Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Transperineal biopsy of the prostate—is this the future?

Key Points

  • Transperineal prostate biopsy provides better anteroapical sampling than transrectal ultrasonography (TRUS)-guided biopsy, leading to improved cancer detection rates

  • Although usually used as a confirmatory test after negative TRUS-guided biopsy, transperineal biopsy shows promise as an initial investigation

  • Transperineal biopsy frequently requires higher levels of anaesthesia relative to TRUS-guided biopsy, especially when >10–12 cores are taken

  • In patients at high risk of infection (such as those with diabetes mellitus or who recently travelled to countries with high prevalence of antimicrobial resistance), transperineal biopsy is safer than TRUS-guided biopsy in terms of reducing sepsis

  • Multiparametric MRI technology improves the cancer detection rate and accuracy of disease grading in needle biopsy and enables targeted biopsy, which reduces the risk of complications

Abstract

Transperineal prostate biopsy is re-emerging after decades of being an underused alternative to transrectal biopsy guided by transrectal ultrasonography (TRUS). Factors driving this change include possible improved cancer detection rates, improved sampling of the anteroapical regions of the prostate, a reduced risk of false negative results and a reduced risk of underestimating disease volume and grade. The increasing incidence of antimicrobial resistance and patients with diabetes mellitus who are at high risk of sepsis also favours transperineal biopsy as a sterile alternative to standard TRUS-guided biopsy. Factors limiting its use include increased time, training and financial constraints as well as the need for high-grade anaesthesia. Furthermore, the necessary equipment for transperineal biopsy is not widely available. However, the expansion of transperineal biopsy has been propagated by the increase in multiparametric MRI-guided biopsies, which often use the transperineal approach. Used with MRI imaging, transperineal biopsy has led to improvements in cancer detection rates, more-accurate grading of cancer severity and reduced risk of diagnosing clinically insignificant disease. Targeted biopsy under MRI guidance can reduce the number of cores required, reducing the risk of complications from needle biopsy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of transperineal and transrectal approaches to prostate biopsy.
Figure 2: Modern transperineal biopsy scheme.

Similar content being viewed by others

References

  1. Ilic, D., Neuberger, M. M., Djulbegovic, M. & Dahm, P. Screening for prostate cancer. Cochrane Database of Systematic Reviews Issue 1. Art. No.: CD004720 http://dx/doi.org/10.1002/14651858.CD004720.pub3 (2013).

  2. Emiliozzi, P. et al. Best approach for prostate cancer detection: a prospective study on transperineal versus transrectal six-core prostate biopsy. Urology 61, 961–966 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Moran, B. J. & Braccioforte, M. H. Stereotactic transperineal prostate biopsy. Urology 73, 386–388 (2009).

    Article  PubMed  Google Scholar 

  4. Taira, A. V. et al. Transperineal template-guided mapping biopsy as a staging procedure to select patients best suited for active surveillance. Am. J. Clin. Oncol. 36, 116–120 (2013).

    Article  PubMed  Google Scholar 

  5. Watanabe, M. et al. Extensive biopsy using a combined transperineal and transrectal approach to improve prostate cancer detection. Int. J. Urol. 12, 959–963 (2005).

    Article  PubMed  Google Scholar 

  6. Barringer, B. S. Carcinoma of the prostate. Surg. Gynecol. Obstet. 34, 168–176 (1922).

    Google Scholar 

  7. Ferguson, R. Prostatic neoplasms: their diagnosis by needle puncture and aspiration. Am. J. Surg. 9, 507 (1930).

    Article  Google Scholar 

  8. Astraldi, A. Diagnosis of cancer of the prostate: biopsy by rectal route. Urol. Cutaneous Rev. 41, 421 (1937).

    Google Scholar 

  9. Takahashi, H. & Ouchi, T. The ultrasonic diagnosis in the field of urology. Proc. Jpn Soc. Ultrasonics Med. 3, 7 (1963).

    Google Scholar 

  10. Langer, J. E. The current role of transrectal ultrasonography in the evaluation of prostate carcinoma. Semin. Roentgenol. 34, 284–294 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe, H. et al. Development and application of new equipment for transrectal ultrasonography. J. Clin. Ultrasound 2, 91–98 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Weaver, R. P., Noble, M. J. & Weigle, J. W. Correlation of ultrasound guided and digitally directed transrectal biopsies of palpable prostatic abnormalities. J. Urol. 145, 516–518 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Hodge, K. K. et al. Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J. Urol. 142, 71–75 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Kang, S. G. et al. Efficacy and cost analysis of transrectal ultrasound-guided prostate biopsy under monitored anesthesia. Asian J. Androl. 13, 724–727 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gershman, B., Zietman, A. L., Feldman, A. S. & McDougal, W. S. Transperineal template-guided prostate biopsy for patients with persistently elevated PSA and multiple prior negative biopsies. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2012.01.001.

  16. Lawrentschuk, N. et al. Operator is an independent predictor of detecting prostate cancer at transrectal ultrasound guided prostate biopsy. J. Urol. 182, 2659–2663 (2009).

    Article  PubMed  Google Scholar 

  17. Barzell, W. E. & Melamed, M. R. Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate—a 4-year experience. Urology 70 (Suppl. 6), 27–35 (2007).

    Article  PubMed  Google Scholar 

  18. Wright, J. L. & Ellis, W. J. Improved prostate cancer detection with anterior apical prostate biopsies. Urol. Oncol. 24, 492–495 (2006).

    Article  PubMed  Google Scholar 

  19. Taira, A. V. et al. Performance of transperineal template-guided mapping biopsy in detecting prostate cancer in the initial and repeat biopsy setting. Prostate Cancer Prostatic Dis. 13, 71–77 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Lawrentschuk, N. et al. 'Prostatic evasive anterior tumours': the role of magnetic resonance imaging. BJU Int. 105, 1231–1236 (2010).

    Article  PubMed  Google Scholar 

  21. Raz, O., Haider, M., Trachtenberg, J., Leibovici, D. & Lawrentschuk, N. MRI for men undergoing active surveillance or with rising PSA and negative biopsies. Nat. Rev. Urol. 7, 543–551 (2010).

    Article  PubMed  Google Scholar 

  22. Li, H., Yan, W., Zhou, Y., Ji, Z. & Chen, J. Transperineal ultrasound-guided saturation biopsies using 11-region template of prostate: report of 303 cases. Urology 70, 1157–1161 (2007).

    Article  PubMed  Google Scholar 

  23. Bott, S. R. et al. Extensive transperineal template biopsies of prostate: modified technique and results. Urology 68, 1037–1041 (2006).

    Article  PubMed  Google Scholar 

  24. Levine, M. A. et al. Two consecutive sets of transrectal ultrasound guided sextant biopsies of the prostate for the detection of prostate cancer. J. Urol. 159, 471–476 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Vyas, L. et al. Indications, results and safety profile of transperineal sector biopsies of the prostate: a single centre experience of 634 cases. BJU Int. http://dx.doi.org/10.1111/bju.12282

  26. Satoh, T. et al. Cancer core distribution in patients diagnosed by extended transperineal prostate biopsy. Urology 66, 114–118 (2005).

    Article  PubMed  Google Scholar 

  27. Merrick, G. S. et al. Prostate cancer distribution in patients diagnosed by transperineal template-guided saturation biopsy. Eur. Urol. 52, 715–724 (2007).

    Article  PubMed  Google Scholar 

  28. Takashima, R. et al. Anterior distribution of stage T1c nonpalpable tumors in radical prostatectomy specimens. Urology 59, 692–697 (2002).

    Article  PubMed  Google Scholar 

  29. Kawakami, S. et al. Transrectal ultrasound-guided transperineal 14-core systematic biopsy detects apico-anterior cancer foci of T1c prostate cancer. Int. J. Urol. 11, 613–618 (2004).

    Article  PubMed  Google Scholar 

  30. Yan, W. et al. Prostate carcinoma spatial distribution patterns in Chinese men investigated with systematic transperineal ultrasound guided 11-region biopsy. Urol. Oncol. 27, 520–524 (2009).

    Article  PubMed  Google Scholar 

  31. Demura, T. et al. Differences in tumor core distribution between palpable and nonpalpable prostate tumors in patients diagnosed using extensive transperineal ultrasound-guided template prostate biopsy. Cancer 103, 1826–1832 (2005).

    Article  PubMed  Google Scholar 

  32. Chen, M. E., Troncoso, P., Johnston, D. A., Tang, K. & Babaian, R. J. Optimization of prostate biopsy strategy using computer based analysis. J. Urol. 158, 2168–2175 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Bott, S. R. et al. Anterior prostate cancer: is it more difficult to diagnose? BJU Int. 89, 886–889 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Mohan, P. et al. A 3D computer simulation to study the efficacy of transperineal versus transrectal biopsy of the prostate. Int. J. Comput. Assist. Radiol. Surg. 1, 351–360 (2007).

    Article  Google Scholar 

  35. Furuno, T. et al. Difference of cancer core distribution between first and repeat biopsy: in patients diagnosed by extensive transperineal ultrasound guided template prostate biopsy. Prostate 58, 76–81 (2004).

    Article  PubMed  Google Scholar 

  36. Vis, A. N. et al. Detection of prostate cancer: a comparative study of the diagnostic efficacy of sextant transrectal versus sextant transperineal biopsy. Urology 56, 617–621 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Emiliozzi, P. et al. Increased accuracy of biopsy Gleason score obtained by extended needle biopsy. J. Urol. 172, 2224–2226 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hara, R. et al. Optimal approach for prostate cancer detection as initial biopsy: prospective randomized study comparing transperineal versus transrectal systematic 12-core biopsy. Urology 71, 191–195 (2008).

    Article  PubMed  Google Scholar 

  39. Kawakami, S. et al. Direct comparison between transrectal and transperineal extended prostate biopsy for the detection of cancer. Int. J. Urol. 14, 719–724 (2007).

    Article  PubMed  Google Scholar 

  40. Shen, P. F. et al. The results of transperineal versus transrectal prostate biopsy: a systematic review and meta-analysis. Asian J. Androl. 14, 310–315 (2012).

    Article  PubMed  Google Scholar 

  41. Uno, H. et al. Indications for Transperineal ultrasound-guided prostate biopsy: analysis comparing transperineal versus transrectal 14-core biopsy. Urology 78, S7–S8 (2011).

    Article  Google Scholar 

  42. Crawford, E. D. et al. Clinical staging of prostate cancer: a computer-simulated study of transperineal prostate biopsy. BJU Int. 96, 999–1004 (2005).

    Article  PubMed  Google Scholar 

  43. Hu, Y. et al. A biopsy simulation study to assess the accuracy of several transrectal ultrasonography (TRUS)-biopsy strategies compared with template prostate mapping biopsies in patients who have undergone radical prostatectomy. BJU Int. 110, 812–820 (2012).

    Article  PubMed  Google Scholar 

  44. Onik, G. & Barzell, W. Transperineal 3D mapping biopsy of the prostate: an essential tool in selecting patients for focal prostate cancer therapy. Urol. Oncol. 26, 506–510 (2008).

    Article  PubMed  Google Scholar 

  45. Onik, G., Miessau, M. & Bostwick, D. G. Three-dimensional prostate mapping biopsy has a potentially significant impact on prostate cancer management. J. Clin. Oncol. 27, 4321–4326 (2009).

    Article  PubMed  Google Scholar 

  46. Barqawi, A. B. et al. The role of 3-dimensional mapping biopsy in decision making for treatment of apparent early stage prostate cancer. J. Urol. 186, 80–85 (2011).

    Article  PubMed  Google Scholar 

  47. Ayres, B. E. et al. The role of transperineal template prostate biopsies in restaging men with prostate cancer managed by active surveillance. BJU Int. 109, 1170–1176 (2012).

    Article  PubMed  Google Scholar 

  48. Nguyen, C. T. & Kattan, M. W. Formalized prediction of clinically significant prostate cancer: is it possible? Asian J. Androl. 14, 349–354 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stamey, T. A. et al. Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer 71 (Suppl. 3), 933–998 (1993).

    Article  CAS  PubMed  Google Scholar 

  50. Epstein, J. I., Walsh, P. C., Carmichael, M. & Brendler, C. B. Pathologic and clinical findings to predict tumor extent of nonpalpable (stage T1c) prostate cancer. JAMA 271, 368–374 (1994).

    Article  CAS  PubMed  Google Scholar 

  51. Luciani, L. G. et al. Role of transperineal six-core prostate biopsy in patients with prostate-specific antigen level greater than 10 ng/ml and abnormal digital rectal examination findings. Urology 67, 555–558 (2006).

    Article  PubMed  Google Scholar 

  52. Kojima, M., Hayakawa, T., Saito, T., Mitsuya, H. & Hayase, Y. Transperineal 12-core systematic biopsy in the detection of prostate cancer. Int. J. Urol. 8, 301–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Takenaka, A. et al. Transperineal extended biopsy improves the clinically significant prostate cancer detection rate: a comparative study of 6 and 12 biopsy cores. Int. J. Urol. 13, 10–14 (2006).

    Article  PubMed  Google Scholar 

  54. Bigliocchi, M. et al. Prostate cancer detection rate of transrectal ultrasonography, digital rectal examination, and prostate-specific antigen: results of a five-year study of 6- versus 12-core transperineal prostate biopsy. Minerva Urol. Nefrol. 59, 395–406 (2007).

    CAS  PubMed  Google Scholar 

  55. Emiliozzi, P. et al. The value of a single biopsy with 12 transperineal cores for detecting prostate cancer in patients with elevated prostate specific antigen. J. Urol. 166, 845–850 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto, S. et al. Transperineal ultrasound-guided 12-core systematic biopsy of the prostate for patients with a prostate-specific antigen level of 2.5–20 ng/ml in Japan. Int. J. Clin. Oncol. 10, 117–121 (2005).

    Article  PubMed  Google Scholar 

  57. Takenaka, A. et al. A prospective randomized comparison of diagnostic efficacy between transperineal and transrectal 12-core prostate biopsy. Prostate Cancer Prostatic Dis. 11, 134–138 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Iremashvili, V. V., Chepurov, A. K., Kobaladze, K. M. & Gamidov, S. I. Periprostatic local anesthesia with pudendal block for transperineal ultrasound-guided prostate biopsy: a randomized trial. Urology 75, 1023–1027 (2010).

    Article  PubMed  Google Scholar 

  59. Ficarra, V. et al. The potential impact of prostate volume in the planning of optimal number of cores in the systematic transperineal prostate biopsy. Eur. Urol. 48, 932–937 (2005).

    Article  PubMed  Google Scholar 

  60. Dimmen, M. et al. Transperineal prostate biopsy detects significant cancer in patients with elevated prostate-specific antigen (PSA) levels and previous negative transrectal biopsies. BJU Int. 110, E69–E75 (2012).

    Article  PubMed  Google Scholar 

  61. Igel, T. C. et al. Systematic transperineal ultrasound guided template biopsy of the prostate in patients at high risk. J. Urol. 165, 1575–1579 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Pinkstaff, D. M. et al. Systematic transperineal ultrasound-guided template biopsy of the prostate: three-year experience. Urology 65, 735–739 (2005).

    Article  PubMed  Google Scholar 

  63. Pal, R. P., Elmussareh, M., Chanawani, M. & Khan, M. A. The role of a standardized 36 core template-assisted transperineal prostate biopsy technique in patients with previously negative transrectal ultrasonography-guided prostate biopsies. BJU Int. 109, 367–371 (2012).

    Article  PubMed  Google Scholar 

  64. Stewart, C. S. et al. Prostate cancer diagnosis using a saturation needle biopsy technique after previous negative sextant biopsies. J. Urol. 166, 86–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Fleshner, N. & Klotz, L. Role of “saturation biopsy” in the detection of prostate cancer among difficult diagnostic cases. Urology 60, 93–97 (2002).

    Article  PubMed  Google Scholar 

  66. Djavan, B. et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J. Urol. 166, 1679–1683 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Roehrborn, C. G., Pickens, G. J. & Sanders, J. S. Diagnostic yield of repeated transrectal ultrasound-guided biopsies stratified by specific histopathologic diagnoses and prostate specific antigen levels. Urology 47, 347–352 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Roehl, K. A., Antenor, J. A. & Catalona, W. J. Serial biopsy results in prostate cancer screening study. J. Urol. 167, 2435–2439 (2002).

    Article  PubMed  Google Scholar 

  69. Steiner, H., Berger, A. P., Spranger, R., Bartsch, G. & Horninger, W. A decade of biopsy and repeat biopsy—results of the Tyrol PSA Screening Project. Eur. Urol. Suppl. 2, 129 (2003).

    Article  Google Scholar 

  70. National Institute for Health and Clinical Excellence. Interventional procedures programme: interventional procedure overview of transperineal template biopsy and mapping of the prostate. http://www.nice.org.uk/nicemedia/live/12352/48646/48646.pdf (2009).

  71. Kawakami, S. et al. Three-dimensional combination of transrectal and transperineal biopsies for efficient detection of stage T1c prostate cancer. Int. J. Clin. Oncol. 11, 127–132 (2006).

    Article  PubMed  Google Scholar 

  72. Kawakami, S. et al. Optimal sampling sites for repeat prostate biopsy: a recursive partitioning analysis of three-dimensional 26-core systematic biopsy. Eur. Urol. 51, 675–683 (2007).

    Article  PubMed  Google Scholar 

  73. Kubo, Y. et al. Simple and effective local anesthesia for transperineal extended prostate biopsy: application to three-dimensional 26-core biopsy. Int. J. Urol. 16, 420–423 (2009).

    Article  PubMed  Google Scholar 

  74. Numao, N. et al. Characteristics and clinical significance of prostate cancers missed by initial transrectal 12-core biopsy. BJU Int. 109, 665–671 (2012).

    Article  PubMed  Google Scholar 

  75. Numao, N. et al. Improved accuracy in predicting the presence of Gleason pattern 4/5 prostate cancer by three-dimensional 26-core systematic biopsy. Eur. Urol. 52, 1663–1668 (2007).

    Article  PubMed  Google Scholar 

  76. Kapoor, D. A. et al. Single-dose oral ciprofloxacin versus placebo for prophylaxis during transrectal prostate biopsy. Urology 52, 552–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Thompson, P. M. et al. The problem of infection after prostatic biopsy: the case for the transperineal approach. Br. J. Urol. 54, 736–740 (1982).

    Article  CAS  PubMed  Google Scholar 

  78. Aron, M., Rajeev, T. P. & Gupta, N. P. Antibiotic prophylaxis for transrectal needle biopsy of the prostate: a randomized controlled study. BJU Int. 85, 682–685 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Patel, U. et al. Infection after transrectal ultrasonography-guided prostate biopsy: increased relative risks after recent international travel or antibiotic use. BJU Int. 109, 1781–1785 (2012).

    Article  PubMed  Google Scholar 

  81. Packer, M. G., Russo, P. & Fair, W. R. Prophylactic antibiotics and Foley catheter use in transperineal needle biopsy of the prostate. J. Urol. 131, 687–689 (1984).

    Article  CAS  PubMed  Google Scholar 

  82. Nava, L. et al. Echo-guided transperineal and transrectal prostatic biopsy: complications of the 2 methods. Arch. Ital. Urol. Androl. 65, 375–377 (1993).

    CAS  PubMed  Google Scholar 

  83. Miller, J., Perumalla, C. & Heap, G. Complications of transrectal versus transperineal prostate biopsy. ANZ J. Surg. 75, 48–50 (2005).

    Article  PubMed  Google Scholar 

  84. Suzuki, M. et al. Safety of transperineal 14-core systematic prostate biopsy in diabetic men. Int. J. Urol. 16, 930–935 (2009).

    Article  PubMed  Google Scholar 

  85. Milani, C. et al. Ultrasound-guided prostatic biopsy by perineal approach. Urologia 67, 136–138 (2000).

    Google Scholar 

  86. Novella, G. et al. Pain assessment after original transperineal prostate biopsy using a coaxial needle. Urology 62, 689–692 (2003).

    Article  PubMed  Google Scholar 

  87. Merrick, G. S. et al. The morbidity of transperineal template-guided prostate mapping biopsy. BJU Int. 101, 1524–1529 (2008).

    Article  PubMed  Google Scholar 

  88. Tsivian, M., Abern, M. R., Qi, P. & Polascik, T. J. Short-term functional outcomes and complications associated with transperineal template prostate mapping biopsy. Urology 82, 166–170 (2013).

    Article  PubMed  Google Scholar 

  89. Losa, A. et al. Complications and quality of life after template-assisted transperineal prostate biopsy in patients eligible for focal therapy. Urology 81, 1291–1296 (2013).

    Article  PubMed  Google Scholar 

  90. Akbal, C., Türker, P., Tavukçu, H. H., Simsek, F. & Türkeri, L. Erectile function in prostate cancer-free patients who underwent prostate saturation biopsy. Eur. Urol. 53, 540–544 (2008).

    Article  PubMed  Google Scholar 

  91. Palumbo, F. et al. A prospective study on patient's erectile function following transrectal ultrasound guided prostate biopsy. Arch. Ital. Urol. Androl. 82, 265–268 (2010).

    PubMed  Google Scholar 

  92. Tuncel, A. et al. The impact of transrectal prostate needle biopsy on sexuality in men and their female partners. Urology 71, 1128–1131 (2008).

    Article  PubMed  Google Scholar 

  93. Buskirk, S. J. et al. Acute urinary retention after transperineal template-guided prostate biopsy. Int. J. Radiat. Oncol. Biol. Phys. 59, 1360–1366 (2004).

    Article  PubMed  Google Scholar 

  94. Enlund, A. L. & Varenhorst, E. Morbidity of ultrasound-guided transrectal core biopsy of the prostate without prophylactic antibiotic therapy: a prospective study in 415 cases. Br. J. Urol. 79, 777–780 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Rietbergen, J. B. et al. Complications of transrectal ultrasound-guided systematic sextant biopsies of the prostate: evaluation of complication rates and risk factors within a population-based screening program. Urology 49, 875–880 (1997).

    Article  CAS  PubMed  Google Scholar 

  96. Moul, J. W. et al. Risk factors for perineal seeding of prostate cancer after needle biopsy. J. Urol. 142, 86–88 (1989).

    Article  CAS  PubMed  Google Scholar 

  97. Tokuda, J. et al. Real-time MR imaging controlled by transperineal needle placement device for MRI-guided prostate biopsy and brachytherapy. Proc. Intl Soc. Mag. Reson. Med. 16, 3004 (2008).

    Google Scholar 

  98. Sonn, G. A. et al. Targeted biopsy in the detection of prostate cancer using an office based magnetic resonance ultrasound fusion device. J. Urol. 189, 86–91 (2013).

    Article  PubMed  Google Scholar 

  99. Vourganti, S. et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J. Urol. 188, 2152–2157 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pinto, P. A. et al. Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J. Urol. 186, 1281–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hadaschik, B. A. et al. A novel stereotactic prostate biopsy system integrating pre-interventional magnetic resonance imaging and live ultrasound fusion. J. Urol. 186, 2214–2220 (2011).

    Article  PubMed  Google Scholar 

  102. Turkbey, B. et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J. Urol. 186, 1818–1824 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Rosenkrantz, A. B. et al. 3.0 T multiparametric prostate MRI using pelvic phased-array coil: utility for tumor detection prior to biopsy. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2012.02.018.

  104. Miyagawa, T. et al. Real-time Virtual Sonography for navigation during targeted prostate biopsy using magnetic resonance imaging data. Int. J. Urol. 17, 855–860 (2010).

    Article  PubMed  Google Scholar 

  105. Kasivisvanathan, V. et al. Transperineal magnetic resonance image targeted prostate biopsy versus transperineal template prostate biopsy in the detection of clinically significant prostate cancer. J. Urol. 189, 860–866 (2013).

    Article  PubMed  Google Scholar 

  106. Ouzzane, A. et al. Combined multiparametric MRI and targeted biopsies improve anterior prostate cancer detection, staging, and grading. Urology 78, 1356–1362 (2011).

    Article  PubMed  Google Scholar 

  107. Delongchamps, N. B. et al. Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J. Urol. 189, 493–499 (2013).

    Article  PubMed  Google Scholar 

  108. Vargas, H. A. et al. Magnetic resonance imaging for predicting prostate biopsy findings in patients considered for active surveillance of clinically low risk prostate cancer. J. Urol. 188, 1732–1738 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Medical Research Council Clinical Trials Unit. PROMIS—prostate MRI imaging study: evaluation of multi-parametric magnetic imaging in the diagnosis and characterisation of prostate cancer. Study Details [online], (2011).

  110. Bolduc, S. et al. Urinary PSA: a potential useful marker when serum PSA is between 2.5 ng/ml and 10 ng/ml. Can. Urol. Assoc. J. 1, 377–381 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ito, K. et al. The diagnostic accuracy of the age-adjusted and prostate volume-adjusted biopsy method in males with prostate specific antigen levels of 4.1–100 ng/ml. Cancer 95, 2112–2119 (2002).

    Article  CAS  PubMed  Google Scholar 

  112. Shinohara, K., Gulati, M., Koppie, T. M. & Terris, M. K. Transperineal prostate biopsy after abdominoperineal resection. J. Urol. 169, 141–144 (2003).

    Article  PubMed  Google Scholar 

  113. Pepe, P. & Aragona, F. Prostate needle biopsy: 12 vs. 18 cores—is it necessary? Urol. Int. 74, 19–22 (2005).

    Article  PubMed  Google Scholar 

  114. Moran, B. J., Braccioforte, M. H. & Conterato, D. J. Re-biopsy of the prostate using a stereotactic transperineal technique. J. Urol. 176, 1376–1381 (2006).

    Article  PubMed  Google Scholar 

  115. Rocco, B. et al. Sensitivity and detection rate of a 12-core trans-perineal prostate biopsy: preliminary report. Eur. Urol. 49, 827–833 (2006).

    Article  PubMed  Google Scholar 

  116. Moran, B. J. & Braccioforte, M. H. Identification of occult prostate malignancy using a stereotactic transperineal prostate biopsy technique. J. Clin. Oncol. 25, 15520 (2007).

    Google Scholar 

  117. Novara, G. et al. Detection rate and factors predictive the presence of prostate cancer in patients undergoing ultrasonography-guided transperineal saturation biopsies of the prostate. BJU Int. 105, 1242–1246 (2009).

    Article  PubMed  CAS  Google Scholar 

  118. Ho, H., Yuen, J. S. P., Mohan, P., Lim, E. W. & Cheng, C. W. S. Robotic transperineal prostate biopsy: pilot clinical study. Urology 78, 1203–1208 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Mabjeesh, N. J., Lidawi, G., Chen, J., German, L. & Matzkin, H. High detection rate of significant prostate tumours in anterior zones using transperineal ultrasound-guided template saturation biopsy. BJU Int. 110, 993–997 (2012).

    Article  PubMed  Google Scholar 

  120. Emiliozzi, P. et al. The incidence of prostate cancer in men with prostate specific antigen greater than 4.0 ng/ml: a randomized study of 6 versus 12 core transperineal prostate biopsy. J. Urol. 171, 197–199 (2004).

    Article  PubMed  Google Scholar 

  121. Abdollah, F. et al. Trans-rectal versus trans-perineal saturation rebiopsy of the prostate: is there a difference in cancer detection rate? Urology 77, 921–925 (2011).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed its content, wrote the manuscript and edited it before submission.

Corresponding author

Correspondence to Nathan Lawrentschuk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, D., Challacombe, B. & Lawrentschuk, N. Transperineal biopsy of the prostate—is this the future?. Nat Rev Urol 10, 690–702 (2013). https://doi.org/10.1038/nrurol.2013.195

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing