Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence

Key Points

  • Vision is limited by spatial resolution, which is determined by photoreceptor spacing in the retina as well as the size, spacing and number of receptive fields (RFs) along the visual pathway.

  • To overcome this limitation, we can either 'overtly' attend to select objects of interest by moving our eyes to focus them on the part of the retina with highest spatial resolution — the fovea — or we can 'covertly' shift spatial attention without moving the eyes.

  • Covert spatial attention can enhance spatial resolution in various behavioural tasks, such as visual search, acuity tasks and texture segmentation tasks, at the cost of resolution at unattended locations. Moreover, covert attention distorts the perception of spatial features, such as spatial frequency, size and shape of objects as well as the distance between them.

  • Physiologically, attention shifts cortical RFs towards the focus of attention. Furthermore, RFs shrink when attention is directed to their location and RFs expand towards the focus of attention when it is directed nearby. These changes can qualitatively explain most of the behavioural findings.

  • The shifts of RFs selectively concentrate processing resources at the attentional focus and thereby enhance the representation of attended stimuli compared with unattended stimuli, which could underlie improved performance with attention in tasks limited by spatial resolution. RF shifts can distort the perception of space under the assumption of a labelled-line code for spatial position by changing the position of the RFs without updating their label.

  • RF shrinkage can improve spatial resolution performance by reducing spatial integration, thus excluding distracting information. RF shrinkage can modulate texture segmentation performance by changing the match between the texture scale and filter size.

  • To make a quantitative link between physiological and behavioural findings, future research would benefit from using common or more comparable paradigms.

Abstract

Attention allows us to select relevant sensory information for preferential processing. Behaviourally, it improves performance in various visual tasks. One prominent effect of attention is the modulation of performance in tasks that involve the visual system's spatial resolution. Physiologically, attention modulates neuronal responses and alters the profile and position of receptive fields near the attended location. Here, we develop a hypothesis linking the behavioural and electrophysiological evidence. The proposed framework seeks to explain how these receptive field changes enhance the visual system's effective spatial resolution and how the same mechanisms may also underlie attentional effects on the representation of spatial information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allocation of spatial attention.
Figure 2: Behavioural evidence of attention effects on spatial resolution.
Figure 3: Attention alters perception of spatial stimulus features.
Figure 4: Attention alters receptive field profiles.

Similar content being viewed by others

References

  1. Levi, D. M., Klein, S. A. & Aitsebaomo, A. P. Vernier acuity, crowding and cortical magnification. Vision Res. 25, 963–977 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. Martin, G. Psychophysics. Limits of visual resolution. Nature 319, 540 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Kitterle, F. L. Psychophysics of lateral tachistoscopic presentation. Brain Cogn. 5, 131–162 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Rovamo, J., Virsu, V. & Nasanen, R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision. Nature 271, 54–56 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Wright, M. J. & Johnston, A. Spatiotemporal contrast sensitivity and visual field locus. Vision Res. 23, 983–989 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vision Res. 29, 1631–1647 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Yeshurun, Y. & Carrasco, M. Attention improves or impairs visual performance by enhancing spatial resolution. Nature 396, 72–75 (1998). This study provides a strong link between attention and spatial resolution by using a texture segmentation task in which the higher resolution brought about by attention impairs performance.

    Article  CAS  PubMed  Google Scholar 

  8. Yeshurun, Y. & Carrasco, M. Spatial attention improves performance in spatial resolution tasks. Vision Res. 39, 293–306 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Liu, T., Stevens, S. T. & Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vision Res. 47, 108–113 (2007).

    Article  PubMed  Google Scholar 

  11. Hawkins, H. L. et al. Visual attention modulates signal detectability. J. Exp. Psychol. Hum. Percept. Perform. 16, 802–811 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vision Res. 38, 1183–1198 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Carrasco, M., Penpeci-Talgar, C. & Eckstein, M. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res. 40, 1203–1215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ling, S. & Carrasco, M. Sustained and transient covert attention enhance the signal via different contrast response functions. Vision Res. 46, 1210–1220 (2006).

    Article  PubMed  Google Scholar 

  15. Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. & Heeger, D. J. When size matters: attention affects performance by contrast or response gain. Nature Neurosci. 13, 1554–1559 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Carrasco, M. & McElree, B. Covert attention accelerates the rate of visual information processing. Proc. Natl Acad. Sci. USA 98, 5363–5367 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carrasco, M., Giordano, A. M. & McElree, B. Attention speeds processing across eccentricity: feature and conjunction searches. Vision Res. 46, 2028–2040 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Carrasco, M., Giordano, A. M. & McElree, B. Temporal performance fields: visual and attentional factors. Vision Res. 44, 1351–1365 (2004).

    Article  PubMed  Google Scholar 

  19. Scholte, H. S. Spekreijse, H. & Roelfsema, P. R. The spatial profile of visual attention in mental curve tracing. Vision Res. 41, 2569–2580 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Carrasco, M. Visual attention: the past 25 years. Vision Res. 51, 1484–1525 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rolfs, M. & Carrasco, M. Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. J. Neurosci. 32, 13744–13752a (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao, M., Gersch, T. M., Schnitzer, B. S., Dosher, B. A. & Kowler, E. Eye movements and attention: the role of pre-saccadic shifts of attention in perception, memory and the control of saccades. Vision Res. 74, 40–60 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lennie, P. The cost of cortical computation. Curr. Biol. 13, 493–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Cheal, M. & Lyon, D. R. Central and peripheral precuing of forced-choice discrimination. Q. J. Exp. Psychol. A 43, 859–880 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Muller, H. J. & Rabbitt, P. M. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform. 15, 315–330 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Busse, L., Katzner, S. & Treue, S. Temporal dynamics of neuronal modulation during exogenous and endogenous shifts of visual attention in macaque area MT. Proc. Natl Acad. Sci. USA 105, 16380–16385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giordano, A. M., McElree, B. & Carrasco, M. On the automaticity and flexibility of covert attention: a speed–accuracy trade-off analysis. J. Vis. 9, 30 (2009).

    Article  PubMed  Google Scholar 

  28. Cameron, E. L., Tai, J. C., Eckstein, M. P. & Carrasco, M. Signal detection theory applied to three visual search tasks — identification, yes/no detection and localization. Spat. Vis. 17, 295–325 (2004).

    Article  PubMed  Google Scholar 

  29. Montagna, B., Pestilli, F. & Carrasco, M. Attention trades off spatial acuity. Vision Res. 49, 735–745 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Talgar, C. P., Pelli, D. G. & Carrasco, M. Covert attention enhances letter identification without affecting channel tuning. J. Vis. 4, 22–31 (2004).

    Article  PubMed  Google Scholar 

  31. Morgan, M. J., Ward, R. M. & Castet, E. Visual search for a tilted target: tests of spatial uncertainty models. Q. J. Exp. Psychol. A 51, 347–370 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Baldassi, S. & Burr, D. C. Feature-based integration of orientation signals in visual search. Vision Res. 40, 1293–1300 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Morrone, M. C., Denti, V. & Spinelli, D. Different attentional resources modulate the gain mechanisms for color and luminance contrast. Vision Res. 44, 1389–1401 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Pestilli, F., Viera, G. & Carrasco, M. How do attention and adaptation affect contrast sensitivity? J. Vis. 7, 9 (2007).

    Article  PubMed  Google Scholar 

  35. Pestilli, F. & Carrasco, M. Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Res. 45, 1867–1875 (2005).

    Article  PubMed  Google Scholar 

  36. Luck, S. J. et al. Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J. Exp. Psychol. Hum. Percept. Perform. 20, 887–904 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Ling, S. & Carrasco, M. When sustained attention impairs perception. Nature Neurosci. 9, 1243–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Barbot, A., Landy, M. S. & Carrasco, M. Exogenous attention enhances 2nd-order contrast sensitivity. Vision Res. 51, 1086–1098 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985). On the basis of the finding that attention biases the response to two stimuli inside a neuron's RF in favour of the attended stimulus, the authors are the first to suggest that attention alters spatial integration by contracting RFs around the attended stimulus.

  40. Treue, S. & Maunsell, J. H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 382, 539–541 (1996). This single-unit study demonstrates stronger and earlier effects of attention along the dorsal stream than previously reported.

    Article  CAS  PubMed  Google Scholar 

  41. Treue, S. & Maunsell, J. H. Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. J. Neurosci. 19, 7591–7602 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reynolds, J. H., Pasternak, T. & Desimone, R. Attention increases sensitivity of V4 neurons. Neuron 26, 703–714 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Williford, T. & Maunsell, J. H. Effects of spatial attention on contrast response functions in macaque area V4. J. Neurophysiol. 96, 40–54 (2006).

    Article  PubMed  Google Scholar 

  44. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Tootell, R. B. et al. The retinotopy of visual spatial attention. Neuron 21, 1409–1422 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Brefczynski, J. A. & DeYoe, E. A. A physiological correlate of the 'spotlight' of visual attention. Nature Neurosci. 2, 370–374 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, T., Pestilli, F. & Carrasco, M. Transient attention enhances perceptual performance & FMRI response in human visual cortex. Neuron 45, 469–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Silver, M. A., Ress, D. & Heeger, D. J. Neural correlates of sustained spatial attention in human early visual cortex. J. Neurophysiol. 97, 229–237 (2007).

    Article  PubMed  Google Scholar 

  50. Datta, R. & DeYoe, E. A. I know where you are secretly attending! The topography of human visual attention revealed with fMRI. Vision Res. 49, 1037–1044 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Li, X., Lu, Z. L., Tjan, B. S., Dosher, B. A. & Chu, W. Blood oxygenation level-dependent contrast response functions identify mechanisms of covert attention in early visual areas. Proc. Natl Acad. Sci. USA 105, 6202–6207 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buracas, G. T. & Boynton, G. M. The effect of spatial attention on contrast response functions in human visual cortex. J. Neurosci. 27, 93–97 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pestilli, F., Carrasco, M., Heeger, D. J. & Gardner, J. L. Attentional enhancement viaselection and pooling of early sensory responses in human visual cortex. Neuron 72, 832–846 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Connor, C. E., Gallant, J. L., Preddie, D. C. & Van Essen, D. C. Responses in area V4 depend on the spatial relationship between stimulus and attention. J. Neurophysiol. 75, 1306–1308 (1996). This study provides the first evidence for shifts of a neuron's RF profile towards an attended stimulus.

    Article  CAS  PubMed  Google Scholar 

  55. Connor, C. E., Preddie, D. C., Gallant, J. L. & Van Essen, D. C. Spatial attention effects in macaque area V4. J. Neurosci. 17, 3201–3214 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamed, B. S., Duhamel, J. R., Bremmer, F. & Graf, W. Visual receptive field modulation in the lateral intraparietal area during attentive fixation and free gaze. Cereb. Cortex 12, 234–245 (2002).

    Article  PubMed  Google Scholar 

  57. Anton-Erxleben, K., Stephan, V. M. & Treue, S. Attention reshapes center-surround receptive field structure in macaque cortical area MT. Cereb. Cortex 19, 2466–2478 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Womelsdorf, T., Anton-Erxleben, K., Pieper, F. & Treue, S. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. Nature Neurosci. 9, 1156–1160 (2006). By measuring RF maps under different attentional conditions, this study demonstrates for the first time that RFs shift towards and shrink around an attended stimulus.

    Article  CAS  PubMed  Google Scholar 

  59. Womelsdorf, T., Anton-Erxleben, K. & Treue, S. Receptive field shift and shrinkage in macaque middle temporal area through attentional gain modulation. J. Neurosci. 28, 8934–8944 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Compte, A. & Wang, X. J. Tuning curve shift by attention modulation in cortical neurons: a computational study of its mechanisms. Cereb. Cortex 16, 761–778 (2006).

    Article  PubMed  Google Scholar 

  61. Miconi, T. & VanRullen, R. in Symp. on Computational Intelligence for Multimedia, Signal and Vision Processing 106–113 (IEEE Press, 2011).

    Google Scholar 

  62. Carrasco, M. & Yeshurun, Y. Covert attention effects on spatial resolution. Prog. Brain Res. 176, 65–86 (2009).

    Article  PubMed  Google Scholar 

  63. Carrasco, M. & Yeshurun, Y. The contribution of covert attention to the set-size and eccentricity effects in visual search. J. Exp. Psychol. Hum. Percept. Perform. 24, 673–692 (1998). This study shows for the first time that attention improves performance in feature and conjunction visual search and suggests that attention improves performance by enhancing spatial resolution.

    Article  CAS  PubMed  Google Scholar 

  64. Yeshurun, Y. & Rashal, E. Precueing attention to the target location diminishes crowding and reduces the critical distance. J. Vis. 10, 16 (2010).

    Article  PubMed  Google Scholar 

  65. Carrasco, M., Williams, P. E. & Yeshurun, Y. Covert attention increases spatial resolution with or without masks: support for signal enhancement. J. Vis. 2, 467–479 (2002).

    Article  PubMed  Google Scholar 

  66. Shalev, L. & Tsal, Y. Detecting gaps with and without attention: further evidence for attentional receptive fields. Eur. J. Cogn. Psychol. 14, 3–26 (2002). This study reports that attention improves performance in the detection and localization of a small gap and hypothesizes that attention increases resolution by decreasing the size of 'attentional RFs'.

    Article  Google Scholar 

  67. Golla, H., Ignashchenkova, A., Haarmeier, T. & Thier, P. Improvement of visual acuity by spatial cueing: a comparative study in human and non-human primates. Vision Res. 44, 1589–1600 (2004). This study extends findings in humans to non-human primates and shows that, in both species, attention similarly improves performance in acuity tasks.

    Article  PubMed  Google Scholar 

  68. Yeshurun, Y. & Carrasco, M. The locus of attentional effects in texture segmentation. Nature Neurosci. 3, 622–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Carrasco, M., Loula, F. & Ho, Y. X. How attention enhances spatial resolution: evidence from selective adaptation to spatial frequency. Percept. Psychophys. 68, 1004–1012 (2006). Using selective adaptation to different spatial frequencies, this study attributes attention effects on texture segmentation performance to high spatial frequency-selective filters.

    Article  PubMed  Google Scholar 

  70. Abrams, J., Barbot, A. & Carrasco, M. Voluntary attention increases perceived spatial frequency. Atten. Percept. Psychophys. 72, 1510–1521 (2010). This study shows that attention alters the subjective appearance of a stimulus' spatial frequency. The authors suggest that this effect can be explained by a shift of sensitivity to higher spatial frequencies.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gobell, J. & Carrasco, M. Attention alters the appearance of spatial frequency and gap size. Psychol. Sci. 16, 644–651 (2005).

    Article  PubMed  Google Scholar 

  72. Suzuki, S. & Cavanagh, P. Focused attention distorts visual space: an attentional repulsion effect. J. Exp. Psychol. Hum. Percept. Perform. 23, 443–463 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Anton-Erxleben, K., Henrich, C. & Treue, S. Attention changes perceived size of moving visual patterns. J. Vis. 7, 5 (2007). This study shows that attention alters the subjective appearance of the size of a stimulus, which is consistent with an attentional repulsion of the stimulus' borders. The authors suggest that this effect can be explained by an RF shift towards the attentional focus.

    Article  PubMed  Google Scholar 

  74. Fortenbaugh, F. C., Prinzmetal, W. & Robertson, L. C. Rapid changes in visual-spatial attention distort object shape. Psychon. Bull. Rev. 18, 287–294 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Treisman, A. M. Preattentive processing in vision. Comput. Vis. Graph. Image Process. 31, 156–177 (1985).

    Article  Google Scholar 

  77. Nakayama, M. & Martini, P. Situating visual search. Vision Res. 51, 1526–1537 (2011).

    Article  PubMed  Google Scholar 

  78. Wolfe, J. M., Cave, K. R. & Franzel, S. L. Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 419–433 (1989).

    Article  CAS  PubMed  Google Scholar 

  79. Nakayama, K. & Silverman, G. H. Serial and parallel processing of visual feature conjunctions. Nature 320, 264–265 (1986).

    Article  CAS  PubMed  Google Scholar 

  80. Duncan, J. & Humphreys, G. W. Visual search and stimulus similarity. Psychol. Rev. 96, 433–458 (1989).

    Article  CAS  PubMed  Google Scholar 

  81. McLeod, P., Driver, J. & Crisp, J. Visual search for a conjunction of movement and form is parallel. Nature 332, 154–155 (1988).

    Article  CAS  PubMed  Google Scholar 

  82. Enns, J. T. & Rensink, R. A. Influence of scene-based properties on visual search. Science 247, 721–723 (1990).

    Article  CAS  PubMed  Google Scholar 

  83. Carrasco, M. & Frieder, K. S. Cortical magnification neutralizes the eccentricity effect in visual search. Vision Res. 37, 63–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Carrasco, M., McLean, T. L., Katz, S. M. & Frieder, K. S. Feature asymmetries in visual search: effects of display duration, target eccentricity, orientation and spatial frequency. Vision Res. 38, 347–374 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Dosher, B., Han, S. & Lu, Z.-L. Time course of asymmetric visual search. J. Exp. Psychol. Hum. Percept. Perform. 30, 3–27 (2004).

    Article  PubMed  Google Scholar 

  86. Carrasco, M., Evert, D. L., Chang, I. & Katz, S. M. The eccentricity effect: target eccentricity affects performance on conjunction searches. Percept. Psychophys. 57, 1241–1261 (1995).

    Article  CAS  PubMed  Google Scholar 

  87. McElree, B. & Carrasco, M. The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. J. Exp. Psychol. Hum. Percept. Perform. 25, 1517–1539 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carrasco, M., Ponte, D., Rechea, C. & Sampedro, M.J. “Transient structures”: the effects of practice and distractor grouping ion within-dimension conjunction searches. Percept. Psychophys. 60, 1243–1258 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Eckstein, M. Visual search: a retrospective. J. Vis. 11, 5 (2011).

    Article  Google Scholar 

  90. Pelli, D. G. Crowding: a cortical constraint on object recognition. Curr. Opin. Neurobiol. 18, 445–451 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mackeben, M. & Nakayama, K. Express attentional shifts. Vision Res. 33, 85–90 (1993).

    Article  CAS  PubMed  Google Scholar 

  92. Balz, G. W. & Hock, H. S. The effect of attentional spread on spatial resolution. Vision Res. 37, 1499–1510 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Lee, D. K., Koch, C. & Braun, J. Spatial vision thresholds in the near absence of attention. Vision Res. 37, 2409–2418 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Westheimer, G. Do ocular-dominance columns set spatial limits for hyperacuity processing? Vision Res. 22, 1349–1352 (1982).

    Article  CAS  PubMed  Google Scholar 

  95. Barlow, H. B. The Ferrier Lecture, 1980. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. Lond. B 212, 1–34 (1981).

    Article  CAS  PubMed  Google Scholar 

  96. Barlow, H. B. Reconstructing the visual image in space and time. Nature 279, 189–190 (1979).

    Article  CAS  PubMed  Google Scholar 

  97. Lee, D. K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nature Neurosci. 2, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Gurnsey, R., Pearson, P. & Day, D. Texture segmentation along the horizontal meridian: nonmonotonic changes in performance with eccentricity. J. Exp. Psychol. Hum. Percept. Perform. 22, 738–757 (1996).

    Article  CAS  PubMed  Google Scholar 

  99. Kehrer, L. Central performance drop on perceptual segregation tasks. Spat. Vis. 4, 45–62 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Kehrer, L. The central performance drop in texture segmentation: a simulation based on a spatial filter model. Biol. Cybern. 77, 297–305 (1997).

    Article  Google Scholar 

  101. Potechin, C. & Gurnsey, R. Backward masking is not required to elicit the central performance drop. Spat. Vis. 16, 393–406 (2003).

    Article  PubMed  Google Scholar 

  102. Yeshurun, Y., Montagna, B. & Carrasco, M. On the flexibility of sustained attention and its effects on a texture segmentation task. Vision Res. 48, 80–95 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Talgar, C. P. & Carrasco, M. Vertical meridian asymmetry in spatial resolution: visual and attentional factors. Psychon. Bull. Rev. 9, 714–722 (2002).

    Article  PubMed  Google Scholar 

  104. Morikawa, K. Central performance drop in texture segmentation: the role of spatial and temporal factors. Vision Res. 40, 3517–3526 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Sperling, G. & Melchner, M. J. The attention operating characteristic: examples from visual search. Science 202, 315–318 (1978).

    Article  CAS  PubMed  Google Scholar 

  106. Kinchla, R. A. in Attention and Performance Vol. 3 (ed. Nikerson, R. S.) 213–238 (Erlbaum, 1980).

    Google Scholar 

  107. Pastukhov, A., Fischer, L. & Braun, J. Visual attention is a single, integrated resource. Vision Res. 49, 1166–1173 (2009).

    Article  PubMed  Google Scholar 

  108. Fortenbaugh, F. C. & Robertson, L. C. When here becomes there: attentional distribution modulates foveal bias in peripheral localization. Atten. Percept. Psychophys. 73, 809–828 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Pratt, J. & Turk-Browne, N. B. The attentional repulsion effect in perception and action. Exp. Brain Res. 152, 376–382 (2003).

    Article  PubMed  Google Scholar 

  110. McAdams, C. J. & Maunsell, J. H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999). By measuring tuning curves with attention inside or outside the RF, this study shows that attention modulates neural activity via multiplicative scaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reynolds, J. H., Chelazzi, L. & Desimone, R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J. Neurosci. 19, 1736–1753 (1999). This study shows that attention biases the response to two stimuli inside a neuron's RF in favour of the attended stimulus and proposes a model based on competitive interactions among neurons to account for these findings.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, J. & Maunsell, J. H. Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields. J. Neurosci. 30, 3058–3066 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ghose, G. M. & Maunsell, J. H. Spatial summation can explain the attentional modulation of neuronal responses to multiple stimuli in area V4. J. Neurosci. 28, 5115–5126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Niebergall, R., Khayat, P. S., Treue, S. & Martinez-Trujillo, J. C. Expansion of MT neurons excitatory receptive fields during covert attentive tracking. J. Neurosci. 31, 15499–15510 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Connor, C. E. Attention: beyond neural response increases. Nature Neurosci. 9, 1083–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Salinas, E. & Abbott, L. F. Coordinate transformations in the visual system: how to generate gain fields and what to compute with them. Prog. Brain Res. 130, 175–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  117. Fischer, J. & Whitney, D. Attention narrows position tuning of population responses in V1. Curr. Biol. 19, 1356–1361 (2009). By comparing the spread of the BOLD response for attended and unattended stimuli, this fMRI study shows that attention reduces the overlap of the representation of neighbouring stimuli in area V1, suggesting that attention enhances spatial resolution by sharpening spatial tuning.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Eurich, C. W. & Schwegler, H. Coarse coding: calculation of the resolution achieved by a population of large receptive field neurons. Biol. Cybern. 76, 357–363 (1997).

    Article  CAS  PubMed  Google Scholar 

  119. Treue, S. Climbing the cortical ladder from sensation to perception. Trends Cogn. Sci. 7, 469–471 (2003).

    Article  PubMed  Google Scholar 

  120. Hopf, J. M. et al. Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proc. Natl Acad. Sci. USA 103, 1053–1058 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Muller, N. G. & Kleinschmidt, A. The attentional 'spotlight's' penumbra: center-surround modulation in striate cortex. Neuroreport 15, 977–980 (2004).

    Article  PubMed  Google Scholar 

  122. Hopf, J. M., Boehler, C. N., Schoenfeld, M. A., Heinze, H. J. & Tsotsos, J. K. The spatial profile of the focus of attention in visual search: insights from MEG recordings. Vision Res. 50, 1312–1320 (2010).

    Article  PubMed  Google Scholar 

  123. Cutzu, F. & Tsotsos, J. K. The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Res. 43, 205–219 (2003).

    Article  PubMed  Google Scholar 

  124. Allman, J., Miezin, F. & McGuinness, E. Direction- and velocity-specific responses from beyond the classical receptive field in the middle temporal visual area (MT). Perception 14, 105–126 (1985).

    Article  CAS  PubMed  Google Scholar 

  125. Born, R. T., Groh, J. M., Zhao, R. & Lukasewycz, S. J. Segregation of object and background motion in visual area MT: effects of microstimulation on eye movements. Neuron 26, 725–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Martinez-Trujillo, J. C. & Treue, S. Feature-based attention increases the selectivity of population responses in primate visual cortex. Curr. Biol. 14, 744–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Treue, S. & Martinez-Trujillo, J. C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  PubMed  Google Scholar 

  128. David, S. V., Hayden, B. Y., Mazer, J. A. & Gallant, J. L. Attention to stimulus features shifts spectral tuning of V4 neurons during natural vision. Neuron 59, 509–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fritz, J., Shamma, S., Elhilali, M. & Klein, D. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nature Neurosci. 6, 1216–1223 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Fritz, J. B., Elhilali, M. & Shamma, S. A. Differential dynamic plasticity of A1 receptive fields during multiple spectral tasks. J. Neurosci. 25, 7623–7635 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lennie, P. Receptive fields. Curr. Biol. 13, 216–219 (2003).

    Article  Google Scholar 

  132. Lennie, P. Single units and visual cortical organization. Perception 27, 889–935 (1998).

    Article  CAS  PubMed  Google Scholar 

  133. DeValois, R. L. & DeValois, K. K. Spatial Vision (Oxford Univ. Press, 1988).

    Google Scholar 

  134. Connolly, M. & Van Essen, D. The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey. J. Comp. Neurol. 226, 544–564 (1984).

    Article  CAS  PubMed  Google Scholar 

  135. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 24, 429–448 (1984).

    Article  CAS  PubMed  Google Scholar 

  136. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    Article  CAS  PubMed  Google Scholar 

  137. Tootell, R. B., Switkes, E., Silverman, M. S. & Hamilton, S. L. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8, 1531–1568 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Maunsell, J. H. & McAdams, C. J. in The New Cognitive Neurosciences (ed. Gazzaniga, M.) 315–324 (MIT Press, 1999).

    Google Scholar 

  139. Fix, J. et al. in Proc. of the 5th French Conference on Computational Neuroscience 147–152 (NeuroComp, 2010).

    Google Scholar 

  140. Olshausen, B. A., Anderson, C. H. & Van Essen, D. C. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13, 4700–4719 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  142. Reynolds, J. H. & Desimone, R. The role of neural mechanisms of attention in solving the binding problem. Neuron 24, 19–29, 111–125 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. McDonald, J. J. & Green, J. J. Isolating event-related potential components associated with voluntary control of visuo-spatial attention. Brain Res. 1227, 96–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  144. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci. 3, 284–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Lauritzen, T. Z., D'Esposito, M., Heeger, D. J. & Silver, M. A. Top-down flow of visual spatial attention signals from parietal to occipital cortex. J. Vis. 9, 18 (2009).

    Article  PubMed  Google Scholar 

  146. Rossi, A. F., Pessoa, L., Desimone, R. & Ungerleider, L. G. The prefrontal cortex and the executive control of attention. Exp. Brain Res. 192, 489–497 (2009).

    Article  PubMed  Google Scholar 

  147. Roberts, M., Delicato, L. S., Herrero, J., Gieselmann, M. A. & Thiele, A. Attention alters spatial integration in macaque V1 in an eccentricity-dependent manner. Nature Neurosci. 10, 1483–1491 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Ito, M. & Gilbert, C. D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Sundberg, K. A., Mitchell, J. F. & Reynolds, J. H. Spatial attention modulates center-surround interactions in macaque visual area v4. Neuron 61, 952–963 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Treue, Y. Yeshurun, B. Lawrence, the current members of the Carrasco laboratory and the two anonymous reviewers for helpful comments on the manuscript. This publication is supported by the US National Institutes of Health (NIH) grant NIH R01-EY019693 and NIH-R01-EY016200 (to M.C.), a Feodor-Lynen Research Fellowship, Alexander-von-Humboldt Foundation and NIH NRSA 1F32EY021420 (to K.A.-E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katharina Anton-Erxleben or Marisa Carrasco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Marisa Carrasco's homepage

Glossary

Spatial resolution

The ability to discriminate two nearby points in space.

Fovea

The central part of the retina with highest receptor density, finest receptor-to-retinal ganglion cell mapping and therefore best spatial resolution. It contains the highest density of cones and the highest cone-to-rod ratio.

Extrastriate areas

All visual cortical areas that are higher in the processing hierarchy than primary visual cortex (V1; also known as striate cortex), including areas along the temporal (for example, area V4 and the inferior temporal cortex) as well as the dorsal pathway (for example, the medial temporal area and medial superior temporal area).

Eccentricity

The distance from the fovea. Visual field eccentricity corresponds to retinal eccentricity during fixation.

Spatial frequency tuning

The variation of the neuronal response to variations in spatial frequency of a stimulus. Spatial frequency describes the scale over which local contrast varies in a visual scene.

Saccades

Rapid eye movements that align gaze with a new location in visual space several times per second.

Spatial attention

Selection of a particular region in space so that processing of information from that location is enhanced. Here, we focus on visual spatial attention; that is, the selection of visual information and its effects on the activity of visual neurons and visual performance. Spatial attention can be directed overtly — that is, by moving the eyes towards the location of interest — or covertly — that is, without eye movements (covert attention). Covert attention can be allocated voluntarily (endogenous attention) or captured involuntarily (exogenous attention).

Attentional focus

The location in the visual field at which attention is allocated.

Cortical magnification factor

(CMF). The area of cortical surface to which a stimulus subtending 1 degree of visual angle on the retina projects. Often, the reciprocal of the CMF is used to determine the number of degrees visual angle a stimulus should subtend to activate 1mm of cortex. This number increases linearly with eccentricity.

Landolt stimulus

A typical stimulus used to measure acuity. Observers have to detect a small gap in a circle or square or discriminate the location of the gap (for example, the left or right side of the circle or square).

Vernier tasks

Typical tasks that are used to measure hyperacuity. Observers have to report a small lateral offset between two lines.

Selectively adapting

Prolonged exposure to a particular stimulus selectively decreases the responses of neurons involved in processing the stimulus and therefore decreases sensitivity to the subsequent presentation of the same or a similar stimulus.

Visual hemifields

These are one half of the visual field.

Retinotopic maps

Neighbouring locations on the retina also stimulate neighbouring locations in retinotopic cortical areas. Thus, even though distances may be distorted (cortical magnification), spatial relations between different locations are kept from the retina through higher levels of the visual processing hierarchy, including the visual areas V1, V2 and V4, and the medial temporal area.

Labelled-line code

The idea that information about a stimulus (for example, its location) in the nervous system is transmitted by activity in specific connections — 'labelled lines'. For example, receptive fields are 'labelled with their location in the visual field, and thus activity of a neuron with a certain receptive field creates the sensation of a stimulus at that particular location.

Feature-based attention

The selection of a particular feature within a dimension, such as vertical orientation, red colour or upwards motion direction. Processing of the selected feature is enhanced independent of spatial location.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anton-Erxleben, K., Carrasco, M. Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence. Nat Rev Neurosci 14, 188–200 (2013). https://doi.org/10.1038/nrn3443

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn3443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing