Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB–P53 pathways

Abstract

We focused our attention on brahma-related gene 1 (BRG1), the ATPase subunit of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex, and analyzed its role in mesenchymal stem cell (MSC) biology. We hypothesized that deviation from the correct concentration of these proteins, which act at the highest level of gene regulation, may be deleterious for cells. We wanted to know what would happen if a cell had to cope with altered regulation of gene expression, either by upregulation or downregulation of BRG1. We assumed that cells would try to restore homeostasis or, alternatively, that the event could trigger senescence/apoptosis phenomena. To this end, in MSCs, we silenced BRG1gene. Knockdown of BRG1 expression induced a significant increase in senescent cells and decrease in apoptotic cells. It is interesting that BRG1 downregulation also induced an increase in heterochromatin. At the molecular level, these phenomena were associated with activation of retinoblastoma-like protein 2 (RB2)/P130- and P53-related pathways. Senescence was accompanied by reduced expression of some stemness-related genes. This is consistent with our previous research, which showed that BRG1 upregulation by ectopic expression also induced senescence processes. Together, these data suggest that BRG1 belongs to a class of genes whose expression is tightly regulated; hence, subtle alterations in BRG1 activity seem to negatively affect mechanisms regulating chromatin status and, in turn, impair cellular physiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Alves H, Munoz-Najar U, de Wit J, Renard AJ, Hoeijmakers JH, Sedivy JM et al. (2009). A link between the accumulation of DNA damage and loss of multipotency of human mesenchymal stromal cells. J Cell Mol Med (e-pub ahead of print).

  • Beyer Nardi N, da Silva Meirelles L . (2006). Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 174: 249–282.

    Article  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Bultman S, Gebuhr T, Yee D, La Mantia C, Nicholson J, Gilliam A et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Mol Cell 6: 1287–1295.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d'Adda di Fagagna F . (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M . (2007). Cellular senescence in cancer and aging. Cell 130: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • de la Serna IL, Ohkawa Y, Imbalzano AN . (2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7: 461–473.

    Article  CAS  PubMed  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O . (2009). Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4: 1798–1806.

    Article  CAS  PubMed  Google Scholar 

  • Diggle CP, Bentley J, Kiltie AE . (2003). Development of a rapid, small-scale DNA repair assay for use on clinical samples. Nucleic Acids Res 31: e83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Dornan D, Shimizu H, Burch L, Smith AJ, Hupp TR . (2003). The proline repeat domain of p53 binds directly to the transcriptional coactivator p300 and allosterically controls DNA-dependent acetylation of p53. Mol Cell Biol 23: 8846–8861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Felsani A, Mileo AM, Paggi MG . (2006). Retinoblastoma family proteins as key targets of the small DNA virus oncoproteins. Oncogene 25: 5277–5285.

    Article  CAS  PubMed  Google Scholar 

  • Fotedar R, Bendjennat M, Fotedar A . (2004). Role of p21WAF1 in the cellular response to UV. Cell Cycle 3: 134–137.

    Article  CAS  PubMed  Google Scholar 

  • Gage FH . (2000). Mammalian neural stem cells. Science 287: 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  • Galderisi U, Cipollaro M, Giordano A . (2006). The retinoblastoma gene is involved in multiple aspects of stem cell biology. Oncogene 25: 5250–5256.

    Article  CAS  PubMed  Google Scholar 

  • Galderisi U, Di Bernardo G, Cipollaro M, Peluso G, Cascino A, Cotrufo R et al. (1999). Differentiation and apoptosis of neuroblastoma cells: role of N-myc gene product. J Cell Biochem 73: 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Giorgio M, Trinei M, Migliaccio E, Pelicci PG . (2007). Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8: 722–728.

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Lowy AM, Kapoor M, Deffie A, Liu G, Lozano G . (1996). Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem 271: 29380–29385.

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Dean DC . (2000). Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65–E67.

    Article  CAS  PubMed  Google Scholar 

  • Hendricks KB, Shanahan F, Lees E . (2004). Role for BRG1 in cell cycle control and tumor suppression. Mol Cell Biol 24: 362–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill R, Bodzak E, Blough MD, Lee PW . (2008). p53 Binding to the p21 promoter is dependent on the nature of DNA damage. Cell Cycle 7: 2535–2543.

    Article  CAS  PubMed  Google Scholar 

  • Hoeijmakers JH . (2001). Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.

    Article  CAS  PubMed  Google Scholar 

  • Kang H, Cui K, Zhao K . (2004). BRG1 controls the activity of the retinoblastoma protein via regulation of p21CIP1/WAF1/SDI. Mol Cell Biol 24: 1188–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna KK, Jackson SP . (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27: 247–254.

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko BN . (2000). Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267: 1583–1588.

    Article  CAS  PubMed  Google Scholar 

  • Kidder BL, Palmer S, Knott JG . (2009). SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 27: 317–328.

    Article  CAS  PubMed  Google Scholar 

  • Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ 13: 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Lee D, Kim JW, Seo T, Hwang SG, Choi EJ, Choe J . (2002). SWI/SNF complex interacts with tumor suppressor p53 and is necessary for the activation of p53-mediated transcription. J Biol Chem 277: 22330–22337.

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7: 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW . (2005). DNA repair, genome stability, and aging. Cell 120: 497–512.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Fisher RP, Bailey P, Levine AJ . (1997). The CDK7-cycH-p36 complex of transcription factor IIH phosphorylates p53, enhancing its sequence-specific DNA binding activity in vitro. Mol Cell Biol 17: 5923–5934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maison C, Almouzni G . (2004). HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5: 296–304.

    Article  CAS  PubMed  Google Scholar 

  • Marsden VS, Kaufmann T, O'Reilly L A, Adams JM, Strasser A . (2006). Apaf-1 and caspase-9 are required for cytokine withdrawal-induced apoptosis of mast cells but dispensable for their functional and clonogenic death. Blood 107: 1872–1877.

    Article  CAS  PubMed  Google Scholar 

  • Martens JA, Winston F . (2003). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13: 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K et al. (2007). Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9: 625–635.

    Article  CAS  PubMed  Google Scholar 

  • Matoba R, Niwa H, Masui S, Ohtsuka S, Carter MG, Sharov AA et al. (2006). Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE 1: e26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto S, Banine F, Struve J, Xing R, Adams C, Liu Y et al. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289: 372–383.

    Article  CAS  PubMed  Google Scholar 

  • Mikkers H, Frisen J . (2005). Deconstructing stemness. EMBO J 24: 2715–2719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales M, Theunissen JW, Kim CF, Kitagawa R, Kastan MB, Petrini JH . (2005). The Rad50S allele promotes ATM-dependent DNA damage responses and suppresses ATM deficiency: implications for the Mre11 complex as a DNA damage sensor. Genes Dev 19: 3043–3054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran E . (1993). Interaction of adenoviral proteins with pRB and p53. FASEB J 7: 880–885.

    Article  CAS  PubMed  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ . (1997). Regulatory mechanisms in stem cell biology. Cell 88: 287–298.

    Article  CAS  PubMed  Google Scholar 

  • Muller-Sieburg CE, Deryugina E . (1995). The stromal cells’ guide to the stem cell universe. Stem Cells 13: 477–486.

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Hardy S, Engel DA . (1999). Human SWI-SNF component BRG1 represses transcription of the c-fos gene. Mol Cell Biol 19: 2724–2733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu SR, Love IM, Imbalzano AN, Grossman SR, Androphy EJ . (2009). The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells. Oncogene 28: 2492–2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Napolitano MA, Cipollaro M, Cascino A, Melone MA, Giordano A, Galderisi U . (2007). Brg1 chromatin remodeling factor is involved in cell growth arrest, apoptosis and senescence of rat mesenchymal stem cells. J Cell Sci 120: 2904–2911.

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL et al. (2003). Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  • Oberdoerffer P, Sinclair DA . (2007). The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8: 692–702.

    Article  CAS  PubMed  Google Scholar 

  • Prockop DJ . (1997). Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276: 71–74.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR . (2008). 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 36: 5983–5991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramalho-Santos M, Yoon S, Matsuzaki Y, Mulligan RC, Melton DA . (2002). ‘Stemness’: transcriptional profiling of embryonic and adult stem cells. Science 298: 597–600.

    Article  CAS  PubMed  Google Scholar 

  • Reisman DN, Strobeck MW, Betz BL, Sciariotta J, Funkhouser Jr W, Murchardt C et al. (2002). Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression. Oncogene 21: 1196–1207.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A . (2004). Rational siRNA design for RNA interference. Nat Biotechnol 22: 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Ronen A, Glickman BW . (2001). Human DNA repair genes. Environ Mol Mutagen 37: 241–283.

    Article  CAS  PubMed  Google Scholar 

  • Saha A, Wittmeyer J, Cairns BR . (2006). Chromatin remodelling: the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A et al. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12: 2831–2841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethe S, Scutt A, Stolzing A . (2006). Aging of mesenchymal stem cells. Ageing Res Rev 5: 91–116.

    Article  CAS  PubMed  Google Scholar 

  • Strobeck MW, Knudsen KE, Fribourg AF, DeCristofaro MF, Weissman BE, Imbalzano AN et al. (2000). BRG-1 is required for RB-mediated cell cycle arrest. Proc Natl Acad Sci USA 97: 7748–7753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S . (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Temple S . (2001). The development of neural stem cells. Nature 414: 112–117.

    Article  CAS  PubMed  Google Scholar 

  • Trotter KW, Archer TK . (2008). The BRG1 transcriptional coregulator. Nucl Recept Signal 6: e004.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Zglinicki T, Burkle A, Kirkwood TB . (2001). Stress, DNA damage and ageing—an integrative approach. Exp Gerontol 36: 1049–1062.

    Article  CAS  PubMed  Google Scholar 

  • Wang HG, Moran E, Yaciuk P . (1995). E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J Virol 69: 7917–7924.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HG, Yaciuk P, Ricciardi RP, Green M, Yokoyama K, Moran E . (1993). The E1A products of oncogenic adenovirus serotype 12 include amino-terminally modified forms able to bind the retinoblastoma protein but not p300. J Virol 67: 4804–4813.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wesierska-Gadek J, Schmid G . (2005). The subcellular distribution of the p53 tumour suppressor, and organismal ageing. Cell Mol Biol Lett 10: 439–453.

    CAS  PubMed  Google Scholar 

  • Yu K, Ganesan K, Tan LK, Laban M, Wu J, Zhao XD et al. (2008). A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers. PLoS Genet 4: e1000129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by SHRO funds to UG and AG. We thank Maria Rosaria Cipollaro for technical assistance. We thank Dr Francesca Pentimalli for helpful discussion.

Author contributions: Tiziana Squillaro: conception and design, performed experiments; Nicola Alessio: conception and design, performed experiments; Marilena Cipollaro: assembly of data, data analysis and interpretation; Luigi Bagella: provision of study material, data analysis and interpretation and financial support; Antonio Giordano: conception and design, data analysis and interpretation and financial support; Umberto Galderisi: conception and design, data analysis and interpretation, paper writing and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Galderisi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alessio, N., Squillaro, T., Cipollaro, M. et al. The BRG1 ATPase of chromatin remodeling complexes is involved in modulation of mesenchymal stem cell senescence through RB–P53 pathways. Oncogene 29, 5452–5463 (2010). https://doi.org/10.1038/onc.2010.285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.285

Keywords

This article is cited by

Search

Quick links