Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective

Key Points

  • Anxiety can be thought of as a future-oriented emotional state that is characterized by anticipatory cognitive, behavioural and affective changes in response to uncertainty about potential threat. Although it often serves an adaptive role, extreme anxiety that is disproportionate to the actual presence or likelihood of threat can cause distress and suffering for individuals with clinical anxiety disorders.

  • We propose a new model, called the 'uncertainty and anticipation model of anxiety' (UAMA), which emphasizes five processes explaining why uncertainty about future threat is so disruptive in anxiety. These five processes are inflated estimates of threat cost and probability, increased threat attention and hypervigilance, deficient safety learning, behavioural and cognitive avoidance and heightened reactivity to threat uncertainty. The neural circuitry for each of the five UAMA processes promotes an adaptive role in responding to and reducing uncertainty about threat.

  • However, alterations in that neural circuitry result in maladaptive responses to uncertainty in pathological anxiety.

  • The key brain regions implicated in maladaptive responses to uncertainty in anxiety include the amygdala, bed nucleus of the stria terminalis, ventromedial prefrontal cortex, orbitofrontal cortex, dorsomedial and dorsolateral prefrontal cortex and anterior insula.

  • The anterior mid-cingulate cortex, which is heavily interconnected with each of these brain regions, shows consistent functional and structural abnormalities in clinical anxiety. We propose a central role for this region in contributing to an array of maladaptive responses to uncertainty.

  • In focusing the experimental and theoretical literatures through the common lens of uncertainty, this perspective provides a unifying theme that binds together many diverse features of clinical anxiety and thus provides a conceptual framework for advancing future research on the neurobiology of anxiety disorders.

Abstract

Uncertainty about a possible future threat disrupts our ability to avoid it or to mitigate its negative impact and thus results in anxiety. Here, we focus the broad literature on the neurobiology of anxiety through the lens of uncertainty. We identify five processes that are essential for adaptive anticipatory responses to future threat uncertainty and propose that alterations in the neural instantiation of these processes result in maladaptive responses to uncertainty in pathological anxiety. This framework has the potential to advance the classification, diagnosis and treatment of clinical anxiety.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neural regions and circuitry implicated in the UAMA.
Figure 2: Altered anticipatory processes in response to threat uncertainty in anxiety.

Similar content being viewed by others

References

  1. Gilbert, D. T. Stumbling on Happiness (Random House, 2006).

    Google Scholar 

  2. Rosen, J. B. & Schulkin, J. From normal fear to pathological anxiety. Psychol. Rev. 105, 325–350 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Borkovec, T. D. in Anxiety and the Anxiety Disorders (eds Tuma, A. & Maser, J.) 463–478 (Lawrence Erlbaum Associates, 1985).

    Google Scholar 

  4. Davis, M., Walker, D. L., Miles, L. & Grillon, C. Phasic versus sustained fear in rats and humans: role of the extended amygdala in fear versus anxiety. Neuropsychopharmacology 35, 105–135 (2010). This comprehensive review of rodent and human startle research proposes distinct neurobiological circuits for 'fearful' and 'anxious' responses, highlighting the medial CeA and lateral CeA–lateral BNST, respectively.

    Article  PubMed  Google Scholar 

  5. Barlow, D. H. Unraveling the mysteries of anxiety and its disorders from the perspective of emotion theory. Am. Psychol. 55, 1247–1263 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Gray, J. A. & McNaughton, N. The Neuropsychology of Anxiety: an Enquiry into the Functions of the Septo-Hippocampal System (Oxford Univ. Press, 2000).

    Google Scholar 

  7. Grillon, C. Startle reactivity and anxiety disorders: aversive conditioning, context, and neurobiology. Biol. Psychiatry 52, 958–975 (2002).

    Article  PubMed  Google Scholar 

  8. Lissek, S., Pine, D. S. & Grillon, C. The strong situation: a potential impediment to studying the psychobiology and pharmacology of anxiety disorders. Biol. Psychol. 72, 265–270 (2006).

    Article  PubMed  Google Scholar 

  9. Blanchard, D. C. & Blanchard, R. J. Ethoexperimental approaches to the biology of emotion. Annu. Rev. Psychol. 39, 43–68 (1988).

    Article  CAS  PubMed  Google Scholar 

  10. Fanselow, M. S. Neural organization of the defensive behavior system responsible for fear. Psychon. Bull. Rev. 1, 429–438 (1994).

    Article  CAS  PubMed  Google Scholar 

  11. Seligman, M. E. P. Helplessness: on Depression, Development, and Death (W.H. Freeman and Company, 1975).

    Google Scholar 

  12. Graeff, F. G. Neuroanatomy and neurotransmitter regulation of defensive behaviors and related emotions in mammals. Braz. J. Med. Biol. Res. 27, 811–829 (1994).

    CAS  PubMed  Google Scholar 

  13. Walker, D. L., Toufexis, D. J. & Davis, M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. 463, 199–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn (American Psychiatric Press, 2000).

  15. Mineka, S. & Kihlstrom, J. F. Unpredictable and uncontrollable events: a new perspective on experimental neurosis. J. Abnorm. Psychol. 87, 256–271 (1978).

    Article  CAS  PubMed  Google Scholar 

  16. Mineka, S. & Hendersen, R. W. Controllability and predictability in acquired motivation. Annu. Rev. Psychol. 36, 495–529 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Fanselow, M. S. Signaled shock-free periods and preference for signaled shock. J. Exp. Psychol. Anim. Behav. Process. 6, 65–80 (1980).

    Article  Google Scholar 

  18. Seligman, M. E. P., Maier, S. F. & Solomon, R. L. in Aversive Conditioning and Learning (eds Brush, F. R. & Black, A. H.) 347–400 (Academic Press, 1971).

    Book  Google Scholar 

  19. Bach, D. R. & Dolan, R. J. Knowing how much you don't know: a neural organization of uncertainty estimates. Nature Rev. Neurosci. 13, 572–586 (2012). The authors decompose uncertainty into the following four domains for adaptive decision-making and review evidence for their common and distinct neural representations: sensory, state, rule and outcome uncertainty.

    Article  CAS  Google Scholar 

  20. Thompson, S. C. Will it hurt less if I can control it? A complex answer to a simple question. Psychol. Bull. 90, 89–101 (1981).

    Article  CAS  PubMed  Google Scholar 

  21. Lazarus, R. S. & Averill, J. R. in Stress and Anxiety (eds Spielberger, C. D. & Sarason, I. G.) 121–128 (Hemisphere, 1972).

    Google Scholar 

  22. LeDoux, J. E. The Emotional Brain: the Mysterious Underpinning of Emotional Life (Simon and Schuster, 1996).

    Google Scholar 

  23. Mowrer, O. H. & Lamoreaux, R. R. Fear as an intervening variable in avoidance conditioning. J. Comp. Psychol. 39, 29–50 (1946).

    Article  CAS  PubMed  Google Scholar 

  24. Beck, A. T. Cognitive Therapy and the Emotional Disorders (International Universities Press, 1976).

    Google Scholar 

  25. Borkovec, T. D., Alcaine, O. M. & Behar, E. in Generalized Anxiety Disorder: Advances in Research and Practice (eds Heimberg, R. G., Turk, C. L. & Mennin, D. S.) 77–108 (Guilford, 2004).

    Google Scholar 

  26. Foa, E. B. & Kozak, M. J. Emotional processing of fear: exposure to corrective information. Psychol. Bull. 99, 20–35 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Lohr, J. M., Olatunji, B. O. & Sawchuk, C. N. A functional analysis of danger and safety signals in anxiety disorders. Clin. Psychol. Rev. 27, 114–126 (2007).

    Article  PubMed  Google Scholar 

  28. Paulus, M. P. & Stein, M. B. An insular view of anxiety. Biol. Psychiatry 60, 383–387 (2006).

    Article  PubMed  Google Scholar 

  29. Whalen, P. J. Fear, vigilance, and ambiguity: initial neuroimaging studies of the human amygdala. Curr. Dir. Psychol. Sci. 7, 177–188 (1998). An early critique of neuroimaging studies that equates amygdala activation with the experience of fear; this paper provides an alternative framework in which the amygdala modulates vigilance in response to environmental uncertainty.

    Article  Google Scholar 

  30. Bouton, M. E., Mineka, S. & Barlow, D. H. A modern learning theory perspective on the etiology of panic disorder. Psychol. Rev. 108, 4–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Foa, E. B., Zinbarg, R. & Rothbaum, B. O. Uncontrollability and unpredictability in post-traumatic stress disorder: an animal model. Psychol. Bull. 112, 218–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  32. Mineka, S. & Zinbarg, R. A contemporary learning theory perspective on the etiology of anxiety disorders: it's not what you thought it was. Am. Psychol. 61, 10–26 (2006).

    Article  PubMed  Google Scholar 

  33. Öhman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).

    Article  PubMed  Google Scholar 

  34. Grillon, C. Associative learning deficits increase symptoms of anxiety in humans. Biol. Psychiatry 51, 851–858 (2002).

    Article  PubMed  Google Scholar 

  35. Lissek, S. et al. Classical fear conditioning in the anxiety disorders: a meta-analysis. Behav. Res. Ther. 43, 1391–1424 (2005).

    Article  PubMed  Google Scholar 

  36. Butler, G. & Mathews, A. Anticipatory anxiety and risk perception. Cogn. Ther. Res. 11, 551–565 (1987).

    Article  Google Scholar 

  37. Stöber, J. Trait anxiety and pessimistic appraisal of risk and chance. Pers. Individ. Dif. 22, 465–476 (1997).

    Article  Google Scholar 

  38. Mitte, K. Anxiety and risky decision-making: the role of subjective probability and subjective costs of negative events. Pers. Individ. Dif. 43, 243–253 (2007).

    Article  Google Scholar 

  39. Borkovec, T. D., Hazlett-Stevens, H. & Diaz, M. L. The role of positive beliefs about worry in generalized anxiety disorder and its treatment. Clin. Psychol. Psychother. 6, 126–138 (1999).

    Article  Google Scholar 

  40. Butler, G. & Mathews, A. Cognitive processes in anxiety. Adv. Behav. Res. Ther. 5, 51–62 (1983).

    Article  Google Scholar 

  41. Foa, E. B., Franklin, M. E., Perry, K. J. & Herbert, J. D. Cognitive biases in generalized social phobia. J. Abnorm. Psychol. 105, 433–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Gilboa-Schechtman, E., Franklin, M. E. & Foa, E. B. Anticipated reactions to social events: differences among individuals with generalized social phobia, obsessive compulsive disorder, and nonanxious controls. Cogn. Ther. Res. 24, 731–746 (2000).

    Article  Google Scholar 

  43. Warda, G. & Bryant, R. A. Cognitive bias in acute stress disorder. Behav. Res. Ther. 36, 1177–1183 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Tversky, A. & Kahneman, D. Judgment under uncertainty: heuristics and biases. Science 185, 1124–1131 (1974).

    Article  CAS  PubMed  Google Scholar 

  45. Loewenstein, G. F., Weber, E. U., Hsee, C. K. & Welch, N. Risk as feelings. Psychol. Bull. 127, 267–286 (2001). Drawing from a broad range of psychological and behavioural economics research, the authors propose the influential 'risk-as-feelings' hypothesis that emphasizes the impact of emotions on apparently suboptimal decision-making.

    Article  CAS  PubMed  Google Scholar 

  46. Volz, K. G., Schubotz, R. I. & Von Cramon, D. Y. Predicting events of varying probability: uncertainty investigated by fMRI. Neuroimage 19, 271–280 (2003).

    Article  PubMed  Google Scholar 

  47. Knutson, B., Taylor, J., Kaufman, M., Peterson, R. & Glover, G. Distributed neural representation of expected value. J. Neurosci. 25, 4806–4812 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Preuschoff, K., Bossaerts, P. & Quartz, S. R. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 28, 2745–2752 (2008). Although many studies have probed neural correlates of reward prediction and reward prediction errors, this study identifies the anterior insula as a critical site for risk prediction (that is, uncertainty associated with predictions) and risk prediction errors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Padoa-Schioppa, C. & Assad, J. A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peters, J. & Büchel, C. Neural representations of subjective reward value. Behav. Brain Res. 213, 135–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Plassmann, H., O'Doherty, J. P. & Rangel, A. Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. J. Neurosci. 30, 10799–10808 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rangel, A. & Hare, T. Neural computations associated with goal-directed choice. Curr. Opin. Neurobiol. 20, 262–270 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Schoenbaum, G., Takahashi, Y., Liu, T.-L. & McDannald, M. A. Does the orbitofrontal cortex signal value? Ann. NY Acad. Sci. 1239, 87–99 (2011).

    Article  PubMed  Google Scholar 

  54. Wallis, J. D. Cross-species studies of orbitofrontal cortex and value-based decision-making. Nature Neurosci. 15, 13–19 (2012).

    Article  CAS  Google Scholar 

  55. Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Seymour, B. et al. Temporal difference models describe higher-order learning in humans. Nature 429, 664–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Schiller, D., Levy, I., LeDoux, J. E., Niv, Y. & Phelps, E. A. From fear to safety and back: reversal of fear in the human brain. J. Neurosci. 28, 11517–11525 (2008). Using a fear-reversal paradigm, the authors show that the vmPFC dynamically tracks cues predicting safety, shifting its responses following a reversal of cue–outcome contingencies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li, J., Schiller, D., Schoenbaum, G., Phelps, E. A. & Daw, N. D. Differential roles of human striatum and amygdala in associative learning. Nature Neurosci. 14, 1250–1252 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Paulus, M. P. & Yu, A. J. Emotion and decision-making: affect-driven belief systems in anxiety and depression. Trends Cogn. Sci. 16, 476–483 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bar-Haim, Y., Lamy, D., Pergamin, L., Bakermans-Kranenburg, M. J. & Van Ijzendoorn, M. H. Threat-related attentional bias in anxious and nonanxious individuals: a meta-analytic study. Psychol. Bull. 133, 1–24 (2007).

    Article  PubMed  Google Scholar 

  62. Beck, A. T. & Emery, G. Anxiety Dsorders and Phobias: a Cognitive Perspective (Basic Books, 1985).

    Google Scholar 

  63. Mathews, A., Richards, A. & Eysenck, M. Interpretation of homophones related to threat in anxiety states. J. Abnorm. Psychol. 98, 31–34 (1989).

    Article  CAS  PubMed  Google Scholar 

  64. Hazlett-Stevens, H. & Borkovec, T. D. Interpretive cues and ambiguity in generalized anxiety disorder. Behav. Res. Ther. 42, 881–892 (2004).

    Article  PubMed  Google Scholar 

  65. Stopa, L. & Clark, D. M. Social phobia and interpretation of social events. Behav. Res. Ther. 38, 273–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Yoon, K. L. & Zinbarg, R. E. Interpreting neutral faces as threatening is a default mode for socially anxious individuals. J. Abnorm. Psychol. 117, 680–685 (2008).

    Article  PubMed  Google Scholar 

  67. Richards, J. C., Austin, D. W. & Alvarenga, M. E. Interpretation of ambiguous interoceptive stimuli in panic disorder and nonclinical panic. Cogn. Ther. Res. 25, 235–246 (2001).

    Article  Google Scholar 

  68. Kimble, M. O. et al. Sentence completion test in combat veterans with and without PTSD: preliminary findings. Psychiatry Res. 113, 303–307 (2002).

    Article  PubMed  Google Scholar 

  69. Sakai, Y. et al. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 16, 927–931 (2005).

    Article  PubMed  Google Scholar 

  70. Semple, W. E. et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry 63, 65–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Chung, Y. A. et al. Alterations in cerebral perfusion in posttraumatic stress disorder patients without re-exposure to accident-related stimuli. Clin. Neurophysiol. 117, 637–642 (2006).

    Article  PubMed  Google Scholar 

  72. Bremner, J. D. et al. Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol. Psychiatry 53, 879–889 (2003).

    Article  PubMed  Google Scholar 

  73. Shin, L. M. et al. Resting metabolic activity in the cingulate cortex and vulnerability to posttraumatic stress disorder. Arch. Gen. Psychiatry 66, 1099–1107 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Furmark, T. et al. Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch. Gen. Psychiatry 59, 425–433 (2002).

    Article  PubMed  Google Scholar 

  75. Fox, A. S., Shelton, S. E., Oakes, T. R., Davidson, R. J. & Kalin, N. H. Trait-like brain activity during adolescence predicts anxious temperament in primates. PLoS ONE 3, e2570 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oler, J. A. et al. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature 466, 864–868 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Etkin, A. & Wager, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry 164, 1476–1488 (2007). This meta-analysis identifies a common pattern of amygdala and insula hyperactivity across different anxiety disorders, as well as disorder-specific patterns of hyper- and hypoactivation.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nitschke, J. B. et al. Anticipatory activation in the amygdala and anterior cingulate in generalized anxiety disorder and prediction of treatment response. Am. J. Psychiatry 166, 302–310 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Etkin, A., Prater, K. E., Hoeft, F., Menon, V. & Schatzberg, A. F. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167, 545–554 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lorberbaum, J. P. et al. Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport 15, 2701–2705 (2004).

    PubMed  Google Scholar 

  81. Guyer, A. E. et al. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch. Gen. Psychiatry 65, 1303–1312 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. LeDoux, J. E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Holland, P. C. & Gallagher, M. Amygdala circuitry in attentional and representational processes. Trends Cogn. Sci. 3, 65–73 (1999). This review emphasizes the importance of the amygdala in appetitive as well as aversive conditioning and highlights distinct subregions involved in the representation of value versus attentional processes.

    Article  CAS  PubMed  Google Scholar 

  84. Holland, P. C. & Gallagher, M. Different roles for amygdala central nucleus and substantia innominata in the surprise-induced enhancement of learning. J. Neurosci. 26, 3791–3797 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980).

    Article  CAS  PubMed  Google Scholar 

  86. Pessoa, L. Emotion and cognition and the amygdala: from “what is it?” to “what's to be done?” Neuropsychologia 48, 3416–3429 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ghashghaei, H. T. & Barbas, H. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115, 1261–1279 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).

    Article  PubMed  Google Scholar 

  89. Woody, S. & Rachman, S. Generalized anxiety disorder (GAD) as an unsuccessful search for safety. Clin. Psychol. Rev. 14, 743–753 (1994).

    Article  Google Scholar 

  90. Grillon, C. et al. Increased anxiety during anticipation of unpredictable but not predictable aversive stimuli as a psychophysiologic marker of panic disorder. Am. J. Psychiatry 165, 898–904 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lissek, S. et al. Impaired discriminative fear-conditioning resulting from elevated fear responding to learned safety cues among individuals with panic disorder. Behav. Res. Ther. 47, 111–118 (2009).

    Article  PubMed  Google Scholar 

  92. Grillon, C. et al. Increased anxiety during anticipation of unpredictable aversive stimuli in posttraumatic stress disorder but not in generalized anxiety disorder. Biol. Psychiatry 66, 47–53 (2009). In a rare study directly comparing patients with different anxiety disorders with healthy controls, the authors showed that there is increased startle responding under unpredictable (but not predictable) threat conditions in PTSD but not GAD.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jovanovic, T. et al. Impaired fear inhibition is a biomarker of PTSD but not depression. Depress. Anxiety 27, 244–251 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Waters, A. M., Henry, J. & Neumann, D. L. Aversive Pavlovian conditioning in childhood anxiety disorders: impaired response inhibition and resistance to extinction. J. Abnorm. Psychol. 118, 311–321 (2009).

    Article  PubMed  Google Scholar 

  95. Myers, K. M. & Davis, M. AX+, BX- discrimination learning in the fear-potentiated startle paradigm: possible relevance to inhibitory fear learning in extinction. Learn. Mem. 11, 464–475 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Milad, M. R. & Quirk, G. J. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420, 70–74 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Sierra-Mercado, D., Padilla-Coreano, N. & Quirk, G. J. Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36, 529–538 (2011). By selectively inactivating different structures during fear conditioning and extinction, the authors demonstrated a double dissociation between prelimbic and infralimbic cortices with regard to their involvement in fear expression and extinction memory, respectively.

    Article  PubMed  Google Scholar 

  98. Phelps, E. A., Delgado, M. R., Nearing, K. I. & LeDoux, J. E. Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Milad, M. R. et al. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol. Psychiatry 62, 446–454 (2007).

    Article  PubMed  Google Scholar 

  100. Mobbs, D. et al. Neural activity associated with monitoring the oscillating threat value of a tarantula. Proc. Natl Acad. Sci. USA 107, 20582–20586 (2010). Subjects were exposed to a live tarantula during fMRI scanning using a paradigm that allowed for the dissociation of brain regions responsive to absolute threat proximity versus approach and/or withdrawal of threat.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rauch, S. L., Shin, L. M. & Phelps, E. A. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research — past, present, and future. Biol. Psychiatry 60, 376–382 (2006).

    Article  PubMed  Google Scholar 

  102. Milad, M. R. et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry 66, 1075–1082 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shin, L. M. et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch. Gen. Psychiatry 61, 168–176 (2004).

    Article  PubMed  Google Scholar 

  104. Phan, K. L., Britton, J. C., Taylor, S. F., Fig, L. M. & Liberzon, I. Corticolimbic blood flow during nontraumatic emotional processing in posttraumatic stress disorder. Arch. Gen. Psychiatry 63, 184–192 (2006).

    Article  PubMed  Google Scholar 

  105. Greenberg, T., Carlson, J. M., Cha, J., Hajcak, G. & Mujica-Parodi, L. R. Ventromedial prefrontal cortex reactivity is altered in generalized anxiety disorder during fear generalization. Depress. Anxiety 30, 242–250 (2013).

    Article  PubMed  Google Scholar 

  106. Whalen, P. J. et al. A functional magnetic resonance imaging predictor of treatment response to venlafaxine in generalized anxiety disorder. Biol. Psychiatry 63, 858–863 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Mayberg, H. S. Limbic-cortical dysregulation: a proposed model of depression. J. Neuropsychiatry Clin. Neurosci. 9, 471–481 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Pizzagalli, D. A. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36, 183–206 (2011).

    Article  PubMed  Google Scholar 

  109. Tromp, D. P. et al. Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Arch. Gen. Psychiatry 69, 16–24 (2012).

    Article  Google Scholar 

  110. Phan, K. L. et al. Preliminary evidence of white matter abnormality in the uncinate fasciculus in generalized social anxiety disorder. Biol. Psychiatry 66, 691–694 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Kim, M. J. & Whalen, P. J. The structural integrity of an amygdala-prefrontal pathway predicts trait anxiety. J. Neurosci. 29, 11614–11618 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Myers-Schulz, B. & Koenigs, M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol. Psychiatry 17, 132–141 (2012). This review challenges the predominant model of the inhibition of amygdala by the vmPFC and suggests a more complex framework in which activation of distinct vmPFC subregions can be associated with either positive or negative affect.

    Article  CAS  PubMed  Google Scholar 

  113. Koenigs, M. et al. Focal brain damage protects against post-traumatic stress disorder in combat veterans. Nature Neurosci. 11, 232–237 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Bryant, R. A. et al. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum. Brain. Mapp. 29, 517–523 (2008).

    Article  PubMed  Google Scholar 

  115. Hayes, J. P., Labar, K. S., Petty, C. M., McCarthy, G. & Morey, R. A. Alterations in the neural circuitry for emotion and attention associated with posttraumatic stress symptomatology. Psychiatry Res. 172, 7–15 (2009).

    Article  PubMed Central  Google Scholar 

  116. Fox, A. S. et al. Orbitofrontal cortex lesions alter anxiety-related activity in the primate bed nucleus of stria terminalis. J. Neurosci. 30, 7023–7027 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lovibond, P. F., Mitchell, C. J., Minard, E., Brady, A. & Menzies, R. G. Safety behaviours preserve threat beliefs: protection from extinction of human fear conditioning by an avoidance response. Behav. Res. Ther. 47, 716–720 (2009).

    Article  PubMed  Google Scholar 

  118. Salkovskis, P. M., Clark, D. M., Hackmann, A., Wells, A. & Gelder, M. G. An experimental investigation of the role of safety-seeking behaviours in the maintenance of panic disorder with agoraphobia. Behav. Res. Ther. 37, 559–574 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Solomon, R. L., Kamin, L. J. & Wynne, L. C. Traumatic avoidance learning: the outcomes of several extinction procedures with dogs. J. Abnorm. Social Psychol. 48, 291–302 (1953).

    Article  CAS  Google Scholar 

  120. Neill, D. B., Boggan, W. O. & Grossman, S. P. Impairment of avoidance performance by intrastriatal administration of 6-hydroxydopamine. Pharmacol. Biochem. Behav. 2, 97–103 (1974).

    Article  CAS  PubMed  Google Scholar 

  121. McCullough, L. D., Sokolowski, J. D. & Salamone, J. D. A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52, 919–925 (1993).

    Article  CAS  PubMed  Google Scholar 

  122. Amorapanth, P., LeDoux, J. E. & Nader, K. Different lateral amygdala outputs mediate reactions and actions elicited by a fear-arousing stimulus. Nature Neurosci. 3, 74–79 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Moscarello, J. M. & LeDoux, J. E. Active avoidance learning requires prefrontal suppression of amygdala-mediated defensive reactions. J. Neurosci. 33, 3815–3823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Delgado, M. R., Jou, R. L., LeDoux, J. E. & Phelps, E. A. Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Front. Behav. Neurosci. 3 (2009).

  125. Aupperle, R. L. & Paulus, M. P. Neural systems underlying approach and avoidance in anxiety disorders. Dialogues Clin. Neurosci. 12, 517–531 (2010).

    PubMed  Google Scholar 

  126. Shackman, A. J. et al. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Rev. Neurosci. 12, 154–167 (2011). On the basis of a comprehensive survey of diverse literatures, as well as a meta-analysis of studies involving pain, negative affect and cognitive control, the authors propose a central and overarching role for the aMCC in executing 'adaptive control' in the face of uncertainty.

    Article  CAS  Google Scholar 

  127. Straube, T., Glauer, M., Dilger, S., Mentzel, H.-J. & Miltner, W. H. R. Effects of cognitive-behavioral therapy on brain activation in specific phobia. Neuroimage 29, 125–135 (2006).

    Article  PubMed  Google Scholar 

  128. Hauner, K. K., Mineka, S., Voss, J. L. & Paller, K. A. Exposure therapy triggers lasting reorganization of neural fear processing. Proc. Natl Acad. Sci. USA 109, 9203–9218 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Shankman, S. A., Robison-Andrew, E. J., Nelson, B. D., Altman, S. E. & Campbell, M. L. Effects of predictability of shock timing and intensity on aversive responses. Int. J. Psychophysiol. 80, 112–118 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hefner, K. R. & Curtin, J. J. Alcohol stress response dampening: selective reduction of anxiety in the face of uncertain threat. J. Psychopharmacol. 26, 232–244 (2012).

    Article  PubMed  Google Scholar 

  131. Grillon, C., Baas, J. P., Lissek, S., Smith, K. & Milstein, J. Anxious responses to predictable and unpredictable aversive events. Behav. Neurosci. 118, 916–924 (2004).

    Article  PubMed  Google Scholar 

  132. Dunsmoor, J. E., Bandettini, P. A. & Knight, D. C. Neural correlates of unconditioned response diminution during Pavlovian conditioning. Neuroimage 40, 811–817 (2008).

    Article  PubMed  Google Scholar 

  133. Sarinopoulos, I. et al. Uncertainty during anticipation modulates neural responses to aversion in human insula and amygdala. Cereb. Cortex 20, 929–940 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Grupe, D. W. & Nitschke, J. B. Uncertainty is associated with biased expectancies and heightened responses to aversion. Emotion 11, 413–424 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Herry, C. et al. Processing of temporal unpredictability in human and animal amygdala. J. Neurosci. 27, 5958–5966 (2007). This translational study showed that mice and humans exposed to a temporally unpredictable, neutral tone demonstrated a common pattern of amygdala activation and increased anxious behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bechtholt, A. J., Valentino, R. J. & Lucki, I. Overlapping and distinct brain regions associated with the anxiolytic effects of chlordiazepoxide and chronic fluoxetine. Neuropsychopharmacology 33, 2117–2130 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Grillon, C. et al. The benzodiazepine alprazolam dissociates contextual fear from cued fear in humans as assessed by fear-potentiated startle. Biol. Psychiatry 60, 760–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Baas, J. M. et al. Benzodiazepines have no effect on fear-potentiated startle in humans. Psychopharmacology 161, 233–247 (2002).

    Article  CAS  PubMed  Google Scholar 

  139. Straube, T., Mentzel, H.-J. & Miltner, W. H. R. Waiting for spiders: brain activation during anticipatory anxiety in spider phobics. Neuroimage 37, 1427–1436 (2007).

    Article  PubMed  Google Scholar 

  140. Alvarez, R. P., Chen, G., Bodurka, J., Kaplan, R. & Grillon, C. Phasic and sustained fear in humans elicits distinct patterns of brain activity. Neuroimage 55, 389–400 (2011).

    Article  PubMed  Google Scholar 

  141. Somerville, L. H. et al. Interactions between transient and sustained neural signals support the generation and regulation of anxious emotion. Cereb. Cortex 23, 49–60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Grupe, D. W., Oathes, D. J. & Nitschke, J. B. Dissecting the anticipation of aversion reveals dissociable neural networks. Cereb. Cortex 4 Jul 2012 (doi:10.1093/cercor/bhs175).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Somerville, L. H., Whalen, P. J. & Kelley, W. M. Human bed nucleus of the stria terminalis indexes hypervigilant threat monitoring. Biol. Psychiatry 68, 416–424 (2010). When presented with false physiological feedback that they believed to be yoked to the delivery of an electric shock, individuals with high levels of trait anxiety showed increased BNST activation as threat became more proximal.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Buhr, K. & Dugas, M. J. The intolerance of uncertainty scale: psychometric properties of the English version. Behav. Res. Ther. 40, 931–945 (2002).

    Article  CAS  PubMed  Google Scholar 

  145. Dugas, M. J. et al. Intolerance of uncertainty and information processing: evidence of biased recall and interpretations. Cogn. Ther. Res. 29, 57–70 (2005).

    Article  Google Scholar 

  146. Carleton, R. N. et al. Increasingly certain about uncertainty: intolerance of uncertainty across anxiety and depression. J. Anxiety Disord. 26, 468–479 (2012).

    Article  PubMed  Google Scholar 

  147. Kuhnen, C. M. & Knutson, B. The neural basis of financial risk taking. Neuron 47, 763–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  148. Singer, T., Critchley, H. D. & Preuschoff, K. A common role of insula in feelings, empathy and uncertainty. Trends Cogn. Sci. 13, 334–340 (2009).

    Article  PubMed  Google Scholar 

  149. Clark, L. et al. Differential effects of insular and ventromedial prefrontal cortex lesions on risky decision-making. Brain 131, 1311–1322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nitschke, J. B., Sarinopoulos, I., Mackiewicz, K. L., Davidson, R. J. & Schaefer, H. S. Functional neuroanatomy of aversion and its anticipation. Neuroimage 29, 106–116 (2006). This study identifies a broad network of regions that are commonly activated in anticipation of and in response to aversive images, including the amygdala, ACC, anterior insula, dorsolateral PFC and OFC.

    Article  PubMed  Google Scholar 

  151. Dunsmoor, J. E., Bandettini, P. A. & Knight, D. C. Impact of continuous versus intermittent CS–UCS pairing on human brain activation during Pavlovian fear conditioning. Behav. Neurosci. 121, 635–642 (2007).

    Article  PubMed  Google Scholar 

  152. Damasio, A. R. Descartes' Error: Emotion,Reason, and the Human Brain (Penguin Books, 1994).

    Google Scholar 

  153. Craig, A. D. How do you feel — now? The anterior insula and human awareness. Nature Rev. Neurosci. 10, 59–70 (2009). Craig presents an updated theory of anterior insula function, highlighting this region's role in the integration of feeling states across time and conscious awareness.

    Article  CAS  Google Scholar 

  154. Gilbert, D. T. & Wilson, T. D. Prospection: experiencing the future. Science 317, 1351–1354 (2007). The authors propose that decision-making about future events results from simulation of those events and their anticipated emotional consequences and discuss common errors of prospection that result from such simulations.

    Article  CAS  PubMed  Google Scholar 

  155. Aupperle, R. L. et al. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch. Gen. Psychiatry 69, 360–371 (2012).

    Article  PubMed  Google Scholar 

  156. Simmons, A. N. et al. Anxiety positive subjects show altered processing in the anterior insula during anticipation of negative stimuli. Hum. Brain. Mapp. 32, 1836–1846 (2011).

    Article  PubMed  Google Scholar 

  157. Simmons, A. N., Strigo, I. A., Matthews, S. C., Paulus, M. P. & Stein, M. B. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biol. Psychiatry 60, 402–409 (2006).

    Article  PubMed  Google Scholar 

  158. Simmons, A. N., Matthews, S. C., Paulus, M. P. & Stein, M. B. Intolerance of uncertainty correlates with insula activation during affective ambiguity. Neurosci. Lett. 430, 92–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Moisset, X. et al. Anatomical connections between brain areas activated during rectal distension in healthy volunteers: a visceral pain network. Eur. J. Pain 14, 142–148 (2010).

    Article  PubMed  Google Scholar 

  160. Cauda, F. et al. Functional connectivity of the insula in the resting brain. Neuroimage 55, 8–23 (2011).

    Article  PubMed  Google Scholar 

  161. Milad, M. R. et al. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry 62, 1191–1194 (2007).

    Article  PubMed  Google Scholar 

  162. Medford, N. & Critchley, H. D. Conjoint activity of anterior insular and anterior cingulate cortex: awareness and response. Brain Struct. Funct. 214, 535–549 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Robinson, O. J., Charney, D. R., Overstreet, C., Vytal, K. & Grillon, C. The adaptive threat bias in anxiety: amygdala–dorsomedial prefrontal cortex coupling and aversive amplification. Neuroimage 60, 523–529 (2012).

    Article  PubMed  Google Scholar 

  164. Ray, R. D. & Zald, D. H. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neurosci. Biobehav. Rev. 36, 479–501 (2012).

    Article  PubMed  Google Scholar 

  165. Yamasue, H. et al. Voxel-based analysis of MRI reveals anterior cingulate gray-matter volume reduction in posttraumatic stress disorder due to terrorism. Proc. Natl Acad. Sci. USA 100, 9039–9043 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rougemont-Bücking, A. et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci. Ther. 17, 227–236 (2011).

    Article  PubMed  Google Scholar 

  167. Bryant, R. A. et al. Neural networks of information processing in posttraumatic stress disorder: a functional magnetic resonance imaging study. Biol. Psychiatry 58, 111–118 (2005).

    Article  PubMed  Google Scholar 

  168. Klumpp, H., Angstadt, M. & Phan, K. L. Insula reactivity and connectivity to anterior cingulate cortex when processing threat in generalized social anxiety disorder. Biol. Psychol. 89, 273–276 (2012).

    Article  PubMed  Google Scholar 

  169. Asami, T. et al. Anterior cingulate cortex volume reduction in patients with panic disorder. Psychiatry Clin. Neurosci. 62, 322–330 (2008).

    Article  PubMed  Google Scholar 

  170. Shinoura, N. et al. Damage to the right dorsal anterior cingulate cortex induces panic disorder. J. Affect. Disord. 133, 569–572 (2011).

    Article  PubMed  Google Scholar 

  171. Dougherty, D. D. Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am. J. Psychiatry 159, 269–275 (2002).

    Article  PubMed  Google Scholar 

  172. Radua, J., Van den Heuvel, O. A., Surguladze, S. & Mataix-Cols, D. Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder versus other anxiety disorders. Arch. Gen. Psychiatry 67, 701–711 (2010).

    Article  PubMed  Google Scholar 

  173. Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C. & Whalen, P. J. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex 21, 1667–1673 (2011).

    Article  PubMed  Google Scholar 

  174. Krain, A. L. et al. A functional magnetic resonance imaging investigation of uncertainty in adolescents with anxiety disorders. Biol. Psychiatry 63, 563–568 (2008).

    Article  PubMed  Google Scholar 

  175. Saygin, Z. M., Osher, D. E., Augustinack, J., Fischl, B. & Gabrieli, J. D. E. Connectivity-based segmentation of human amygdala nuclei using probabilistic tractography. Neuroimage 56, 1353–1361 (2011).

    Article  PubMed  Google Scholar 

  176. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    Article  PubMed  Google Scholar 

  177. Augustine, J. R. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res. Rev. 22, 229–244 (1996).

    Article  CAS  PubMed  Google Scholar 

  178. Reynolds, S. M. & Zahm, D. S. Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J. Neurosci. 25, 11757–11767 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sylvester, C. M. et al. Functional network dysfunction in anxiety and anxiety disorders. Trends Neurosci. 35, 527–535 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Buckholtz, J. W. & Meyer-Lindenberg, A. Psychopathology and the human connectome: toward a transdiagnostic model of risk for mental illness. Neuron 74, 990–1004 (2012). The authors propose a novel framework for investigating the neural basis of psychiatric disorders, suggesting that an emphasis on functional connectivity within large-scale networks will allow the identification of broad risk-related phenotypes and advance the classification and identification of these disorders.

    Article  CAS  PubMed  Google Scholar 

  181. Suvak, M. K. & Barrett, L. F. Considering PTSD from the perspective of brain processes: a psychological construction approach. J. Trauma. Stress 24, 3–24 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Hakamata, Y. et al. Attention bias modification treatment: a meta-analysis toward the establishment of novel treatment for anxiety. Biol. Psychiatry 68, 982–990 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Ressler, K. J. et al. Cognitive enhancers as adjuncts to psychotherapy: use of D-cycloserine in phobic individuals to facilitate extinction of fear. Arch. Gen. Psychiatry 61, 1136–1144 (2004).

    Article  PubMed  Google Scholar 

  184. Davis, M., Myers, K. M., Ressler, K. J. & Rothbaum, B. O. Facilitation of extinction of conditioned fear by D-cycloserine: implications for psychopathology. Curr. Dir. Psychol. Sci. 14, 214–219 (2005).

    Article  Google Scholar 

  185. Hofmann, S. G. et al. Augmentation of exposure therapy with D-cycloserine for social anxiety disorder. Arch. Gen. Psychiatry 63, 298–304 (2006).

    Article  CAS  PubMed  Google Scholar 

  186. Kushner, M. G. et al. D-cycloserine augmented exposure therapy for obsessive-compulsive disorder. Biol. Psychiatry 62, 835–838 (2007).

    Article  CAS  PubMed  Google Scholar 

  187. De Kleine, R. A., Hendriks, G.-J., Kusters, W. J. C., Broekman, T. G. & Van Minnen, A. A randomized placebo-controlled trial of D-cycloserine to enhance exposure therapy for posttraumatic stress disorder. Biol. Psychiatry 71, 962–968 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Wilhelm, S. et al. Augmentation of behavior therapy with D-cycloserine for obsessive-compulsive disorder. Am. J. Psychiatry 165, 335–341 (2008).

    Article  PubMed  Google Scholar 

  189. Otto, M. W. et al. Efficacy of D-cycloserine for enhancing response to cognitive-behavior therapy for panic disorder. Biol. Psychiatry 67, 365–370 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Behar, E., McHugh, R. K., Peckham, A. & Otto, M. W. D-cycloserine for the augmentation of an attentional training intervention for trait anxiety. J. Anxiety Disord. 24, 440–445 (2010).

    Article  PubMed  Google Scholar 

  191. DeCharms, R. C. Reading and controlling human brain activation using real-time functional magnetic resonance imaging. Trends Cogn. Sci. 11, 473–481 (2007).

    Article  PubMed  Google Scholar 

  192. Caria, A., Sitaram, R., Veit, R., Begliomini, C. & Birbaumer, N. Volitional control of anterior insula activity modulates the response to aversive stimuli. A real-time functional magnetic resonance imaging study. Biol. Psychiatry 68, 425–432 (2010).

    Article  PubMed  Google Scholar 

  193. Borkovec, T. D. Life in the future versus life in the present. Clin. Psychol. Sci. Pr. 9, 76–80 (2002).

    Article  Google Scholar 

  194. Roemer, L. & Orsillo, S. M. Expanding our conceptulization of and treatment for generalized anxiety disorder: integrating mindfulness/acceptance-based approaches with existing cognitive-behavioral models. Clin. Psychol. Sci. Pr. 9, 54–68 (2002).

    Article  Google Scholar 

  195. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Bagg, P. R. & Jacobs, G. A. Manual for the State-Trait Anxiety Inventory (Consulting Psychologists, 1983).

    Google Scholar 

  196. Watson, D. et al. Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J. Abnorm. Psychol. 104, 3–14 (1995).

    Article  CAS  PubMed  Google Scholar 

  197. Nitschke, J. B., Heller, W., Imig, J. C., McDonald, R. P. & Miller, G. A. Distinguishing dimensions of anxiety and depression. Cogn. Ther. Res. 25, 1–22 (2001).

    Article  Google Scholar 

  198. Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol. 67, 319–333 (1994).

    Article  Google Scholar 

  199. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J. Pers. Soc. Psychol. 54, 1063–1070 (1988).

    Article  CAS  PubMed  Google Scholar 

  200. Meyer, T. J., Miller, M. L., Metzger, R. L. & Borkovec, T. D. Development and validation of the Penn State Worry Questionnaire. Behav. Res. Ther. 28, 487–495 (1990).

    Article  CAS  PubMed  Google Scholar 

  201. Watson, D. et al. Development and validation of the Inventory of Depression and Anxiety Symptoms (IDAS). Psychol. Assess. 19, 253–268 (2007).

    Article  PubMed  Google Scholar 

  202. Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893–897 (1988).

    Article  CAS  PubMed  Google Scholar 

  203. Reiss, S., Peterson, R. A., Gursky, D. M. & McNally, R. J. Anxiety sensitivity, anxiety frequency and the prediction of fearfulness. Behav. Res. Ther. 24, 1–8 (1986).

    Article  CAS  PubMed  Google Scholar 

  204. Zinbarg, R. E. & Barlow, D. H. Structure of anxiety and the anxiety disorders: a hierarchical model. J. Abnorm. Psychol. 105, 181–193 (1996).

    Article  CAS  PubMed  Google Scholar 

  205. Brown, T. A., Chorpita, B. F. & Barlow, D. H. Structural relationships among dimensions of the DSM-IV anxiety and mood disorders and dimensions of negative affect, positive affect, and autonomic arousal. J. Abnorm. Psychol. 107, 179–192 (1998).

    Article  CAS  PubMed  Google Scholar 

  206. Krueger, R. F. The structure of common mental disorders. Arch. Gen. Psychiatry 56, 921–926 (1999).

    Article  CAS  PubMed  Google Scholar 

  207. Hettema, J. M., Prescott, C. A., Myers, J. M., Neale, M. C. & Kendler, K. S. The structure of genetic and environmental risk factors for anxiety disorders in men and women. Arch. Gen. Psychiatry 62, 182–189 (2005).

    Article  PubMed  Google Scholar 

  208. Bartz, J. A. & Hollander, E. Is obsessive-compulsive disorder an anxiety disorder? Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 338–352 (2006).

    Article  PubMed  Google Scholar 

  209. Watson, D. Rethinking the mood and anxiety disorders: a quantitative hierarchical model for DSM-V. J. Abnorm. Psychol. 114, 522–536 (2005).

    Article  PubMed  Google Scholar 

  210. Brown, T. A. & Barlow, D. H. A proposal for a dimensional classification system based on the shared features of the DSM-IV anxiety and mood disorders: implications for assessment and treatment. Psychol. Assess. 21, 256–271 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Garber, J., Miller, S. M. & Abramson, L. Y. in Human Helplessness: Theory and Applications (eds Garber, J. & Seligman, M. E. P.) 131–169 (Academic Press, 1980).

    Google Scholar 

  212. Abramson, L. Y., Metalsky, G. I. & Alloy, L. B. Hopelessness depression: a theory-based subtype of depression. Psychol. Rev. 96, 358–372 (1989).

    Article  Google Scholar 

  213. Alloy, L. B., Kelly, K. A., Mineka, S. & Clements, C. M. in Comorbidity of Mood and Anxiety Disorders (eds Maser, J. D. & Cloninger, C. R.) 499–543 (American Psychiatric Press, 1990).

    Google Scholar 

  214. Kishida, K. T., King-Casas, B. & Montague, P. R. Neuroeconomic approaches to mental disorders. Neuron 67, 543–554 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Nesse, R. M. & Klaas, R. Risk perception by patients with anxiety disorders. J. Nerv. Ment. Dis. 182, 465–470 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Abramson, R. Davidson, N. Kalin, J. Curtin and members of the Curtin laboratory for feedback on previous versions of this manuscript. This work was supported by the National Science Foundation (Graduate Research Fellowship to D.W.G.) and the US National Institute of Mental Health (R01-MH74847, K02-MH082130 to J.B.N.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan W. Grupe or Jack B. Nitschke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

Anxiety

The suite of anticipatory affective, cognitive and behavioural changes in response to uncertainty about a potential future threat.

Ventromedial prefrontal cortex

(vmPFC). It encompasses the medial orbitofrontal cortex, posterior frontopolar cortex, subgenual anterior cingulate cortex (ACC) and inferior pregenual ACC, including Brodmann areas 11, 14 and 25, and portions of 10, 24 and 32.

Orbitofrontal cortex

(OFC). Medial and lateral aspects of the orbital surface of the prefrontal cortex, including Brodmann areas 11, 13 and 14, and ventral portions of 10 and 47/12.

Fear-potentiated startle

The enhanced response to a startling stimulus observed in negative arousing states, such as fear or anxiety.

Hypervigilance

A state of increased attention to a perceived threat in one's environment.

Fear conditioning

The process by which a neutral conditioned stimulus (CS+) becomes associated with an aversive, unconditioned stimulus (US) through repeated contingent presentations of the CS+ and US, resulting in fear expression following presentation of the CS+ alone.

Prediction error

The difference between predicted and actual outcomes, which results in a neural signal that leads to increasingly accurate future predictions.

Rostral cingulate cortex

Encompasses the anterior cingulate cortex and anterior mid-cingulate cortex, including Brodmann areas 24, 25, 32 and 33.

Associability

The propensity of a stimulus to form associations with other stimuli in the environment; associability increases following surprising or unpredicted outcomes.

Conditional discrimination tasks

A variant of fear-conditioning paradigms that allows for the independent investigation of safety learning and the inhibition of fear responses in the presence of learned safe cues.

Fear extinction

An active learning process in which a conditioned stimulus (CS+) is repeatedly presented in the absence of a contingent unconditioned stimulus (US), leading to a new association between the CS+ and safety that competes with the original association between the CS+ and US.

Diffusion tensor imaging

An MRI technique that assays the diffusion properties of water molecules, providing insight into the microstructural properties of white matter.

Uncinate fasciculus

The primary white matter tract connecting ventral portions of the prefrontal cortex and anterior cingulate cortex with medial temporal lobe structures, including the amygdala.

Exposure therapy

A therapeutic technique in which individuals are presented with feared objects, situations or memories in a safe setting, thus causing a reduction of fearful associations.

Cognitive behavioural therapy

A diverse collection of therapies in which there is an emphasis on the correction or restructuring of inaccurate beliefs and maladaptive behaviours.

Benzodiazepines

A widely used class of GABA receptor agonists for the treatment of anxiety disorders.

Interoception

The perception of sensory events occurring within one's body.

D-cycloserine

A partial agonist of the NMDA glutamate receptor that has been shown to enhance learning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grupe, D., Nitschke, J. Uncertainty and anticipation in anxiety: an integrated neurobiological and psychological perspective. Nat Rev Neurosci 14, 488–501 (2013). https://doi.org/10.1038/nrn3524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing