. American Urological Association. Guideline for the Management of Clinically Localized Prostate Cancer (2007). Available at https://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf. Accessed 1 November 2015.

  28. European Association of Urology. Guidelines on Prostate Cancer (2015). Avaiable at https://www.auanet.org/common/pdf/education/clinical-guidance/Prostate-Cancer.pdf. Accessed 1 November 2015.

  29. Osborne JR, Green DA, Spratt DE, Lyashchenko S, Fareedy SB, Robinson BD et al. A prospective pilot study of 89Zr-J591/prostate specific membrane antigen positron emission tomography in men with localized prostate cancer undergoing radical prostatectomy. J Urol 2014; 191: 1439–1445.

    Article  CAS  PubMed  Google Scholar 

  30. Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N et al. 18F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J Nucl Med 2015; 56: 1003–1010.

    Article  CAS  PubMed  Google Scholar 

  31. Briganti A, Abdollah F, Nini A, Suardi N, Gallina A, Capitanio U et al. Performance characteristics of computed tomography in detecting lymph node metastases in contemporary patients with prostate cancer treated with extended lymph node dissection. Eur Urol 2012; 61: 1132–1138.

    Article  PubMed  Google Scholar 

  32. Eiber M, Beer AJ, Holzapfel K, Tauber R, Ganter C, Weirich G et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 2010; 45: 15–23.

    Article  PubMed  Google Scholar 

  33. Budäus L, Leyh-Bannurah SR, Salomon G, Michl U, Heinzer H, Huland H et al. Initial experience of 68Ga-PSMA PET/CT imaging in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 2016; 69: 393–396.

    Article  PubMed  Google Scholar 

  34. Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G et al. Diagnostic efficacy of 68Gallium-PSMA-PET compared to conventional imaging in lymph node staging of 130 consecutive patients with intermediate to high-risk prostate cancer. J Urol 2015; 195: 1436–1443.

    Article  PubMed  Google Scholar 

  35. Hövels AM, Heesakkers RA, Adang EM, Jager GJ, Strum S, Hoogeveen YL et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 2008; 63: 387–395.

    Article  PubMed  Google Scholar 

  36. Derlin T, Eiber M, Schwaiger M, Bengel FM . Re: Lars Budäus, Sami-Ramzi Leyh-Bannurah, Georg Salomon et al. Initial experience of 68Ga-PSMA PET/CT in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 2015; (e-pub ahead of print 8 August 2015; http://dx.doi.org/10.1016/j.eururo.2015.06.010).

  37. Budäus L, Leyh-Bannurah SR, Steuber T . Reply to Thorsten Derlin, Matthias Eiber, Markus Schwaiger, and Frank M. Bengel’s letter to the editor re: Lars Budäus, Sami-Ramzi Leyh-Bannurah, Georg Salomon et al. Initial experience of 68Ga-PSMA PET/CT in high-risk prostate cancer patients prior to radical prostatectomy. Eur Urol 2015; (e-pub ahead of print 12 August 2015; http://dx.doi.org/10.1016/j.eururo.2015.06.010).

  38. Maurer T, Weirich G, Schottelius M, Weineisen M, Frisch B, Okur A et al. Prostate-specific membrane antigen-radioguided surgery for metastatic lymph nodes in prostate cancer. Eur Urol 2015; 68: 530–534.

    Article  PubMed  Google Scholar 

  39. Evans MJ, Smith-Jones PM, Wongvipat J, Navarro V, Kim S, Bander NH et al. Noninvasive measurement of androgen receptor signaling with a positron-emitting radiopharmaceutical that targets prostate-specific membrane antigen. Proc Natl Acad Sci USA 2011; 108: 9578–9582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Horwitz EM, Bae K, Hanks GE, Porter A, Grignon DJ, Brereton HD et al. Ten-year follow-up of radiation therapy oncology group 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 2008; 26: 2497–2504.

    Article  CAS  PubMed  Google Scholar 

  41. Widmark A, Klepp O, Solberg A, Damber JE, Angelsen A, Fransson P et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 2009; 373: 301–308.

    Article  CAS  PubMed  Google Scholar 

  42. Bolla M, Van Tienhoven G, Warde P, Dubois JB, Mirimanoff RO, Storme G et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 2010; 11: 1066–1073.

    Article  CAS  PubMed  Google Scholar 

  43. Mason MD, Parulekar WR, Sydes MR, Brundage M, Kirkbride P, Gospodarowicz M et al. Final report of the intergroup randomized study of combined androgen-deprivation therapy plus radiotherapy versus androgen-deprivation alone in locally advanced prostate cancer. J Clin Oncol 2015; 33: 2143–2150.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Polkingham WR, Parker JS, Lee MX, Kass EM, Spratt DE, Iaquinta PJ et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013; 3: 1245–1253.

    Article  Google Scholar 

  45. Goodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de Leeuw R, Han S et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov 2013; 3: 1254–1271.

    Article  CAS  PubMed  Google Scholar 

  46. Spratt DE, Evans MJ, Davis BJ, Doran MG, Lee MX, Shah N et al. Androgen receptor upregulation mediates radioresistance after ionizing radiation. Cancer Res 2015; 75: 4688–4696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zelefsky MJ, Lyass O, Fuks Z, Wolfe T, Burman C, Ling CC et al. Predictors of improved outcome for patients with localized prostate cancer treated with neoadjuvant androgen ablation therapy and three-dimensional conformal radiotherapy. J Clin Oncol 1998; 16: 3380–3385.

    Article  CAS  PubMed  Google Scholar 

  48. Ludgate CM, Bishop DC, Pai H, Eldridge B, Lim J, Berthelet E et al. Neoadjuvant hormone therapy and external-beam radiation for localized high-risk prostate cancer: the importance of PSA nadir before radiation. Int J Radiat Oncol Biol Phys 2005; 62: 1309–1315.

    Article  CAS  PubMed  Google Scholar 

  49. Heymann JJ, Benson MC, O’Toole KM, Malyszko B, Brody R, Vecchio D et al. Phase II study of neoadjuvant androgen deprivation followed by external-beam radiotherapy with 9 months of androgen deprivation for intermediate- to high-risk localized prostate cancer. J Clin Oncol 2007; 25: 77–84.

    Article  CAS  PubMed  Google Scholar 

  50. Mitchell DM, McAleese J, Park RM, Stewart DP, Stranex S, Eakin RL et al. Failure to achieve a PSA level <or=1 ng/mL after neoadjuvant LHRHa therapy predicts lower biochemical control rate and overall survival in localized prostate cancer treated with radiotherapy. Int J Radiat Oncol Biol Phys 2007; 69: 1467–1471.

    Article  CAS  PubMed  Google Scholar 

  51. Alexander A, Crook J, Jones S, Malone S, Bowen J, Truong P et al. Is biochemical response more important than duration of neoadjuvant hormone therapy before radiotherapy for clinically localized prostate cancer? An analysis of the 3- versus 8-month randomized trial. Int J Radiat Oncol Biol Phys 2010; 76: 23–30.

    Article  CAS  PubMed  Google Scholar 

  52. McGuire SE, Lee AK, Cerne JZ, Munsell MF, Levy LB, Kudchadker RJ et al. PSA response to neoadjuvant androgen deprivation therapy is a strong independent predictor of survival in high-risk prostate cancer in the dose-escalated radiation therapy era. Int J Radiat Oncol Biol Phys 2013; 85: e39–e46.

    Article  CAS  PubMed  Google Scholar 

  53. Zelefsky MJ, Gomez DR, Polkinghorn WR, Pei X, Kollmeier M . Biochemical response to androgen deprivation therapy before external beam radiation therapy predicts long-term prostate cancer survival outcomes. Int J Radiat Oncol Biol Phys 2013; 86: 529–533.

    Article  CAS  PubMed  Google Scholar 

  54. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  55. Cookson MS, Aus G, Burnett AL, Canby-Hagino ED, D-Aminco AV, Dmochowski RR et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol 2007; 177: 540–545.

    Article  CAS  PubMed  Google Scholar 

  56. Roach M 3rd, Hanks G, Thames H Jr, Scheilhammer P, Shipley WU, Sokol GH et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 2006; 15: 965–974.

    Article  Google Scholar 

  57. Abramowitz MC, Li T, Buyyounouski MK, Ross E, Uzzo RG, Pollack A et al. The Phoenix definition of biochemical failure predicts for overall survival in patients with prostate cancer. Cancer 2008; 112: 55–60.

    Article  PubMed  Google Scholar 

  58. Trock BJ, Han M, Freedland SJ, Humphreys EB, DeWeese TL, Partin AW et al. Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 2008; 299: 2760–2769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Afshar-Oromieh A, Zechmann CM, Malcher A, Eder M, Eisenhut M, Linhart HG et al. Comparison of PET imaging with 68Ga-labelled PSMA ligand and 18F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2014; 41: 11–20.

    Article  CAS  PubMed  Google Scholar 

  60. Morigi JJ, Stricker PD, van Leeuwen PJ, Tang R, Ho B, Nguyen Q et al. Prospective comparison of 18F-fluoromethylcholine versus 68Ga-PSMA PET/CT in prostate cancer patients who have rising PSA after curative treatment and are being considered for targeted therapy. J Nucl Med 2015; 56: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  61. Deitlein M, Kobe C, Kuhnert G, Stockter S, Fischer T, Schomäcker K et al. Comparison of [18F]DCFPyL and [68Ga]Ga-PSMA-HBED-CC for PSMA-PET in patients with relapsed prostate cancer. Mol Imaging Biol 2015; 17: 575–584.

    Article  Google Scholar 

  62. Giesel FL, Fiedler H, Stefanova M, Sterzing F, Rius M, Kopka K et al. PSMA PET/CT with Glu-urea-Lys-(Ahx)-[68Ga(HBED-CC)] versus 3D CT volumetric lymph node assessment in recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2015; 42: 1794–1800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rowe SP, Macura KJ, Ciarallo A, Mena E, Blackford A, Nadal R et al. Comparison of Prostate-Specific Membrane Antigen-based 18F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J Nucl Med 2016; 57: 46–53.

    Article  CAS  PubMed  Google Scholar 

  64. Rowe SP, Mana-ay M, Javadi MS, Szabo Z, Leal JP, Pomper MG et al. PSMA-based detection of prostate cancer bone lesions with 18F-DCFPyL PET/CT: a sensitive alternative to 99mTc-MDP bone scan and Na18F PET/CT? Clin Genitourin Cancer 2016; 14: e115–e118.

    Article  PubMed  Google Scholar 

  65. Bander NH, Milowsky MI, Nanus DM, Kostakoglu L, Vallabhajosula S, Goldsmith SJ . Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 2005; 23: 4591–4601.

    Article  CAS  PubMed  Google Scholar 

  66. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH et al. Phase II study of lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res 2013; 19: 5182–5191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weineisen M, Schottelius M, Simecek J, Baum RP, Yildiz A, Beykan S et al. 68Ga- and 177Lu-labeled PSMA I&T: optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J Nucl Med 2015; 56: 1169–1176.

    Article  CAS  PubMed  Google Scholar 

  68. Ahmadzadehfar H, Rahbar K, Kürpig S, Bögemann M, Claesener M, Eppard E et al. Early side effects and first results of radioligand therapy with 177Lu-DKFZ-617 PSMA of castrate-resistant metastatic prostate cancer: a two-centre study. EJNMMI Res 2015; 5: 114.

    PubMed  Google Scholar 

  69. Hellman S, Weichselbaum RR . Oligometastases. J Clin Oncol 1995; 13: 8–10.

    Article  CAS  PubMed  Google Scholar 

  70. Reyes DK, Pienta KJ . The biology and treatment of oligometastatic cancer. Oncotarget 2015; 6: 8491–8524.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miyahira AK, Lang JM, Den RB, Garraway IP, Lotan TL, Ross AE et al. Multidisciplinary intervention of early, lethal metastatic prostate cancer : report from the 2015 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2015; 76: 125–139.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Schiavina R, Ceci F, Romagnoli D, Uprimny C, Brunocilla E, Borghesi M et al. 68Ga-PSMA-PET/CT-guided salvage retroperitoneal lymph node dissection for disease relapse after radical prostatectomy for prostate cancer. Clin Gentiourin Cancer 2015; 13: e415–e417.

    Article  Google Scholar 

  73. Hijazi S, Meller B, Leitsmann C, Strauss A, Meller J, Ritter CO et al. Pelvic lymph node dissection for nodal oligometastatic prostate cancer detected by 68Ga-PSMA-positron emission tomography/computed tomography. Prostate 2015; 75: 1934–1940.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from CA134675, CA184228 and CA183031, PCF Young Investigator Award, PCF Creativity Award, and a Movember-PCF Challenge Award as well as philanthropic funds to The James Buchanan Brady Urological Institute that have supported our group’s work in PSMA imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Y Cho.

Ethics declarations

Competing interests

MGP is a co-inventor on a US Patent covering 18F-DCFPyL and as such are entitled to a portion of any licensing fees and royalties generated by this technology. This arrangement has been reviewed and approved by the Johns Hopkins University in accordance with its conflict of interest policies. The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rowe, S., Gorin, M., Allaf, M. et al. PET imaging of prostate-specific membrane antigen in prostate cancer: current state of the art and future challenges. Prostate Cancer Prostatic Dis 19, 223–230 (2016). https://doi.org/10.1038/pcan.2016.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2016.13

This article is cited by

Search

Quick links