Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hormonal control of ejaculation

Abstract

Hormones regulate all aspects of male reproduction, from sperm production to sexual drive. Although emerging evidence from animal models and small clinical studies in humans clearly point to a role for several hormones in controlling the ejaculatory process, the exact endocrine mechanisms are unclear. Evidence shows that oxytocin is actively involved in regulating orgasm and ejaculation via peripheral, central and spinal mechanisms. Associations between delayed and premature ejaculation with hypothyroidism and hyperthyroidism, respectively, have also been extensively documented. Some models suggest that glucocorticoids are involved in the regulation of the ejaculatory reflex, but corresponding data from human studies are scant. Oestrogens regulate epididymal motility, whereas testosterone can affect the central and peripheral aspects of the ejaculatory process. Overall, the data of the endocrine system in regulating the ejaculatory reflex suggest that widely available endocrine therapies might be effective in treating sexual disorders in these men. Indeed, substantial evidence has documented that treatments of thyroid diseases are able to improve some ejaculatory difficulties.

Key Points

  • Oxytocin is actively involved in regulating orgasm and ejaculation via peripheral, central and spinal mechanisms

  • Peripheral prolactin levels might mirror central serotonergic tone

  • Associations between delayed ejaculation and premature ejaculation with hypothyroidism and hyperthyroidism, respectively, have been extensively documented

  • Animal models suggest that glucocorticoids might be involved in the regulation of the ejaculatory reflex, but data in human are scant

  • The epididymis is a male target for oestrogens that regulate epididymal motility by conditioning the responsiveness of the contractile hormones and local peptides

  • Hypogonadal symptoms and low testosterone levels might reduce the ability to ejaculate, which suggests that androgens have a central and peripheral role in the ejaculation reflex

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurological control of ejaculation.
Figure 2: The association with PRL levels and psychological and anxiety scores.
Figure 3: Hormone levels as a function of ejaculatory difficulties.
Figure 4: The hormonal regulation of the ejaculatory continuum.
Figure 5: Weighted odds ratio of hyperthyroidism between men with PE and a control population.

Similar content being viewed by others

References

  1. Truitt, A. & Coolen, L. M. Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566–1569 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Carro-Juárez, M. & Rodríguez-Manzo, G. The spinal pattern generator for ejaculation. Brain Res. Rev. 58, 106–120 (2008).

    Article  PubMed  Google Scholar 

  3. Mouras, H. et al. Brain processing of visual sexual stimuli in healthy men: a functional magnetic resonance imaging study. NeuroImage 20, 855–869 (2003).

    Article  PubMed  Google Scholar 

  4. Korenman, S. G. in Williams Textbook of Endocrinology, 9th edn (eds Wilson, J. D., Foster, D. W., Kronenberg, H. M. & Larsen, P. R.) 928–930 (Saunders & Co., Philadelphia, 1998).

    Google Scholar 

  5. Giuliano, F. Neurophysiology of erection and ejaculation. J. Sex. Med. 8 (Suppl. 4), 310–315 (2011).

    Article  PubMed  Google Scholar 

  6. Peeters, M. & Giuliano, F. Central neurophysiology and dopaminergic control of ejaculation. Neurosci. Biobehav. Rev. 32, 438–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. de Jong, T. R., Veening, J. G., Waldinger, M. D., Cools, A. R. & Olivier, B. Serotonin and the neurobiology of the ejaculatory threshold. Neurosci. Biobehav. Rev. 30, 893–907 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Pattij, T., Olivier, B. & Waldinger, M. D. Animal models of ejaculatory behavior. Curr. Pharm. Des. 11, 4069–4077 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Foreman, M. M., Hall, J. L. & Love, R. L. The role of the 5-HT2 receptor in the regulation of sexual performance of male rats. Life Sci. 45, 1263–1270 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Waldinger, M. D. The neurobiological approach to premature ejaculation. J. Urol. 168, 2359–2367 (2002).

    Article  PubMed  Google Scholar 

  11. Bhasin, S. & Basson, R. in Williams Textbook of Endocrinology, 11th edn (eds Larsen, P. R., Kronenberg, H. R., Melmed, S. & Polonsky, K. S.) 707–717 (Saunders & Co., Philadelphia, 2008).

    Google Scholar 

  12. Althof, S. E. et al. International Society for Sexual Medicine's guidelines for the diagnosis and treatment of premature ejaculation. J. Sex. Med. 7, 2947–2969 (2010).

    Article  PubMed  Google Scholar 

  13. Rowland, D. et al. Disorders of orgasm and ejaculation in men. J. Sex. Med. 7, 1668–1686 (2010).

    Article  PubMed  Google Scholar 

  14. Jannini, E. A. & Lenzi, A. Ejaculatory disorders: epidemiology and current approaches to definition, classification and subtyping. World J. Urol. 23, 68–75 (2005).

    Article  PubMed  Google Scholar 

  15. Jannini, E. A., Gravina, G. L., Maggi, M., Vignozzi, L. & Lenzi, L. in Advances in Sexual Medicine: Drug Discovery Issues (ed. Abdel-Hamid, I. A.) 27–46 (Research Signpost, Kerala, 2009).

    Google Scholar 

  16. Amann, R. P. & Howards, S. S. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J. Urol. 124, 211–215 (1980).

    Article  CAS  PubMed  Google Scholar 

  17. El-Badawi, A. & Schenk, E. A. The distribution of cholinergic and adrenergic nerves in the mammalian epididymis: a comparative histochemical study. Am. J. Anat. 121, 1–14 (1967).

    Article  CAS  PubMed  Google Scholar 

  18. Nicholson, H. D., Parkinson, T. J. & Lapwood, K. R. Effects of oxytocin and vasopressin on sperm transport from the cauda epididymis in sheep. J. Reprod. Fertil. 117, 299–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kempinas, W. D. et al. Fertility of rat epididymal sperm after chemically and surgically induced sympathectomy. Biol. Reprod. 59, 897–904 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Ishunina, T. A. & Swaab, D. F. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus: size changes in relation to age and sex. J. Clin. Endocrinol. Metab. 84, 4637–4644 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Thackare, H., Nicholson, H. D. & Whittington, K. Oxytocin: its role in male reproduction and new potential therapeutic uses. Hum. Reprod. Update 12, 437–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Dale, H. H. On some physiological action of ergot. J. Physiol. 34, 163–206 (1906).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ott, I. & Scott, J. C. The action of infundibulin upon the mammary secretion. Proc. Soc. Exp. Biol. 8, 48–49 (1910).

    Article  Google Scholar 

  24. Debackere, M., Peeters, G. & Tuyittens, N. Reflex release of an oxytocic hormone by stimulation of genital organs in male and female sheep studied by a cross-circulation technique. J. Endocrinol. 22, 321–334 (1961).

    Article  CAS  PubMed  Google Scholar 

  25. Carmichael, M. S. et al. Plasma oxytocin increases in the human sexual response. J. Clin. Endocrinol. Metab. 64, 27–31 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Carmichael, M. S., Warburton, V. L., Dixen, J. & Davidson, J. M. Relationships among cardiovascular, muscular, and oxytocin responses during human sexual activity. Arch. Sex. Behav. 23, 59–79 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Murphy, M. R., Seckl, J. R., Burton, S., Checkley, S. A. & Lightman, S. L. Changes in oxytocin and vasopressin secretion during sexual activity in men. J. Clin. Endocrinol. Metab. 65, 738–774 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Murphy, M. R., Checkley, S. A., Seckl, J. R. & Lightman, S. L. Naloxone inhibits oxytocin release at orgasm in man. J. Clin. Endocrinol. Metab. 71, 1056–1058 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Ogawa, S., Kudo, S., Kitsunai, Y. & Fukuchi, S. Increase in oxytocin secretion at ejaculation in male. Clin. Endocrinol. 13, 95–97 (1980).

    Article  CAS  Google Scholar 

  30. Uckert, S. et al. Oxytocin plasma levels in the systemic and cavernous blood of healthy males during different penile conditions. World J. Urol. 20, 323–326 (2003).

    PubMed  Google Scholar 

  31. Krüger, T. H. et al. Specificity of the neuroendocrine response to orgasm during sexual arousal in men. J. Endocrinol. 177, 57–64 (2003).

    Article  PubMed  Google Scholar 

  32. Peeters, G. et al. Release of neurophysin I and oxytocin by stimulation of the genital organs in bulls. J. Endocrinol. 99, 161–171 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Stoneham, M. D., Everitt, B. J., Hansen, S., Lightman, S. L. & Todd, K. Oxytocin and sexual behavior in the male rat and rabbit. J. Endocrinol. 107, 97–106 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Veronesi, M. C. et al. Oxytocin, vasopressin, prostaglandin F(2α), luteinizing hormone, testosterone, estrone sulfate, and cortisol plasma concentrations after sexual stimulation in stallions. Theriogenology 73, 460–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Filippi, S. et al. Role of oxytocin in the ejaculatory process. J. Endocrinol. Invest. 26, 82–86 (2003).

    CAS  PubMed  Google Scholar 

  36. Filippi, S. et al. Identification, localization and functional activity of oxytocin receptors in epididymis. Mol. Cell Endocrinol. 193, 89–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Hib, J. The in vitro effects of oxytocin and vasopressin on spontaneous contractility of the mouse cauda epididymidis. Biol. Reprod. 11, 436–439 (1974).

    Article  CAS  PubMed  Google Scholar 

  38. Hib, J. The 'in vivo' effects of oxytocin and vasopressin on spontaneous contractility of the rat epididymis. Int. J. Fertil. 22, 63–64 (1977).

    CAS  PubMed  Google Scholar 

  39. Fibbi, B. et al. Estrogens regulate humans and rabbit epididymal contractility through the RhoA/Rho-kinase pathway. J. Sex. Med. 6, 2173–2186 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Maggi, M., Kassis, S., Malozowski, S., Guardabasso, V. & Rodbard, D. Identification and characterization of a vasopressin isoreceptor in porcine seminal vesicles. Proc. Natl Acad. Sci. USA 83, 8824–8828 (1986).

    Article  CAS  PubMed  Google Scholar 

  41. Maggi, M., Kassis, S., Malozowski, S., Guardabasso, V. & Rodbard, D. Identification and characterization of two classes of receptors for oxytocin and vasopressin in porcine tunica albuginea, epididymis, and vas deferens. Endocrinology 120, 986–994 (1987).

    Article  CAS  PubMed  Google Scholar 

  42. Einspanier, A. & Ivell, R. Oxytocin and oxytocin receptor expression in reproductive tissues of the male marmoset monkey. Biol. Reprod. 56, 416–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Frayne, J. & Nicholson, H. D. Localization of oxytocin receptors in the human and macaque monkey male reproductive tracts: evidence for a physiological role of oxytocin in the male. Mol. Hum. Reprod. 4, 527–532 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Filippi, S. et al. Estrogens, but not androgens, regulate expression and functional activity of oxytocin receptor in rabbit epididymis. Endocrinology 143, 4271–4280 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Mewe, M., Wulfsen, I., Middendorff, R. & Bauer, C. K. Differential modulation of bovine epididymal activity by oxytocin and noradrenaline. Reproduction 134, 493–501 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Whittington, K., Assinder, S. J., Parkinson, T., Lapwood, K. R. & Nicholson, H. D. Function and localization of oxytocin receptors in the reproductive tissue of rams. Reproduction 122, 317–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Peri, A. et al. Gene expression of endothelin-1, endothelin-converting enzyme-1, and endothelin receptors in human epididymis. J. Clin. Endocrinol. Metab. 82, 3797–3806 (1997).

    CAS  PubMed  Google Scholar 

  48. Peri, A. et al. Endothelin-1 is synthesized and biologically active in human epididymis via a paracrine mode of action. Steroids 63, 294–298 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Filippi, S. et al. Oxytocin mediates the estrogen-dependent contractile activity of endothelin-1 in human and rabbit epididymis. Endocrinology 146, 3506–3517 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Studdard, P. W., Stein, J. L. & Cosentino, M. J. The effects of oxytocin and arginine vasopressin in vitro on epididymal contractility in the rat. Int. J. Androl. 25, 65–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Nicholson, H. D., Parkinson, T. J. & Lapwood, K. R. Effects of oxytocin and vasopressin on sperm transport from the cauda epididymis in sheep. J. Reprod. Fertil. 117, 299–305 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Vignozzi, L. et al. Regulation of epididymal contractility during semen emission, the first part of the ejaculatory process: a role for estrogen. J. Sex. Med. 5, 2010–2016 (2008).

    Article  PubMed  Google Scholar 

  53. Melis, M. R., Argiolas, A. & Gessa, G. L. Oxytocin-induced penile erection and yawning: site of action in the brain. Brain Res. 398, 259–265 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Hughes, A. M., Everitt, B. J., Lightman, S. L. & Todd, K. Oxytocin in the central nervous system and sexual behaviour in male rats. Brain Res. 414, 133–137 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Arletti, R., Bazzani, C., Castelli, M. & Bertolini, A. Oxytocin improves male copulatory performance in rats. Horm. Behav. 19, 14–20 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Argiolas, A. et al. Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5Tyr(Me)-Orn8-vasotocin in rats. Pharmacol. Biochem. Behav. 33, 81–83 (1988).

    Article  Google Scholar 

  57. Pattij, T. et al. Individual differences in male rat ejaculatory behaviour: searching for models to study ejaculation disorders. Eur. J. Neurosci. 22, 724–734 (2005).

    Article  PubMed  Google Scholar 

  58. Young, K. A., Gobrogge, K. L., Liu, Y. & Wang, Z. The neurobiology of pair bonding: insights from a socially monogamous rodent. Front. Neuroendocrinol. 32, 53–69 (2011).

    Article  PubMed  Google Scholar 

  59. Gordon, I., Zagoory-Sharon, O., Leckman, J. F. & Feldman, R. Oxytocin and the development of parenting in humans. Biol. Psychiatr. 68, 377–382 (2010).

    Article  CAS  Google Scholar 

  60. Yang, J. et al. Oxytocin in the rat caudate nucleus influences pain modulation. Peptides 32, 2104–2107 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, J. et al. Oxytocin in the periaqueductal grey regulates nociception in the rat. Regul. Pept. 169, 39–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Yang, J. et al. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 32, 1255–1261 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Wagner, C. K. & Clemens, L. G. Projections of the paraventricular nucleus of the hypothalamus to the sexually dimorphic lumbosacral region of the spinal cord. Brain Res. 539, 254–262 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Ackerman, A. E., Lange, G. M. & Clemens, L. G. Effects of paraventricular lesions on sex behavior and seminal emission in male rats. Physiol. Behav. 63, 49–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Clément, P. et al. Brain oxytocin receptors mediate ejaculation elicited by 7-hydroxy-2-(di-N-propylamino) tetralin (7-OH-DPAT) in anaesthetized rats. Br. J. Pharmacol. 154, 1150–1159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. de Jong, T. R., Veening, J. G., Olivier, B. & Waldinger, M. D. Oxytocin involvement in SSRI-induced delayed ejaculation: a review of animal studies. J. Sex. Med. 4, 14–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Burri, A., Heinrichs, M., Schedlowski, M. & Kruger, T. H. The acute effects of intranasal oxytocin administration on endocrine and sexual function in males. Psychoneuroendocrinology 33, 591–600 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Ishak, W. W., Berman, D. S. & Peters, A. Male anorgasmia treated with oxytocin. J. Sex. Med. 5, 1022–1024 (2008).

    Article  PubMed  Google Scholar 

  69. Guay, A. T., Sabharwal, P., Varma, S. & Malarkey, W. B. Delayed diagnosis of psychological erectile dysfunction because of the presence of macroprolactinemia. J. Clin. Endocrinol. Metab. 81, 2512–2514 (1996).

    CAS  PubMed  Google Scholar 

  70. Fahie-Wilson, M. N., John, R. & Ellis, A. R. Macroprolactin; high molecular mass forms of circulating prolactin. Ann. Clin. Biochem. 42, 175–192 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Melmed, S. et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Bachelot, A. & Binart, N. Reproductive role of prolactin. Reproduction 133, 361–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Bole-Feysot, C., Goffin, V., Edery, M., Binart, N. & Kelly, P. A. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19, 225–268 (1998).

    Article  CAS  PubMed  Google Scholar 

  74. Sobrinho, L. G. Prolactin, psychological stress and environment in humans: adaptation and maladaptation. Pituitary 6, 35–39 (2003).

    Article  PubMed  Google Scholar 

  75. Ra, S. et al. In vitro contraction of the canine corpus cavernosum penis by direct perfusion with prolactin or growth hormone. J. Urol. 156, 522–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. Buvat, J. Hyperprolactinemia and sexual function in men: a short review. Int. J. Impot. Res. 15, 373–377 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Ciccarelli, A. et al. PRL secreting adenomas in male patients. Pituitary 8, 39–42 (2005).

    Article  PubMed  Google Scholar 

  78. Corona, G. et al. Effect of hyperprolactinemia in male patients consulting for sexual dysfunction. J. Sex. Med. 4, 1485–1493 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Corona, G. et al. The impotent couple: low desire. Int. J. Androl. 28 (Suppl. 2), 46–52 (2005).

    Article  PubMed  Google Scholar 

  80. Corona, G. et al. Psycho-biological correlates of hypoactive sexual desire in patients with erectile dysfunction. Int. J. Impot. Res. 16, 275–281 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Balercia, G. et al. Sexual symptoms in endocrine diseases: psychosomatic perspectives. Psychother. Psychosom. 76, 134–140 (2007).

    Article  PubMed  Google Scholar 

  82. Krüger, T. H., Haake, P., Hartmann, U., Schedlowski, M. & Exton, M. S. Orgasm-induced prolactin secretion: feedback control of sexual drive? Neurosci. Biobehav. Rev. 26, 31–44 (2002).

    Article  PubMed  Google Scholar 

  83. Exton, M. S. et al. Coitus-induced orgasm stimulates prolactin secretion in healthy subjects. Psychoneuroendocrinology 26, 287–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Bancroft, J. The endocrinology of sexual arousal. J. Endocrinol. 186, 411–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Rohn, R. D. Benign galactorrhea/breast discharge in adolescent males probably due to breast self-manipulation. J. Adolesc. Health Care 5, 210–212 (1984).

    Article  CAS  PubMed  Google Scholar 

  86. El-Sakka, A. I., Hassoba, H. M., Sayed, H. M. & Tayeb, K. A. Pattern of endocrinal changes in patients with sexual dysfunction. J. Sex. Med. 2, 551–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Low, M. J. in Williams Textbook of Endocrinology, 11th edn (eds Larsen, P. R., Kronenberg, H. R., Melmed, S. & Polonsky, K. S.) 85–154 (Saunders & Co., Philadelphia, 2008).

    Google Scholar 

  88. Van de Kar, L. D. & Bethea, C. L. Pharmacological evidence that serotonergic stimulation of prolactin secretion is mediated via the dorsal raphe nucleus. Neuroendocrinology 35, 225–230 (1982).

    Article  CAS  PubMed  Google Scholar 

  89. Corona, G. et al. Selective serotonin reuptake inhibitor-induced sexual dysfunction. J. Sex. Med. 6, 1259–1269 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Giuliano, F. & Hellstrom, W. J. The pharmacological treatment of premature ejaculation. BJU Int. 102, 668–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Kennedy, S. H. & Rizvi, S. Sexual dysfunction, depression, and the impact of antidepressants. J. Clin. Psychopharmacol. 29, 157–164 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Rosen, R. C., Lane, R. M. & Menza, M. Effects of SSRIs on sexual function: a critical review. J. Clin. Psychopharmacol. 19, 67–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Waldinger, M. D., Hengeveld, M. W. & Zwinderman, A. H. Paroxetine treatment of premature ejaculation: a double-blind, randomized, placebo-controlled study. Am. J. Psychiatr. 151, 1377–1379 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Pryor, J. L. et al. Efficacy and tolerability of dapoxetine in treatment of premature ejaculation: an integrated analysis of two double-blind, randomised controlled trials. Lancet 368, 929–937 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Muldoon, M. F. et al. The metabolic syndrome is associated with reduced central serotonergic responsivity in healthy community volunteers. J. Clin. Endocrinol. Metab. 91, 718–721 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Muldoon, M. F. et al. Low central nervous system serotonergic responsivity is associated with the metabolic syndrome and physical inactivity. J. Clin. Endocrinol. Metab. 89, 266–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Muldoon, M. F. et al. Lower central serotonergic responsivity is associated with preclinical carotid artery atherosclerosis. Stroke 38, 2228–2223 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Corona, G. et al. Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J. Sex. Med. 6, 1457–1466 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Yatham, L. N. & Steiner, M. Neuroendocrine probes of serotonergic function: a critical review. Life Sci. 53, 447–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Carani, C. et al. Multicenter study on the prevalence of sexual symptoms in male hypo- and hyperthyroid patients. J. Clin. Endocrinol. Metab. 90, 6472–6479 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. McIntosh, T. K. & Barfield, R. J. Brain monoaminergic control of male reproductive behavior. I. Serotonin and the post-ejaculatory refractory period. Behav. Brain Res. 12, 255–265 (1984).

    Article  CAS  PubMed  Google Scholar 

  102. Sadeghi-Nejad, H. & Watson, R. Premature ejaculation: current medical treatment and new directions (CME). J. Sex. Med. 5, 1037–1050 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Ballenger, J. C. Current treatments of the anxiety disorders in adults. Biol. Psychiatr. 46, 1579–1594 (1999).

    Article  CAS  Google Scholar 

  104. Pergamin-Hight, L., Bakermans-Kranenburg, M. J., van Ijzendoorn, M. H. & Bar-Haim, Y. Variations in the promoter region of the serotonin transporter gene and biased attention for emotional information: a meta-analysis. Biol. Psychiatr. 71, 373–379 (2012).

    Article  CAS  Google Scholar 

  105. Corona, G. et al. SIEDY Scale 3, a new instrument to detect psychological component in subjects with erectile dysfunction. J. Sex. Med. http://dx.doi.org/10.1111/j.1743-6109.2012.02762.x.

  106. Corona, G. et al. Autoeroticism, mental health, and organic disturbancies in patients with erectile dysfunction. J. Sex. Med. 7, 182–191 (2010).

    Article  PubMed  Google Scholar 

  107. Corona, G. et al. Psychobiological correlates of delayed ejaculation in male patients with sexual dysfunctions. J. Androl. 27, 453–458 (2006).

    Article  PubMed  Google Scholar 

  108. Corona, G. et al. Psycho-biological correlates of rapid ejaculation in patients attending an andrologic unit for sexual dysfunctions. Eur. Urol. 46, 615–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Corona, G. et al. Different testosterone levels are associated with ejaculatory dysfunction. J. Sex. Med. 5, 1991–1998 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Carosa, E. et al. Ontogenetic profile of the expression of thyroid hormone receptors in rat and human corpora cavernosa of the penis. J. Sex. Med. 7, 1381–1390, (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cihan, A. et al. The relationship between premature ejaculation and hyperthyroidism. J. Urol. 181, 1273–1280 (2009).

    Article  PubMed  Google Scholar 

  112. Cahangirov, A. et al. Investigation of the neural target level of hyperthyroidism in premature ejaculation in a rat model of pharmacologically induced ejaculation. J. Sex. Med. 8, 90–96 (2011).

    Article  PubMed  Google Scholar 

  113. Cihan, A. et al. An experimental approach to the interrelationship between hyperthyroidism and ejaculation latency time in male rats. J. Urol. 181, 907–912 (2009).

    Article  PubMed  Google Scholar 

  114. Oztürk, M. I. et al. Hormonal evaluation in premature ejaculation. Urol. Int. 88, 454–458 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Waldinger, M. D., Zwinderman, A. H., Olivier, B. & Schweitzer, D. H. Thyroid-stimulating hormone assessments in a Dutch cohort of 620 men with lifelong premature ejaculation without erectile dysfunction. J. Sex. Med. 2, 865–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Corona, G. et al. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J. Sex. Med. 7, 1362–1380 (2010).

    Article  PubMed  Google Scholar 

  117. Corona, G. et al. Thyroid hormones and male sexual function. Int. J. Androl. (in press).

  118. Corona, G. et al. Premature and delayed ejaculation: two ends of a single continuum influenced by hormonal milieu. Int. J. Androl. 34, 41–48 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Kharlip, J. & Cooper, D. S. Recent developments in hyperthyroidism. Lancet 373, 1930–1932 (2009).

    Article  PubMed  Google Scholar 

  120. Rabb, M. H. et al. Effects of sexual stimulation, with and without ejaculation, on serum concentrations of, LH, FSH, testosterone, cortisol and prolactin in stallions. J. Anim. Sci. 67, 2724–2729 (1989).

    Article  CAS  PubMed  Google Scholar 

  121. Borg, K. E., Esbenshade, K. L. & Johnson, B. H. Cortisol, growth hormone, and testosterone concentrations during mating behavior in the bull and boar. J. Anim. Sci. 69, 3230–3240 (1991).

    Article  CAS  PubMed  Google Scholar 

  122. Bishop, J. D., Malven, P. V., Singleton, W. L. & Weesner, G. D. Hormonal and behavioural correlates of emotional states in sexually trained boars. J. Anim. Sci. 77, 3339–3345 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Veronesi, M. C. et al. PGF(2α), LH, testosterone, oestrone sulphate, and cortisol plasma concentrations around sexual stimulation in jackass. Theriogenology 75, 1489–1498 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Wildt, D. E. et al. A comparative analysis of ejaculate and hormonal characteristics of the captive male cheetah, tiger, leopard, and puma. Biol. Reprod. 38, 245–255 (1988).

    Article  CAS  PubMed  Google Scholar 

  125. Brown, J. L. et al. Adrenal-pituitary-gonadal relationships and ejaculate characteristics in captive leopards (Panthera pardus kotiya) isolated on the island of Sri Lanka. J. Reprod. Fertil. 85, 605–613 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Phoenix, C. H., Dixson, A. F. & Resko, J. A. Effects of ejaculation on levels of testosterone, cortisol, and luteinizing hormone in peripheral plasma of rhesus monkeys. J. Comp. Physiol. Psychol. 91, 120–127 (1977).

    Article  CAS  PubMed  Google Scholar 

  127. Kathleen, C. & Phoenix, C. H. Diurnal patterns of testosterone, dihydrotestosterone, estradiol, and cortisol in serum of rhesus males: relationship to sexual behavior in aging males. Horm. Behav. 15, 416–426 (1981).

    Article  Google Scholar 

  128. Carani, C. et al. The endocrine effects of visual erotic stimuli in normal men. Psychoneuroendocrinology 15, 207–216 (1990).

    Article  CAS  PubMed  Google Scholar 

  129. Krüger, T. et al. Neuroendocrine and cardiovascular response to sexual arousal and orgasm in men. Psychoneuroendocrinology 23, 401–411 (1998).

    Article  PubMed  Google Scholar 

  130. Exton, N. G. et al. Neuroendocrine response to film-induced sexual arousal in men and women. Psychoneuroendocrinology 25, 187–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Ismail, A. A. A., Davidson, D. W., Loraine, J. A. & Fox, C. A. Relationship between plasma cortisol and human sexual activity. Nature 237, 288–289 (1972).

    Article  CAS  PubMed  Google Scholar 

  132. Valassi, E. et al. The European Registry on Cushing's syndrome: 2-year experience. Baseline demographic and clinical characteristics. Eur. J. Endocrinol. 165, 383–392 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Granata, A. et al. Sexual dysfunctions in men affected by autoimmune addison's disease before and after short-term gluco- and mineralocorticoid replacement therapy. J. Sex. Med. http://dx.doi.org/10.1111/j.1743-6109.2012.02673.x

  134. Hess, R. A. et al. Estrogens and epididymal function. Reprod. Fertil. Dev. 13, 273–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  135. O'Donnell, L., Robertson, K. M., Jones, M. E. & Simpson, E. R. Estrogen and spermatogenesis. Endocr. Rev. 22, 289–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Pereyra-Martinez, A. C., Roselli, C. E., Stadelman, H. L. & Resko, J. A. Cytochrome P450 aromatase in testis and epididymis of male rhesus monkeys. Endocrine 16, 15–19 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Wiszniewska, B. Primary culture of the rat epididymal epithelial cells as a source of oestrogen. Andrologia 34, 180–187 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Carpino, A., Romeo, F. & Rago, V. Aromatase immunolocalization in human ductuli efferentes and proximal ductus epididymis. J. Anat. 204, 217–220 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhou, Q. et al. Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J. Androl. 23, 870–881 (2002).

    CAS  PubMed  Google Scholar 

  140. Hess, R. A. Estrogen in the adult male reproductive tract: a review. Reprod. Biol. Endocr. 1, 52–66 (2003).

    Article  Google Scholar 

  141. Comhaire, F. Treatment of oligospermia with tamoxifen. Intern. J. Fertil. 21, 232–238 (1976).

    Google Scholar 

  142. Rowe, P., Comhaire, F., Hargreave, B. & Mahmoud, A. WHO Manual for the standardized investigation, diagnosis and management of the infertile male (Cambridge University Press, Cambridge, 2000).

  143. Orgebin-Crist, M. C., Eller, B. C. & Danzo, B. J. The effects of estradiol, tamoxifen, and testosterone on the weights and histology of the epididymis and accessory sex organs of sexually immature rabbits. Endocrinology 113, 1703–1715 (1983).

    Article  CAS  PubMed  Google Scholar 

  144. Kotoulas, I. G., Cardamakis, E., Michopoulos, J., Mitropoulos, D. & Dounis, A. Tamoxifen treatment in male infertility. I. Effect on spermatozoa. Fertil. Steril. 61, 911–914 (1994).

    Article  CAS  PubMed  Google Scholar 

  145. Corona, G. & Maggi, M. The role of testosterone in erectile dysfunction. Nat. Rev. Urol. 7, 46–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Morelli, A. et al. Androgens regulate phosphodiesterase type 5 expression and functional activity in corpora cavernosa. Endocrinology 145, 2253–2263 (2004).

    Article  CAS  PubMed  Google Scholar 

  147. Mancina, R. et al. Expression and functional activity of phosphodiesterase type 5 in human and rabbit vas deferens. Mol. Hum. Reprod. 11, 107–115 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Carosa, E. et al. The ontogenetic expression pattern of type 5 phosphodiesterase correlates with androgen receptor expression in rat corpora cavernosa. J. Sex. Med. 6, 388–396 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Corona, G. et al. Perceived ejaculate volume reduction in patients with erectile dysfunction: psychobiologic correlates. J. Androl. 32, 333–339 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Swaab, D. F. Sexual differentiation of the brain and behavior. Best Pract. Res. Clin. Endocrinol. Metab. 21, 431–444 (2007).

    Article  PubMed  Google Scholar 

  151. Keleta, Y. B., Lumia, A. R., Anderson, G. M. & McGinnis, M. Y. Behavioral effects of pubertal anabolic androgenic steroid exposure in male rats with low serotonin. Brain Res. 1132, 129–138 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Hart, B. L. Alteration of quantitative aspects of sexual reflexes in spinal male dogs by testosterone. J. Comp. Physiol. Psychol. 66, 726–730 (1968).

    Article  CAS  PubMed  Google Scholar 

  153. Sakamoto, H. et al. Androgen regulates the sexually dimorphic gastrin-releasing peptide system in the lumbar spinal cord that mediates male sexual function. Endocrinology 150, 3672–3679 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sakamoto, H. et al. Sexually dimorphic gastrin releasing peptide system in the spinal cord controls male reproductive functions. Nat. Neurosci. 11, 634–636 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kicman, A. T. Pharmacology of anabolic steroids. Br. J. Pharmacol. 154, 502–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Carosa, E. et al. Sexual inactivity results in reversible reduction of LH bioavailability. Int. J. Impot. Res. 14, 93–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  157. Waldinger, M. D. & Olivier, B. Animal models of premature and retarded ejaculation. World J. Urol. 23, 115–118 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G. Corona, L. Vignozzi, G. Rastrelli and M. Maggi researched the data for the article. G. Corona, E. A. Jannini, L. Vignozzi and M. Maggi contributed substantially to the discussion of the article content. G. Corona and M. Maggi wrote the article. G. Corona, E. A. Jannini, L. Vignozzi and M. Maggi edited the manuscript before submission.

Corresponding author

Correspondence to Mario Maggi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corona, G., Jannini, E., Vignozzi, L. et al. The hormonal control of ejaculation. Nat Rev Urol 9, 508–519 (2012). https://doi.org/10.1038/nrurol.2012.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing