Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The musician's brain as a model of neuroplasticity

Abstract

Studies of experience-driven neuroplasticity at the behavioural, ensemble, cellular and molecular levels have shown that the structure and significance of the eliciting stimulus can determine the neural changes that result. Studying such effects in humans is difficult, but professional musicians represent an ideal model in which to investigate plastic changes in the human brain. There are two advantages to studying plasticity in musicians: the complexity of the eliciting stimulus — music — and the extent of their exposure to this stimulus. Here, we focus on the functional and anatomical differences that have been detected in musicians by modern neuroimaging methods.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of a hypercomplex musical score.
Figure 2: Structural changes in the brains of musicians.
Figure 3: Sensorimotor integration in musicians.
Figure 4: Fusion of the somatosensory representation of single digits of the hand in a musician suffering from focal dystonia.

Similar content being viewed by others

Peter Vuust, Ole A. Heggli, … Morten L. Kringelbach

References

  1. Kilgard, M. P. et al. Sensory input directs spatial and temporal plasticity in primary auditory cortex. J. Neurophysiol. 86, 326–338 (2001).

    Article  CAS  Google Scholar 

  2. Singer, W. Development and plasticity of cortical processing architectures. Science 270, 758–764 (1995).

    Article  CAS  Google Scholar 

  3. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b of owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  4. Ahissar, M. & Hochstein, S. Task difficulty and the specificity of perceptual learning. Nature 387, 401–406 (1997).

    Article  CAS  Google Scholar 

  5. Anderson, B. J. et al. Glial hypertrophy is associated with synaptogenesis following motor-skill learning, but not with angiogenesis following exercise. Glia 11, 73–80 (1994).

    Article  CAS  Google Scholar 

  6. van Praag, H., Kempermann, G. & Gage, F. H. Neural consequences of environmental enrichment. Nature Rev. Neurosci. 1, 191–198 (2000).

    Article  CAS  Google Scholar 

  7. Röder, B. et al. Improved auditory spatial tuning in blind humans. Nature 400, 162–166 (1999).

    Article  Google Scholar 

  8. Bavelier, D. et al. Visual attention to the periphery is enhanced in congenitally deaf individuals. J. Neurosci. 20, RC93 (2000).

    Article  CAS  Google Scholar 

  9. Bavelier, D. & Neville, H. J. Cross-modal plasticity: where and how? Nature Rev. Neurosci. 3 , 443 –452 (2002 ).

    Article  CAS  Google Scholar 

  10. Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482–484 (1995).

    Article  CAS  Google Scholar 

  11. Schuppert, M., Münte, T. F., Wieringa, B. M. & Altenmüller, E. Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. Brain 123, 546–559 (2000).

    Article  Google Scholar 

  12. Lim, V. K., Altenmüller, E. & Bradshaw, J. L. Focal dystonia: current theories. Hum. Mov. Sci. 20, 875–914 (2001).

    Article  CAS  Google Scholar 

  13. Elbert, T. et al. Alteration of digital representations in somatosensory cortex in focal hand dystonia. Neuroreport 9, 3571–3575 (1998).

    Article  CAS  Google Scholar 

  14. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).

    Article  CAS  Google Scholar 

  15. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–814 (1998).

    Article  CAS  Google Scholar 

  16. Pantev, C., Roberts, L. E., Schulz, M., Engelien, A. & Ross, B. Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport 12, 169–174 (2001).

    Article  CAS  Google Scholar 

  17. Picton, T. W., Alain, C., Otten, L., Ritter, W. & Achim, A. Mismatch negativity: different water in the same river. Audiol. Neurootol. 5, 111–139 (2000).

    Article  CAS  Google Scholar 

  18. Russeler, J., Altenmüller, E., Nager, W., Kohlmetz, C. & Münte, T. F. Event-related brain potentials to sound omissions differ in musicians and non-musicians. Neurosci. Lett. 308, 33–36 (2001).

    Article  CAS  Google Scholar 

  19. Koelsch, S., Schroger, E. & Tervaniemi, M. Superior pre-attentive auditory processing in musicians. Neuroreport 10, 1309–1313 (1999).

    Article  CAS  Google Scholar 

  20. Tervaniemi, M., Rytkonen, M., Schroger, E., Ilmoniemi, R. J. & Näätänen, R. Superior formation of cortical memory traces for melodic patterns in musicians. Learn. Mem. 8, 295–300 (2001).

    Article  CAS  Google Scholar 

  21. Tiitinen, H. et al. Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiology 30, 537–540 (1993).

    Article  CAS  Google Scholar 

  22. Tervaniemi, M. et al. Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9, 330–336 (1999).

    Article  CAS  Google Scholar 

  23. Regnault, P., Bigand, E. & Besson, M. Different brain mechanisms mediate sensitivity to sensory consonance and harmonic context: evidence from auditory event-related brain potentials. J. Cogn. Neurosci. 13, 241–255 (2001).

    Article  CAS  Google Scholar 

  24. Tramo, M. J., Cariani, P. A., Delgutte, B. & Braida, L. D. Neurobiological foundations for the theory of harmony in western tonal music. Ann. NY Acad. Sci. 930, 92–116 (2001).

    Article  CAS  Google Scholar 

  25. Hillyard, S. A., Teder-Salejarvi, W. A. & Münte, T. F. Temporal dynamics of early perceptual processing. Curr. Opin. Neurobiol. 8, 202–210 (1998).

    Article  CAS  Google Scholar 

  26. Münte, T. F., Nager, W., Rosenthal, O., Johannes, S. & Altenmüller, E. in Integrated Human Brain Science (ed. Nakada, T.) 389–398 (Elsevier, Amsterdam, 2000).

    Google Scholar 

  27. Musicant, A. D., Chan, J. C. & Hind, J. E. Direction-dependent spectral properties of cat external ear: new data and cross-species comparisons. J. Acoust. Soc. Am. 87, 757–781 (1990).

    Article  CAS  Google Scholar 

  28. Münte, T. F., Kohlmetz, C., Nager, W. & Altenmüller, E. Neuroperception. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).

    Article  Google Scholar 

  29. Meyer, A. in Music and the Brain (eds Macdonald, C. & Henson, R. A.) 255–281 (Heinemann Medical Books, London, 1977).

    Book  Google Scholar 

  30. Jäncke, L., Schlaug, G., Huang, Y. & Steinmetz, H. Asymmetry of the planum parietale. Neuroreport 5, 1161–1163 (1994).

    Article  Google Scholar 

  31. Schlaug, G., Jäncke, L., Huang, Y. & Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701 (1995).

    Article  CAS  Google Scholar 

  32. Keenan, J. P., Thangaraj, V., Halpern, A. R. & Schlaug, G. Absolute pitch and planum temporale. Neuroimage 14, 1402–1408 (2001).

    Article  CAS  Google Scholar 

  33. Zatorre, R. J., Perry, D. W., Beckett, C. A., Westbury, C. F. & Evans, A. C. Functional anatomy of musical processing in listeners with absolute pitch and relative pitch. Proc. Natl Acad. Sci. USA 95, 3172–3177 (1998).

    Article  CAS  Google Scholar 

  34. Amunts, K. et al. Hand skills covary with the size of motor cortex: a macrostructural adaptation. Hum. Brain Mapp. 5, 206–215 (1997).

    Article  CAS  Google Scholar 

  35. Jäncke, L., Schlaug, G. & Steinmetz, H. Hand skill asymmetry in professional musicians. Brain Cogn. 34, 424–432 (1997).

    Article  Google Scholar 

  36. Schlaug, G., Jäncke, L., Huang, Y., Staiger, J. F. & Steinmetz, H. Increased corpus callosum size in musicians. Neuropsychologia 33, 1047–1055 (1995).

    Article  CAS  Google Scholar 

  37. Aboitiz, F., Scheibel, A. B., Fisher, R. S. & Zaidel, E. Fiber composition of the human corpus callosum. Brain Res. 598, 143–153 (1992).

    Article  CAS  Google Scholar 

  38. Ridding, M. C., Brouwer, B. & Nordstrom, M. A. Reduced interhemispheric inhibition in musicians. Exp. Brain Res. 133, 249–253 (2000).

    Article  CAS  Google Scholar 

  39. Schlaug, G. The brain of musicians. A model for functional and structural adaptation. Ann. NY Acad. Sci. 930, 281–299 (2001).

    Article  CAS  Google Scholar 

  40. Ashburner, J. & Friston, K. J. Voxel-based morphometry — the methods. Neuroimage 11, 805–821 (2000).

    Article  CAS  Google Scholar 

  41. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. Neuroimage 13, 1168 (2001).

    Article  Google Scholar 

  42. Karni, A. et al. The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc. Natl Acad. Sci. USA 95, 861–868 (1998).

    Article  CAS  Google Scholar 

  43. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  44. Hund-Georgiadis, M. & von Cramon, D. Y. Motor-learning-related changes in piano players and non-musicians revealed by functional magnetic-resonance signals. Exp. Brain Res. 125, 417–425 (1999).

    Article  CAS  Google Scholar 

  45. Jäncke, L., Shah, N. J. & Peters, M. Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Res. Cogn. Brain Res. 10, 177–183 (2000).

    Article  Google Scholar 

  46. Krings, T. et al. Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci. Lett. 278, 189–193 (2000).

    Article  CAS  Google Scholar 

  47. Pascual-Leone, A. The brain that plays music and is changed by it. Ann. NY Acad. Sci. 930, 315–329 (2001).

    Article  CAS  Google Scholar 

  48. Bangert, M., Haeusler, U. & Altenmüller, E. On practice: how the brain connects piano keys and piano sounds. Ann. NY Acad. Sci. 930, 425–428 (2001).

    Article  CAS  Google Scholar 

  49. Haueisen, J. & Knosche, T. R. Involuntary motor activity in pianists evoked by music perception. J. Cogn. Neurosci. 13, 786–792 (2001).

    Article  CAS  Google Scholar 

  50. Umilta, M. A. et al. I know what you are doing. A neurophysiological study. Neuron 31, 155–165 (2001).

    Article  CAS  Google Scholar 

  51. Schumann, R. Tagebücher, Band 1 (Stroemfeld Roter Stern, Basel, 1971).

    Google Scholar 

  52. Byl, N. N., McKenzie, A. & Nagarajan, S. S. Differences in somatosensory hand organization in a healthy flutist and a flutist with focal hand dystonia: a case report. J. Hand Ther. 13, 302–309 (2000).

    Article  CAS  Google Scholar 

  53. Sanger, T. D., Tarsy, D. & Pascual-Leone, A. Abnormalities of spatial and temporal sensory discrimination in writer's cramp. Mov. Disord. 16, 94–99 (2001).

    Article  CAS  Google Scholar 

  54. Sanger, T. D., Pascual-Leone, A., Tarsy, D. & Schlaug, G. Nonlinear sensory cortex response to simultaneous tactile stimuli in writer's cramp. Mov. Disord. 17, 105–111 (2002).

    Article  Google Scholar 

  55. Byl, N. N., Merzenich, M. M. & Jenkins, W. M. A primate genesis model of focal dystonia and repetitive strain injury. I. Learning-induced dedifferentiation of the representation of the hand in the primary somatosensory cortex in adult monkeys. Neurology 47, 508–520 (1996).

    Article  CAS  Google Scholar 

  56. Pujol, J. et al. Brain cortical activation during guitar-induced hand dystonia studied by functional MRI. Neuroimage 12, 257–267 (2000).

    Article  CAS  Google Scholar 

  57. Polat, U. & Sagi, D. Spatial interactions in human vision: from near to far via experience-dependent cascades of connections. Proc. Natl Acad. Sci. USA 91, 1206–1209 (1994).

    Article  CAS  Google Scholar 

  58. Jacobs, K. M. & Donoghue, J. P. Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251, 944–947 (1991).

    Article  CAS  Google Scholar 

  59. Noppeney, U., Waberski, T. D., Gobbele, R. & Buchner, H. Spatial attention modulates the cortical somatosensory representation of the digits in humans. Neuroreport 10, 3137–3141 (1999).

    Article  CAS  Google Scholar 

  60. Maguire, E. A. et al. Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl Acad. Sci. USA 97, 4398–4403 (2000).

    Article  CAS  Google Scholar 

  61. Blood, A. J. & Zatorre, R. J. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl Acad. Sci. USA 98, 11818–11823 (2001).

    Article  CAS  Google Scholar 

  62. Profita, J. & Bidder, T. G. Perfect pitch. Am. J. Med. Genet. 29, 763–771 (1988).

    Article  CAS  Google Scholar 

  63. Baharloo, S., Johnston, P. A., Service, S. K., Gitschier, J. & Freimer, N. B. Absolute pitch: an approach for identification of genetic and nongenetic components. Am. J. Hum. Genet. 62, 224–231 (1998).

    Article  CAS  Google Scholar 

  64. Revesz, G. Introduction to the Psychology of Music (Longmans Green, London, 1953).

    Google Scholar 

  65. Baharloo, S., Service, S. K., Risch, N., Gitschier, J. & Freimer, N. B. Familial aggregation of absolute pitch. Am. J. Hum. Genet. 67, 755–758 (2000).

    Article  CAS  Google Scholar 

  66. Gregersen, P. K., Kowalsky, E., Kohn, N. & Marvin, E. W. Absolute pitch: prevalence, ethnic variation, and estimation of the genetic component. Am. J. Hum. Genet. 65, 911–913 (1999).

    Article  CAS  Google Scholar 

  67. Ohnishi, T. et al. Functional anatomy of musical perception in musicians. Cereb. Cortex 11, 754–760 (2001).

    Article  CAS  Google Scholar 

  68. Crummer, G. C., Walton, J. P., Wayman, J. W., Hantz, E. C. & Frisina, R. D. Neural processing of musical timbre by musicians, nonmusicians, and musicians possessing absolute pitch. J. Acoust. Soc. Am. 95, 2720–2727 (1994).

    Article  CAS  Google Scholar 

  69. Klein, M., Coles, M. G. H. & Donchin, E. People with absolute pitch process tones without producing a P300. Science 233, 1306–1309 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas F. Münte.

Related links

Related links

FURTHER INFORMATION

Encyclopedia of Life Sciences

auditory processing

brain imaging: observing ongoing neural activity

cortical plasticity: use-dependent remodelling

magnetic resonance imaging

topographic maps in the brain

MIT Encyclopedia of Cognitive Sciences

auditory plasticity

electrophysiology, electric and magnetic evoked fields

magnetic resonance imaging

neural plasticity

positron emission tomography

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münte, T., Altenmüller, E. & Jäncke, L. The musician's brain as a model of neuroplasticity. Nat Rev Neurosci 3, 473–478 (2002). https://doi.org/10.1038/nrn843

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing