Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

ANCA-associated vasculitides—advances in pathogenesis and treatment

Abstract

Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) include Wegener granulomatosis, microscopic polyangiitis, Churg–Strauss syndrome and renal-limited vasculitis. This Review highlights the progress that has been made in our understanding of AAV pathogenesis and discusses new developments in the treatment of these diseases. Evidence from clinical studies, and both in vitro and in vivo experiments, supports a pathogenic role for ANCAs in the development of AAV; evidence is stronger for myeloperoxidase-ANCAs than for proteinase-3-ANCAs. Neutrophils, complement and effector T cells are also involved in AAV pathogenesis. With respect to treatment of AAV, glucocorticoids, cyclophosphamide and other conventional therapies are commonly used to induce remission in generalized disease. Pulse intravenous cyclophosphamide is equivalent in efficacy to oral cyclophosphamide but seems to be associated with less adverse effects. Nevertheless, alternatives to cyclophosphamide therapy have been investigated, such as the use of methotrexate as a less-toxic alternative to cyclophosphamide to induce remission in non-organ-threatening or non-life-threatening AAV. Furthermore, rituximab is equally as effective as cyclophosphamide for induction of remission in AAV and might become the standard of therapy in the near future. Controlled trials in which specific immune effector cells and molecules are being therapeutically targeted have been initiated or are currently being planned.

Key Points

  • Antineutrophil cytoplasmic antibodies (ANCAs), neutrophils and complement are the three main active participants in the pathogenesis of ANCA-associated vasculitides (AAV)

  • In addition, T cells are effector cells in AAV, particularly in proteinase-3-ANCA-associated Wegener granulomatosis

  • Glucocorticoids, in combination with cyclophosphamide, are the mainstay of therapy in generalized AAV, but rituximab is equally as effective as cyclophosphamide for induction of remission

  • For induction of remission, methotrexate can replace cyclophosphamide for early AAV; pulse cyclophosphamide is as effective as the daily oral cyclophosphamide regimen and causes fewer adverse effects

  • Both azathioprine and methotrexate are effective for maintenance therapy and are associated with less toxic effects than cyclophosphamide

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classification algorithm for AAV.2
Figure 2: Etiologic and pathogenic factors in AAV.
Figure 3: The alternative complement pathway in AAV pathogenesis.
Figure 4: Pathogenic immune mechanisms in AAV.

Similar content being viewed by others

References

  1. Jennette, J. C. et al. Nomenclature of systemic vasculitides: the proposal of an international consensus conference. Arthritis Rheum. 37, 187–192 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Watts, R. et al. Development and validation of a consensus methodology for the classification of the ANCA-associated vasculitides and polyarteritis nodosa for epidemiological studies. Ann. Rheum. Dis. 66, 222–227 (2007).

    Article  PubMed  Google Scholar 

  3. Liu, L. J., Chen, M., Yu, F., Zhao, M. H. & Wang, H. Y. Evaluation of a new algorithm in classification of systemic vasculitis. Rheumatology (Oxford) 47, 708–712 (2008).

    Article  Google Scholar 

  4. American College of Rheumatology/European League Against Rheumatism (ACR/EULAR) diagnostic and classification criteria for primary systemic vasculitis (DCVAS). ClinicalTrials.gov identifier: NCT01066208 [online], (2010).

  5. Jagiello, P., Gross, W. L. & Epplen, J. T. Complex genetics of Wegener granulomatosis. Autoimmun. Rev. 4, 42–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. de Lind van Wijngaarden, R. A. et al. Hypotheses on the etiology of antineutrophil cytoplasmic autoantibody associated vasculitis: the cause is hidden, but the result is known. Clin. J. Am. Soc. Nephrol. 3, 237–252 (2008).

    Article  PubMed  Google Scholar 

  7. Shiina, T., Inoko, H. & Kulski, J. K. An update of the HLA genomic region, locus information and disease associations: 2004. Tissue Antigens 64, 631–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Heckmann, M. et al. The Wegener's granulomatosis quantitative trait locus on chromosome 6p21.3 as characterised by tagSNP genotyping. Ann. Rheum. Dis. 67, 972–979 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Stassen, P. M. et al. HLA-DR4, DR13(6) and the ancestral haplotype A1B8DR3 are associated with ANCA-associated vasculitis and Wegener's granulomatosis. Rheumatology (Oxford) 48, 622–625 (2009).

    Article  CAS  Google Scholar 

  10. Vaglio, A. et al. HLA-DRB4 as a genetic risk factor for Churg-Strauss syndrome. Arthritis Rheum. 56, 3159–3166 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Tsuchiya, N. et al. Genetic background of Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis: association of HLA-DRB1*0901 with microscopic polyangiitis. J. Rheumatol. 30, 1534–1540 (2003).

    CAS  PubMed  Google Scholar 

  12. Wieczorek, S. et al. Novel association of the CD226 (DNAM-1) Gly307Ser polymorphism in Wegener's granulomatosis and confirmation for multiple sclerosis in German patients. Genes Immun. 10, 591–595 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Carr, E. J. et al. Confirmation of the genetic association of CTLA4 and PTPN22 with ANCA-associated vasculitis. BMC Med. Genet. 10, 121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wieczorek, S. et al. Functionally relevant variations of the interleukin-10 gene associated with antineutrophil cytoplasmic antibody-negative Churg-Strauss syndrome, but not with Wegener's granulomatosis. Arthritis Rheum. 58, 1839–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. McKinney, E. F. et al. A CD8+ T cell transcription signature predicts prognosis in autoimmune disease. Nat. Med. 16, 586–591 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogan, S. L. et al. Silica exposure in anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and lupus nephritis. J. Am. Soc. Nephrol. 12, 134–142 (2001).

    CAS  PubMed  Google Scholar 

  17. Beaudreuil, S. et al. Occupational exposure in ANCA-positive patients: a case–control study. Kidney Int. 67, 1961–1966 (2005).

    Article  PubMed  Google Scholar 

  18. Leigh, J., Wang, H., Bonin, A., Peters, M. & Ruan, X. Silica-induced apoptosis in alveolar and granulomatous cells in vivo. Environ. Health Perspect. 105 (Suppl. 5), 1241–1245 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aikoh, T. et al. Activation-induced cell death in human peripheral blood lymphocytes after stimulation with silicate in vitro. Int. J. Oncol. 12, 1355–1359 (1998).

    CAS  PubMed  Google Scholar 

  20. Stegeman, C. A., Tervaert, J. W., de Jong, P. E. & Kallenberg, C. G. Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener's granulomatosis. N. Engl. J. Med. 335, 16–20 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Stegeman, C. A. et al. Association of chronic nasal carriage of Staphylococcus aureus and higher relapse rates in Wegener granulomatosis. Ann. Intern. Med. 120, 12–17 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Popa, E. R. et al., Staphylococcal toxic-shock-syndrome-toxin-1 as a risk factor for disease relapse in Wegener's granulomatosis. Rheumatology (Oxford) 46, 1029–1033 (2007).

    Article  CAS  Google Scholar 

  23. Popa, E. R., Stegeman, C. A., Kallenberg, C. G. & Tervaert, J. W. Staphylococcus aureus and Wegener's granulomatosis. Arthritis Res. 4, 77–79 (2002).

    Article  PubMed  Google Scholar 

  24. Pendergraft, W. F. 3rd et al. Autoimmunity is triggered by cPR-3(105–201), a protein complementary to human autoantigen proteinase-3. Nat. Med. 10, 72–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Kallenberg, C. G. & Tadema, H. Vasculitis and infections: contribution to the issue of autoimmunity reviews devoted to “autoimmunity and infection”. Autoimmun. Rev. 8, 29–32 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hurtado, P. R. et al. CpG oligodeoxynucleotide stimulates production of anti-neutrophil cytoplasmic antibodies in ANCA associated vasculitis. BMC Immunol. 9, 34 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kain, R. et al. A novel class of autoantigens of anti-neutrophil cytoplasmic antibodies in necrotizing and crescentic glomerulonephritis: the lysosomal membrane glycoprotein h-lamp-2 in neutrophil granulocytes and a related membrane protein in glomerular endothelial cells. J. Exp. Med. 181, 585–597 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088–1096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slot, M. C., Links, T. P., Stegeman, C. A. & Tervaert, J. W. Occurrence of antineutrophil cytoplasmic antibodies and associated vasculitis in patients with hyperthyroidism treated with antithyroid drugs: a long-term followup study. Arthritis Rheum. 53, 108–113 (2005).

    Article  PubMed  Google Scholar 

  30. Zhao, M. H., Chen, M., Gao, Y. & Wang, H. Y. Propylthiouracil-induced anti-neutrophil cytoplasmic antibody-associated vasculitis. Kidney Int. 69, 1477–1481 (2006).

    Article  PubMed  Google Scholar 

  31. Lee, E. et al. Inactivation of peroxidases of rat bone marrow by repeated administration of propylthiouracil is accompanied by a change in the heme structure. Biochem. Pharmacol. 37, 2151–2153 (1988).

    Article  CAS  PubMed  Google Scholar 

  32. Jiang, X., Khursigara, G. & Rubin, R. L. Transformation of lupus-inducing drugs to cytotoxic products by activated neutrophils. Science 266, 810–813 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. von Schmiedeberg, S., Goebel, C., Gleichmann, E. & Uetrecht, J. Neutrophils and drug metabolism. Science 268, 585–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Gilligan, H. M. et al. Antineutrophil cytoplasmic autoantibodies interact with primary granule constituents on the surface of apoptotic neutrophils in the absence of neutrophil priming. J. Exp. Med. 184, 2231–2241 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Csernok, E., Lamprecht, P. & Gross, W. L. Clinical and immunological features of drug-induced and infection-induced proteinase 3-antineutrophil cytoplasmic antibodies and myeloperoxidase-antineutrophil cytoplasmic antibodies and vasculitis. Curr. Opin. Rheumatol. 22, 43–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Davies, D. J., Moran, J. E., Niall, J. F. & Ryan, G. B. Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus etiology? Br. Med. J. (Clin. Res. Ed.) 285, 606 (1982).

    Article  CAS  Google Scholar 

  37. Bansal, P. J. & Tobin, M. C. Neonatal microscopic polyangiitis secondary to transfer of maternal myeloperoxidase-antineutrophil cytoplasmic antibody resulting in neonatal pulmonary hemorrhage and renal involvement. Ann. Allergy Asthma Immunol. 93, 398–401 (2004).

    Article  PubMed  Google Scholar 

  38. Falk, R. J., Nachman, P. H., Hogan, S. L. & Jennette, J. C. ANCA glomerulonephritis and vasculitis: a Chapel Hill perspective. Semin. Nephrol. 20, 233–243 (2000).

    CAS  PubMed  Google Scholar 

  39. Savage, C. O. ANCA-associated renal vasculitis. Kidney Int. 60, 1614–1627 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Boomsma, M. M. et al. Prediction of relapses in Wegener's granulomatosis by measurement of antineutrophil cytoplasmic antibody levels: a prospective study. Arthritis Rheum. 43, 2025–2033 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Stegeman, C. A. Anti-neutrophil cytoplasmic antibody (ANCA) levels directed against proteinase-3 and myeloperoxidase are helpful in predicting disease relapse in ANCA-associated small-vessel vasculitis. Nephrol. Dial. Transplant. 17, 2077–2080 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Birck, R., Schmitt, W. H., Kaelsch, I. A. & van der Woude, F. J. Serial ANCA determinations for monitoring disease activity in patients with ANCA-associated vasculitis: systematic review. Am. J. Kidney Dis. 47, 15–23 (2006).

    Article  PubMed  Google Scholar 

  43. Kerr, G. S. et al. Limited prognostic value of changes in antineutrophil cytoplasmic antibody titer in patients with Wegener's granulomatosis. Arthritis Rheum. 36, 365–371 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Finkielman, J. D. et al. Antiproteinase 3 antineutrophil cytoplasmic antibodies and disease activity in Wegener granulomatosis. Ann. Intern. Med. 147, 611–619 (2007).

    Article  PubMed  Google Scholar 

  45. Falk, R. J., Terrell R. S., Charles, L. A. & Jennette, J. C. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals. Proc. Natl Acad. Sci. USA 87, 4115–4119 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schreiber, A., Busjahn, A., Luft, F. C. & Kettritz, R. Membrane expression of proteinase 3 is genetically determined. J. Am. Soc. Nephrol. 14, 68–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. van Rossum, A. P. et al. Standardised assessment of membrane proteinase 3 expression. Analysis in ANCA-associated vasculitis and controls. Ann. Rheum. Dis. 66, 1350–1355 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Witko-Sarsat, V. et al. A large subset of neutrophils expressing membrane proteinase 3 is a risk factor for vasculitis and rheumatoid arthritis. J. Am. Soc. Nephrol. 10, 1224–1233 (1999).

    CAS  PubMed  Google Scholar 

  49. Rarok, A. A., Stegeman, C. A., Limburg, P. C. & Kallenberg, C. G. Neutrophil membrane expression of proteinase 3 (PR3) is related to relapse in PR3-ANCA-associated vasculitis. J. Am. Soc. Nephrol. 13, 2232–2238 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bauer, S. et al. Proteinase 3 and CD177 are expressed on the plasma membrane of the same subset of neutrophils. J. Leukoc. Biol. 81, 458–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. von Vietinghoff, S. et al. NB1 mediates surface expression of the ANCA antigen proteinase 3 on human neutrophils. Blood 109, 4487–4493 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Hu, N. et al. Coexpression of CD177 and membrane proteinase 3 on neutrophils in antineutrophil cytoplasmic autoantibody-associated systemic vasculitis, anti-proteinase 3-mediated neutrophil activation is independent of the role of CD177-expressing neutrophils. Arthritis Rheum. 60, 1548–1557 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Hess, C., Sadallah, S. & Schifferli, J. A. Induction of neutrophil responsiveness to myeloperoxidase antibodies by their exposure to supernatant of degranulated autologous neutrophils. Blood 96, 2822–2827 (2000).

    CAS  PubMed  Google Scholar 

  54. Guilpain, P. et al. Pathogenic effects of antimyeloperoxidase antibodies in patients with microscopic polyangiitis. Arthritis Rheum. 56, 2455–2463 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Xiao, H. et al. Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J. Clin. Invest. 110, 955–963 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huugen, D. et al. Aggravation of anti-myeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am. J. Pathol. 167, 47–58 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schreiber, A., Xiao, H., Falk, R. J. & Jennette, J. C. Bone marrow-derived cells are sufficient and necessary targets to mediate glomerulonephritis and vasculitis induced by anti-myeloperoxidase antibodies. J. Am. Soc. Nephrol. 17, 3355–3364 (2006).

    Article  PubMed  Google Scholar 

  58. Pfister, H. et al. Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood 104, 1411–1418 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. van der Geld, Y. M. et al. Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes. Ann. Rheum. Dis. 66, 1679–1682 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Little, M. A. et al. Antineutrophil cytoplasm antibodies directed against myeloperoxidase augment leukocyte–microvascular interactions in vivo. Blood 106, 2050–2058 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Nolan, S. L. et al. Mechanisms of ANCA-mediated leukocyte-endothelial cell interactions in vivo. J. Am. Soc. Nephrol. 19, 973–984 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, H. et al. The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am. J. Pathol. 167, 39–45 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, M., Wang, F. & Zhao, M. H. Circulating neutrophil gelatinase-associated lipocalin: a useful biomarker for assessing disease activity of ANCA-associated vasculitis. Rheumatology (Oxford) 48, 355–358 (2009).

    Article  CAS  Google Scholar 

  64. Kessenbrock, K. et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat. Med. 15, 623–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, M. & Kallenberg, C. G. Novel territory for neutrophils in the pathogenesis of ANCA-associated vasculitides. Nephrol. Dial. Transplant. 24, 3618–3620 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Van Timmeren, M. M., Chen, M. & Heeringa, P. Review article: pathogenic role of complement activation in anti-neutrophil cytoplasmic auto-antibody-associated vasculitis. Nephrology (Carlton) 14, 16–25 (2009).

    Article  CAS  Google Scholar 

  67. Chen, M., Xing, G. Q., Yu, F., Liu, G. & Zhao, M. H. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol. Dial. Transplant. 24, 1247–1252 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Xing, G. Q. et al. Complement activation is involved in renal damage in human antineutrophil cytoplasmic autoantibody associated pauci-immune vasculitis. J. Clin. Immunol. 29, 282–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Xiao, H., Schreiber, A., Heeringa, P., Falk, R. J. & Jennette, J. C. Alternative complement pathway in the pathogenesis of disease mediated by antineutrophil cytoplasmic autoantibodies. Am. J. Pathol. 170, 52–64 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Huugen, D. et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 71, 646–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Schreiber, A. et al. C5a receptor mediates neutrophil activation and ANCA-induced glomerulonephritis. J. Am. Soc. Nephrol. 20, 289–298 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Stone, J. H. et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N. Engl. J. Med. 363, 221–232 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones, R. B. et al. Rituximab versus cyclophosphamide in ANCA-associated renal vasculitis. N. Engl. J. Med. 363, 211–220 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Shlomchik, M. J., Craft, J. E. & Mamula, M. J. From T to B and back again: positive feedback in systemic autoimmune disease. Nat. Rev. Immunol. 1, 147–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Voswinkel, J. et al. B lymphocyte maturation in Wegener's granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann. Rheum. Dis. 65, 859–864 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Brouwer, E. et al. Predominance of IgG1 and IgG4 subclasses of anti-neutrophil cytoplasmic autoantibodies (ANCA) in patients with Wegener's granulomatosis and clinically related disorders. Clin. Exp. Immunol. 83, 379–386 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Schmitt, W. H. et al. Treatment of refractory Wegener's granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int. 65, 1440–1448 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Berden, A. E. et al. Cellular immunity in Wegener's granulomatosis: characterizing T lymphocytes. Arthritis Rheum. 60, 1578–1587 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Müller, A. et al. Localized Wegener's granulomatosis: predominance of CD26 and IFNgamma expression. J. Pathol. 192, 113–120 (2000).

    Article  PubMed  Google Scholar 

  80. Lamprecht, P. et al. Differences in CCR5 expression on peripheral blood CD4+CD28- T-cells and in granulomatous lesions between localized and generalized Wegener's granulomatosis. Clin. Immunol. 108, 1–7 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Sanders, J. S., Stegeman, C. A. & Kallenberg, C. G. The Th1 and Th2 paradigm in ANCA-associated vasculitis. Kidney Blood Press. Res. 26, 215–220 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Jin, D., Zhang, L., Zheng, J. & Zhao, Y. The inflammatory Th 17 subset in immunity against self and non-self antigens. Autoimmunity 41, 154–162 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Abdulahad, W. H., Stegeman, C. A., Limburg, P. C. & Kallenberg, C. G. Skewed distribution of Th17 lymphocytes in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 58, 2196–2205 (2008).

    Article  PubMed  Google Scholar 

  84. Nogueira, E. et al. Serum IL-17 and IL-23 levels and autoantigen-specific Th17 cells are elevated in patients with ANCA-associated vasculitis. Nephrol. Dial. Transplant. 25, 2209–2217 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Marinaki, S. et al. Abnormalities of CD4+ T cell subpopulations in ANCA-associated vasculitis. Clin. Exp. Immunol. 140, 181–191 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iking-Konert, C. et al. T lymphocytes in patients with primary vasculitis: expansion of CD8+ T cells with the propensity to activate polymorphonuclear neutrophils. Rheumatology (Oxford) 47, 609–616 (2008).

    Article  CAS  Google Scholar 

  87. Abdulahad, W. H., van der Geld, Y. M., Stegeman, C. A. & Kallenberg, C. G. Persistent expansion of CD4+ effector memory T cells in Wegener's granulomatosis. Kidney Int. 70, 938–947 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Abdulahad, W. H., Kallenberg, C. G., Limburg, P. C. & Stegeman, C. A. Urinary CD4+ effector memory T cells reflect renal disease activity in antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 60, 2830–2838 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Abdulahad, W. H. et al. Functional defect of circulating regulatory CD4+ T cells in patients with Wegener's granulomatosis in remission. Arthritis Rheum. 56, 2080–2091 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Morgan, M. D. et al. Patients with Wegener's granulomatosis demonstrate a relative deficiency and functional impairment of T-regulatory cells. Immunology 130, 64–73 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chavele, K. M. et al. Regulation of myeloperoxidase-specific T cell responses during disease remission in antineutrophil cytoplasmic antibody-associated vasculitis: the role of Treg cells and tryptophan degradation. Arthritis Rheum. 62, 1539–1548 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Hoffman, G. S. et al. Wegener granulomatosis: an analysis of 158 patients. Ann. Intern. Med. 116, 488–498 (1992).

    Article  CAS  PubMed  Google Scholar 

  93. Jayne, D. R. & Rasmussen, N. Treatment of antineutrophil cytoplasm autoantibody-associated systemic vasculitis: initiatives of the European Community Systemic Vasculitis Clinical Trials Study Group. Mayo Clin. Proc. 72, 737–747 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Guillevin, L. et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wegener's granulomatosis. Arthritis Rheum. 40, 2187–2198 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Talar-Williams, C. et al. Cyclophosphamide-induced cystitis and bladder cancer in patients with Wegener granulomatosis. Ann. Intern. Med. 124, 477–484 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. De Groot, K. et al. Randomized trial of cyclophosphamide versus methotrexate for induction of remission in early systemic antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 52, 2461–2469 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Mukhtyar, C. et al. EULAR recommendations for the management of primary small and medium vessel vasculitis. Ann. Rheum. Dis. 68, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Adu, D. et al. Controlled trial of pulse versus continuous prednisolone and cyclophosphamide in the treatment of systemic vasculitis. QJM 90, 401–409 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Guillevin, L. et al. A prospective, multicenter, randomized trial comparing steroids and pulse cyclophosphamide versus steroids and oral cyclophosphamide in the treatment of generalized Wegener's granulomatosis. Arthritis Rheum. 40, 2187–2198 (1997).

    Article  CAS  PubMed  Google Scholar 

  100. de Groot, K. et al. Pulse versus daily oral cyclophosphamide for induction of remission in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized trial. Ann. Intern. Med. 150, 670–680 (2009).

    Article  PubMed  Google Scholar 

  101. Smith, K. G., Jones, R. B., Burns, S. M. & Jayne, D. R. Long-term comparison of rituximab treatment for refractory systemic lupus erythematosus and vasculitis: remission, relapse, and re-treatment. Arthritis Rheum. 54, 2970–2982 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Jones, R. B. et al. A multicenter survey of rituximab therapy for refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 60, 2156–2168 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Keogh, K. A. et al. Rituximab for refractory Wegener's granulomatosis: report of a prospective, open-label pilot trial. Am. J. Respir. Crit. Care Med. 173, 180–187 (2006).

    Article  CAS  PubMed  Google Scholar 

  104. Keogh, K. A., Wylam, M. E., Stone, J. H. & Specks, U. Induction of remission by B lymphocyte depletion in eleven patients with refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum. 52, 262–268 (2005).

    Article  PubMed  Google Scholar 

  105. Stasi, R. et al. Long-term observation of patients with anti-neutrophil cytoplasmic antibody-associated vasculitis treated with rituximab. Rheumatology (Oxford) 45, 1432–1436 (2006).

    Article  CAS  Google Scholar 

  106. Jayne, D. R. et al. Randomized trial of plasma exchange or high-dosage methylprednisolone as adjunctive therapy for severe renal vasculitis. J. Am. Soc. Nephrol. 18, 2180–2188 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. de Lind van Wijngaarden, R. A. et al. Chances of renal recovery for dialysis-dependent ANCA-associated glomerulonephritis. J. Am. Soc. Nephrol. 18, 2189–2197 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Wegener's Granulomatosis Etanercept Trial (WGET) research group. Etanercept plus standard therapy for Wegener's granulomatosis. N. Engl. J. Med. 352, 351–361 (2005).

  109. Clinical trial of mycophenolate versus cyclophosphamide in ANCA vasculitis. ClinicalTrials.gov identifier: NCT00414128 [online], (2010).

  110. Hogan, S. L. et al. Predictors of relapse and treatment resistance in antineutrophil cytoplasmic antibody-associated small-vessel vasculitis. Ann. Intern. Med. 143, 621–631 (2005).

    Article  PubMed  Google Scholar 

  111. Koldingsnes, W. & Nossent, H. Predictors of survival and organ damage in Wegener's granulomatosis. Rheumatology (Oxford) 41, 572–581 (2002).

    Article  CAS  Google Scholar 

  112. Jayne, D. et al. A randomized trial of maintenance therapy for vasculitis associated with antineutrophil cytoplasmic autoantibodies. N. Engl. J. Med. 349, 36–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  113. Pagnoux, C. et al. Azathioprine or methotrexate maintenance for ANCA-associated vasculitis. N. Engl. J. Med. 359, 2790–2803 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Metzler, C. et al. Elevated relapse rate under oral methotrexate versus leflunomide for maintenance of remission in Wegener's granulomatosis. Rheumatology (Oxford) 46, 1087–1091 (2007).

    Article  CAS  Google Scholar 

  115. Silva, F. et al. Mycophenolate mofetil for induction and maintenance of remission in microscopic polyangiitis with mild to moderate renal involvement—a prospective, open-label pilot trial. Clin. J. Am. Soc. Nephrol. 5, 445–453 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. IMPROVE: Mycophenolate mofetil versus azathioprine for maintenance therapy in ANCA associated systemic vasculitis. ClinicalTrials.gov identifier: NCT00307645 [online], (2010).

  117. Booth, A. et al. Prospective study of TNFalpha blockade with infliximab in anti-neutrophil cytoplasmic antibody-associated systemic vasculitis. J. Am. Soc. Nephrol. 15, 717–721 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Flossmann, O. et al. Deoxyspergualin in relapsing and refractory Wegener's granulomatosis. Ann. Rheum. Dis. 68, 1125–1130 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Schmitt, W. H. et al. Treatment of refractory Wegener's granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int. 65, 1440–1448 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Prevention of relapses in proteinase 3 (PR3)-anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis. ClinicalTrials.gov identifier: NCT00128895 [online], (2010).

Download references

Acknowledgements

Charles. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

M. Chen and C. G. M. Kallenberg contributed equally to researching data for the article, discussion of the content, writing the article and review and editing of the manuscript before submission.

Corresponding author

Correspondence to Cees G. M. Kallenberg.

Ethics declarations

Competing interests

C. G. M. Kallenberg receives grant/research support from Genentech and ITN-NIH. M. Chen declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, M., Kallenberg, C. ANCA-associated vasculitides—advances in pathogenesis and treatment. Nat Rev Rheumatol 6, 653–664 (2010). https://doi.org/10.1038/nrrheum.2010.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2010.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing