Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

A new perspective on the role of the orbitofrontal cortex in adaptive behaviour

Abstract

The orbitofrontal cortex (OFC) is crucial for changing established behaviour in the face of unexpected outcomes. This function has been attributed to the role of the OFC in response inhibition or to the idea that the OFC is a rapidly flexible associative-learning area. However, recent data contradict these accounts, and instead suggest that the OFC is crucial for signalling outcome expectancies. We suggest that this function — signalling of expected outcomes — can also explain the crucial role of the OFC in changing behaviour in the face of unexpected outcomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Showing orbitofrontal involvement in flexible, adaptive behaviour in rats using an odour discrimination reversal task.
Figure 2: Stylized plots of reward-responsive neurons in the orbitofrontal cortex.
Figure 3: The proposed role of the orbitofrontal cortex in flexible, adaptive behaviour.

Similar content being viewed by others

References

  1. Harlow, J. M. Recovery after passage of an iron bar through the head. Publ. Massachusetts Med. Soc. 2, 329–346 (1868).

    Google Scholar 

  2. Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M. & Damasio, A. R. The return of Phineas Gage: clues about the brain from the skull of a famous patient. Science 264, 1102–1105 (1994).

    CAS  PubMed  Google Scholar 

  3. Schoenbaum, G. & Roesch, M. R. Orbitofrontal cortex, associative learning, and expectancies. Neuron 47, 633–636 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Preuss, T. M. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J. Comp. Neurol. 7, 1–24 (1995).

    CAS  Google Scholar 

  5. Jones, B. & Mishkin, M. Limbic lesions and the problem of stimulus-reinforcement associations. Exp. Neurol. 36, 362–377 (1972).

    CAS  PubMed  Google Scholar 

  6. Butter, C. M. Perseveration and extinction in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav. 4, 163–171 (1969).

    Google Scholar 

  7. Rolls, E. T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Meunier, M., Bachevalier, J. & Mishkin, M. Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 35, 999–1015 (1997).

    CAS  PubMed  Google Scholar 

  9. McAlonan, K. & Brown, V. J. Orbital prefrontal cortex mediates reversal learning and not attentional set shifting in the rat. Behav. Brain Res. 146, 97–130 (2003).

    PubMed  Google Scholar 

  10. Bissonette, G. B. et al. Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. J. Neurosci. 28, 11124–11130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bechara, A., Damasio, H., Tranel, D. & Damasio, A. R. Deciding advantageously before knowing the advantageous strategy. Science 275, 1293–1294 (1997).

    CAS  PubMed  Google Scholar 

  12. Izquierdo, A. D., Suda, R. K. & Murray, E. A. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24, 7540–7548 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chudasama, Y. & Robbins, T. W. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. J. Neurosci. 23, 8771–8780 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fellows, L. K. & Farah, M. J. Ventromedial frontal cortex mediates affective shifting in humans: evidence from a reversal learning paradigm. Brain 126, 1830–1837 (2003).

    PubMed  Google Scholar 

  15. Hornak, J. et al. Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J. Cogn. Neurosci. 16, 463–478 (2004).

    CAS  PubMed  Google Scholar 

  16. Schoenbaum, G., Setlow, B., Nugent, S. L., Saddoris, M. P. & Gallagher, M. Lesions of orbitofrontal cortex and basolateral amygdala complex disrupt acquisition of odor-guided discriminations and reversals. Learn. Mem. 10, 129–140 (2003).

    PubMed  PubMed Central  Google Scholar 

  17. Ferrier, D. The Functions of the Brain (G. P. Putnam's Sons, New York, 1876).

    Google Scholar 

  18. Fuster, J. M. The Prefrontal Cortex (Lippin-Ravencott, New York, 1997).

    Google Scholar 

  19. Damasio, A. R. Decartes' Error (Putnam, New York, 1994).

    Google Scholar 

  20. Eagle, D. M. et al. Stop-signal reaction-time task performance: role of prefrontal cortex and subthalamic nucleus. Cereb. Cortex 18, 178–188 (2008).

    PubMed  Google Scholar 

  21. Wallis, J. D., Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable contributions of the orbitofrontal and lateral prefrontal cortex of the marmoset to performance on a detour reaching task. Eur. J. Neurosci. 13, 1797–1808 (2001).

    CAS  PubMed  Google Scholar 

  22. Gallagher, M., McMahan, R. W. & Schoenbaum, G. Orbitofrontal cortex and representation of incentive value in associative learning. J. Neurosci. 19, 6610–6614 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Baxter, M. G., Parker, A., Lindner, C. C. C., Izquierdo, A. D. & Murray, E. A. Control of response selection by reinforcer value requires interaction of amygdala and orbitofrontal cortex. J. Neurosci. 20, 4311–4319 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pickens, C. L., Saddoris, M. P., Gallagher, M. & Holland, P. C. Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav. Neurosci. 119, 317–322 (2005).

    PubMed  PubMed Central  Google Scholar 

  25. Pickens, C. L. et al. Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. J. Neurosci. 23, 11078–11084 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Burke, K. A., Franz, T. M., Miller, D. N. & Schoenbaum, G. The role of orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454, 340–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kazama, A. & Bachevalier, J. Selective aspiration or neurotoxic lesions of orbital frontal areas 11 and 13 spared monkeys' performance on the object discrimination reversal task. J. Neurosci. 29, 2794–2804 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chudasama, Y., Kralik, J. D. & Murray, E. A. Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task. Cereb. Cortex 17, 1154–1159 (2007).

    CAS  PubMed  Google Scholar 

  29. Rolls, E. T. The orbitofrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1433–1443 (1996).

    CAS  PubMed  Google Scholar 

  30. Thorpe, S. J., Rolls, E. T. & Maddison, S. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 49, 93–115 (1983).

    CAS  PubMed  Google Scholar 

  31. Rolls, E. T., Critchley, H. D., Mason, R. & Wakeman, E. A. Orbitofrontal cortex neurons: role in olfactory and visual association learning. J. Neurophysiol. 75, 1970–1981 (1996).

    CAS  PubMed  Google Scholar 

  32. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J. Neurosci. 19, 1876–1884 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stalnaker, T. A., Roesch, M. R., Franz, T. M., Burke, K. A. & Schoenbaum, G. Abnormal associative encoding in orbitofrontal neurons in cocaine-experienced rats during decision-making. Eur. J. Neurosci. 24, 2643–2653 (2006).

    PubMed  PubMed Central  Google Scholar 

  34. Patton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

    Google Scholar 

  35. Stalnaker, T. A., Franz, T. M., Singh, T. & Schoenbaum, G. Basolateral amygdala lesions abolish orbitofrontal-dependent reversal impairments. Neuron 54, 51–58 (2007).

    CAS  PubMed  Google Scholar 

  36. Schoenbaum, G., Chiba, A. A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning. Nature Neurosci. 1, 155–159 (1998).

    CAS  PubMed  Google Scholar 

  37. Hollerman, J. R. & Schultz, W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nature Neurosci. 1, 304–309 (1998).

    CAS  PubMed  Google Scholar 

  38. Roesch, M. R., Calu, D. J. & Schoenbaum, G. Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards. Nature Neurosci. 10, 1615–1624 (2007).

    CAS  PubMed  Google Scholar 

  39. Pan, W.-X., Schmidt, R., Wickens, J. R. & Hyland, B. I. Dopamine cells respond to predicted events during classical conditioning: evidence for eligibility traces in the reward-learning network. J. Neurosci. 25, 6235–6242 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Waelti, P., Dickinson, A. & Schultz, W. Dopamine responses comply with basic assumptions of formal learning theory. Nature 412, 43–48 (2001).

    CAS  PubMed  Google Scholar 

  41. Bayer, H. M. & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 47, 129–141 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schoenbaum, G., Setlow, B., Saddoris, M. P. & Gallagher, M. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39, 855–867 (2003).

    CAS  PubMed  Google Scholar 

  43. Takahashi, Y. et al. The orbitofrontal cortex and ventral tegmental area are necessary for learning from unexpected outcomes. Neuron 62, 269–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Wallis, J. D. & Miller, E. K. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18, 2069–2081 (2003).

    PubMed  Google Scholar 

  45. Gottfried, J. A., O'Doherty, J. & Dolan, R. J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    CAS  PubMed  Google Scholar 

  46. O'Doherty, J., Deichmann, R., Critchley, H. D. & Dolan, R. J. Neural responses during anticipation of a primary taste reward. Neuron 33, 815–826 (2002).

    CAS  PubMed  Google Scholar 

  47. Hikosaka, K. & Watanabe, M. Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb. Cortex 10, 263–271 (2000).

    CAS  PubMed  Google Scholar 

  48. Hikosaka, K. & Watanabe, M. Long- and short-range reward expectancy in the primate orbitofrontal cortex. Eur. J. Neurosci. 19, 1046–1054 (2004).

    PubMed  Google Scholar 

  49. Padoa-Schioppa, C. & Assad, J. A. Neurons in orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  PubMed  Google Scholar 

  51. Sugase-Miyamoto, Y. & Richmond, B. J. Neuronal signals in the monkey basolateral amygdala during reward schedules. J. Neurosci. 25, 11071–11083 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe, M. Reward expectancy in primate prefrontal neurons. Nature 382, 629–632 (1996).

    CAS  PubMed  Google Scholar 

  53. Shidara, M. & Richmond, B. J. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    PubMed  Google Scholar 

  54. Saddoris, M. P., Gallagher, M. & Schoenbaum, G. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46, 321–331 (2005).

    CAS  PubMed  Google Scholar 

  55. Schoenbaum, G. & Eichenbaum, H. Information coding in the rodent prefrontal cortex. I. Single-neuron activity in orbitofrontal cortex compared with that in pyriform cortex. J. Neurophysiol. 74, 733–750 (1995).

    CAS  PubMed  Google Scholar 

  56. Niv, Y. & Schoenbaum, G. Dialogues on prediction errors. Trends Cogn. Sci. 12, 265–272 (2008).

    PubMed  Google Scholar 

  57. Machado, C. J. & Bachevalier, J. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur. J. Neurosci. 25, 2885–2904 (2007).

    PubMed  Google Scholar 

  58. O'Doherty, J. et al. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex. Neuroreport 11, 893–897 (2000).

    CAS  PubMed  Google Scholar 

  59. Critchley, H. D. & Rolls, E. T. Hunger and satiety modify the responses of olfactory and visual neurons in the primate orbitofrontal cortex. J. Neurophysiol. 75, 1673–1686 (1996).

    CAS  PubMed  Google Scholar 

  60. de Araujo, I. E. et al. Neural ensemble coding of satiety states. Neuron 51, 483–494 (2006).

    CAS  PubMed  Google Scholar 

  61. Hatfield, T., Han, J. S., Conley, M., Gallagher, M. & Holland, P. Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. J. Neurosci. 16, 5256–5265 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Malkova, L., Gaffan, D. & Murray, E. A. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17, 6011–6020 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wellmann, L. L., Gale, K. & Malkova, L. GABAA-mediated inhibition of basolateral amygdala blocks reward devaluation in macaques. J. Neurosci. 25, 4577–4586 (2005).

    Google Scholar 

  64. Mitchell, A. S., Browning, P. G. & Baxter, M. G. Neurotoxic lesions of the medial mediodorsal nucleus of the thalamus disrupt reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 27, 11289–11295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ostlund, S. B. & Balleine, B. W. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental learning. J. Neurosci. 27, 4819–4825 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kheramin, S. et al. Role of the orbital prefrontal cortex in choice between delayed and uncertain reinforcers: a quantitative analysis. Behav. Process. 64, 239–250 (2003).

    CAS  Google Scholar 

  67. Winstanley, C. A., Theobald, D. E. H., Cardinal, R. N. & Robbins, T. W. Contrasting roles of basolateral amygdala and orbitofrontal cortex in impulsive choice. J. Neurosci. 24, 4718–4722 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mobini, S. et al. Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 160, 290–298 (2002).

    CAS  PubMed  Google Scholar 

  69. Cousens, G. A. & Otto, T. Neural substrates of olfactory discrimination learning with auditory secondary reinforcement. I. Contributions of the basolateral amygdaloid complex and orbitofrontal cortex. Integr. Physiol. Behav. Sci. 38, 272–294 (2003).

    PubMed  Google Scholar 

  70. Hutcheson, D. M. & Everitt, B. J. The effects of selective orbitofrontal cortex lesions on the acquisition and performance of cue-controlled cocaine seeking in rats. Ann. NY Acad. Sci. 1003, 410–411 (2003).

    PubMed  Google Scholar 

  71. Pears, A., Parkinson, J. A., Hopewell, L., Everitt, B. J. & Roberts, A. C. Lesions of the orbitofrontal but not medial prefrontal cortex disrupt conditioned reinforcement in primates. J. Neurosci. 23, 11189–11201 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McDannald, M. A., Saddoris, M. P., Gallagher, M. & Holland, P. C. Lesions of orbitofrontal cortex impair rats' differential outcome expectancy learning but not conditioned stimulus-potentiated feeding. J. Neurosci. 25, 4626–4632 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1168–1170 (2004).

    Google Scholar 

  74. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin card sort test: restriction to novel situations and independence from “on-line” processing. J. Neurosci. 17, 9285–9297 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schoenbaum, G., Nugent, S., Saddoris, M. P. & Setlow, B. Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. Neuroreport 13, 885–890 (2002).

    PubMed  Google Scholar 

  76. Sage, J. R. & Knowlton, B. J. Effects of US devaluation on win-stay and win-shift radial maze performance in rats. Behav. Neurosci. 114, 295–306 (2000).

    CAS  PubMed  Google Scholar 

  77. Matsumoto, M. & Hikosaka, K. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).

    CAS  PubMed  Google Scholar 

  78. Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).

    PubMed  Google Scholar 

  79. Belova, M. A., Paton, J. J., Morrison, S. E. & Salzman, C. D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Matsumoto, M., Matsumoto, K., Abe, H. & Tanaka, K. Medial prefrontal cell activity signaling prediction errors of action values. Nature Neurosci. 10, 647–656 (2007).

    CAS  PubMed  Google Scholar 

  81. Izquierdo, A. D. & Murray, E. A. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J. Neurosci. 27, 1054–1062 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. O'Doherty, J. et al. Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304, 452–454 (2004).

    CAS  PubMed  Google Scholar 

  83. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    PubMed  Google Scholar 

  84. Rescorla, R. A. Pavlovian conditioning: it's not what you think it is. Am. Psychol. 43, 151–160 (1988).

    CAS  PubMed  Google Scholar 

  85. Dickinson, A. & Balleine, B. W. Motivational control of goal-directed action. Anim. Learn. Behav. 22, 1–18 (1994).

    Google Scholar 

  86. Balleine, B. W. & Corbit, L. H. Double dissociation of nucleus accumbens core and shell on the general and outcome-specific forms of pavlovian-instrumental transfer. Soc. Neurosci. Abstr. 71.16 (Washington DC, 12–16 November 2005).

  87. Valentin, V. V., Dickinson, A. & O'Doherty, J. P. Determining the neural substrates of goal-directed learning in the human brain. J. Neurosci. 27, 4019–4026 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Roesch, M. R., Taylor, A. R. & Schoenbaum, G. Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51, 509–520 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Feierstein, C. E., Quirk, M. C., Uchida, N., Sosulski, D. L. & Mainen, Z. F. Representation of spatial goals in rat orbitofrontal cortex. Neuron 51, 495–507 (2006).

    CAS  PubMed  Google Scholar 

  90. Corbit, L. H. & Balleine, B. W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157 (2003).

    PubMed  Google Scholar 

  91. Yin, H. H., Knowlton, B. J. & Balleine, B. W. Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur. J. Neurosci. 22, 505–512 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the National Institute on Drug Abuse, the National Institute of Mental Health and the National Institute on Aging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Schoenbaum.

Related links

Related links

FURTHER INFORMATION

Geoffrey Schoenbaum's homepage

Glossary

Conditioned reinforcement

The process by which a Pavlovian-acquired value can reinforce instrumental action.

Delayed discounting task

A task that assesses the effect of delaying a reward on a subject's choice behaviour.

Detour reaching task

A task that assesses the ability of a subject to learn to reach around a clear barrier in order to retrieve a reward.

Instrumental

Related to a training situation in which associations are arranged between actions and outcomes.

Pavlovian

Related to a training situation in which associations are arranged between cues and outcomes.

Pavlovian approach responses

Approaches to a conditioned stimulus.

Reinforcer devaluation task

A task that assesses the ability of a subject to modify conditioned responding after the expected reward is devalued, typically by pairing it with illness or by feeding it to satiety.

Stop signal task

A task that assesses the ability of a subject to stop or inhibit an ongoing reward-seeking behaviour in response to a 'stop' signal.

Temporal difference reinforcement learning models

A family of non-trial-based reinforcement learning models in which the difference between the expected and actual values of a particular state in a sequence of behaviours is used as a teaching signal to facilitate the acquisition of associative rules or policies to direct future behaviour.

Visual delayed response task

A task that assesses the ability of a subject to respond to visual cues to obtain a reward that is presented after a short delay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenbaum, G., Roesch, M., Stalnaker, T. et al. A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. Nat Rev Neurosci 10, 885–892 (2009). https://doi.org/10.1038/nrn2753

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing