Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How (and why) the immune system makes us sleep

Key Points

  • Serotonin promotes wakefulness but is necessary for sleep.

  • Cytokines, such as interleukin 1 (IL-1) and tumor necrosis factor, are involved in regulating physiological non-rapid eye movement (NREM) sleep.

  • IL-1 contributes to the regulation of NREM sleep in part through interactions with serotonin.

  • Interactions between IL-1 and serotonin are amplified during infection, and sleep is altered.

  • During infection, NREM sleep is fragmented and REM sleep is suppressed.

  • Changes induced in sleep architecture by infectious agents support the generation of fever, and fever imparts survival value.

Abstract

Good sleep is necessary for physical and mental health. For example, sleep loss impairs immune function, and sleep is altered during infection. Immune signalling molecules are present in the healthy brain, where they interact with neurochemical systems to contribute to the regulation of normal sleep. Animal studies have shown that interactions between immune signalling molecules (such as the cytokine interleukin 1) and brain neurochemical systems (such as the serotonin system) are amplified during infection, indicating that these interactions might underlie the changes in sleep that occur during infection. Why should the immune system cause us to sleep differently when we are sick? We propose that the alterations in sleep architecture during infection are exquisitely tailored to support the generation of fever, which in turn imparts survival value.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Serotonin initially increases wakefulness and subsequently increases non-rapid eye movement sleep.
Figure 2: Interleukin 1 and serotonin interact at multiple sites in the brain to regulate non-rapid eye movement sleep.
Figure 3: Sleep architecture is altered during fever.
Figure 4: Proposed principles by which changes in sleep architecture promote recovery from infection.

Similar content being viewed by others

References

  1. Tononi, G. & Cirelli, C. Sleep and synaptic homeostasis: a hypothesis. Brain Res. Bull. 62, 143–150 (2003).

    Article  PubMed  Google Scholar 

  2. Krueger, J. M. et al. Sleep as a fundamental property of neuronal assemblies. Nature Rev. Neurosci. 9, 910–919 (2008).

    Article  CAS  Google Scholar 

  3. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  Google Scholar 

  4. Centers for Disease Control and Prevention. Percentage of adults who reported an average of ≤6 hours of sleep per 24-hour period, by sex and age group—United States 1985 and 2004. MMWR Morb. Mortal. Wkly Rep. 54, 933 (2005).

  5. Spiegel, K., Sheridan, J. F. & Van Cauter, E. Effect of sleep deprivation on response to immunization. JAMA 288, 1471–1472 (2002).

    Article  PubMed  Google Scholar 

  6. Lange, T., Perras, B., Fehm, H. L. & Born, J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom. Med. 65, 831–835 (2003).

    Article  PubMed  Google Scholar 

  7. Hasler, G. et al. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep 27, 661–666 (2004).

    Article  PubMed  Google Scholar 

  8. Taheri, S., Lin, L., Austin, D., Young, T. & Mignot, E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 1, e62 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Spiegel, K., Tasali, E., Penev, P. & Van Cauter, E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann. Intern. Med. 141, 846–850 (2004).

    Article  PubMed  Google Scholar 

  10. Gottlieb, D. J. et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch. Intern. Med. 165, 863–867 (2005).

    Article  PubMed  Google Scholar 

  11. Ayas, N. T. et al. A prospective study of sleep duration and coronary heart disease in women. Arch. Intern. Med. 163, 205–209 (2003).

    Article  PubMed  Google Scholar 

  12. Dale, R. C. et al. Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127, 21–33 (2004).

    Article  PubMed  Google Scholar 

  13. Norman, S. E., Chediak, A. D., Kiel, M. & Cohn, M. A. Sleep disturbances in HIV infected homosexual men. AIDS 4, 775–781 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Buguet, A. et al. The duality of sleeping sickness: focusing on sleep. Sleep Med. Rev. 5, 139–153 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lundkvist, G. B., Kristensson, K. & Bentivoglio, M. Why trypanosomes cause sleeping sickness. Physiology (Bethesda) 19, 198–206 (2004).

    Google Scholar 

  16. Drake, C. L. et al. Effects of an experimentally induced rhinovirus cold on sleep, performance, and daytime alertness. Physiol. Behav. 71, 75–81 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bettis, R. et al. Impact of influenza treatment with oseltamivir on health, sleep and daily activities of otherwise healthy adults and adolescents. Clin. Drug Investig. 26, 329–340 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Opp, M. R. Cytokines and sleep. Sleep Med. Rev. 9, 355–364 (2005).

    Article  PubMed  Google Scholar 

  19. Opp, M., Born, J. & Irwin, M. in Psychoneuroimmunology (ed. Ader, R.) 579–618 (Burlington, Massachusetts, Elsevier Academic Press, 2007).

    Book  Google Scholar 

  20. Krueger, J. M., Obal, F. J., Fang, J., Kubota, T. & Taishi, P. The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci. 933, 211–221 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Eriksson, C., Nobel, S., Winblad, B. & Schultzberg, M. Expression of interleukin 1α and β, and interleukin 1 receptor antagonist mRNA in the rat central nervous system after peripheral administration of lipopolysaccharides. Cytokine 12, 423–431 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Allan, S. M. & Rothwell, N. J. Cytokines and acute neurodegeneration. Nature Rev. Neurosci. 2, 734–744 (2001).

    Article  CAS  Google Scholar 

  23. Garden, G. A. & Moller, T. Microglia biology in health and disease. J. Neuroimmune Pharmacol. 1, 127–137 (2006).

    Article  PubMed  Google Scholar 

  24. Breder, C. D., Dinarello, C. A. & Saper, C. B. Interleukin-1 immunoreactive innervation of the human hypothalamus. Science 240, 321–324 (1988). The first demonstration that neurons contain IL-1.

    Article  CAS  PubMed  Google Scholar 

  25. Marz, P. et al. Sympathetic neurons can produce and respond to interleukin 6. Proc. Natl Acad. Sci. USA 95, 3251–3256 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ignatowski, T. A. et al. Neuronal-associated tumor necrosis factor (TNFα): its role in noradrenergic functioning and modification of its expression following antidepressant drug administration. J. Neuroimmunol. 79, 84–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Breder, C. D., Tsujimoto, M., Terano, Y., Scott, D. W. & Saper, C. B. Distribution and characterization of tumor necrosis factor-alpha-like immunoreactivity in the murine central nervous system. J. Comp. Neurol. 337, 543–567 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Bette, M., Kaut, O., Schafer, M. K. & Weihe, E. Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNFα and p75TNFR mRNA in mouse brain. J. Comp. Neurol. 465, 417–430 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ban, E. M. Interleukin-1 receptors in the brain: characterization by quantitative in situ autoradiography. Immunomethods 5, 31–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Olivadoti, M. D. & Opp, M. R. Effects of i.c.v. administration of interleukin-1 on sleep and body temperature of interleukin-6-deficient mice. Neuroscience 153, 338–348 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Opp, M. R., Obál, F. & Krueger, J. M. Interleukin-1 alters rat sleep: temporal and dose-related effects. Am. J. Physiol. 260, R52–R58 (1991).

    CAS  PubMed  Google Scholar 

  32. Lancel, M., Mathias, S., Faulhaber, J. & Schiffelholz, T. Effect of interleukin-1β on EEG power density during sleep depends on circadian phase. Am. J. Physiol. 270, R830–R837 (1996).

    CAS  PubMed  Google Scholar 

  33. Imeri, L., Bianchi, S. & Opp, M. R. Inhibition of caspase-1 in rat brain reduces spontaneous nonrapid eye movement sleep and nonrapid eye movement sleep enhancement induced by lipopolysaccharide. Am. J. Physiol. 291, R197–R204 (2006). This report that NREM sleep is reduced when cleavage of biologically active IL-1 from its inactive precursor is impeded provides additional evidence of a role for IL-1 in regulating physiological NREM sleep and in the alterations in NREM sleep that follow host defence activation.

    CAS  Google Scholar 

  34. Takahashi, S. & Krueger, J. M. Inhibition of tumor necrosis factor prevents warming-induced sleep responses in rabbits. Am. J. Physiol. 272, R1325–R1329 (1997).

    CAS  PubMed  Google Scholar 

  35. Baracchi, F. & Opp, M. R. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1β receptor 1 and tumor necrosis factor-α receptor 1. Brain Behav. Immun. 22, 982–993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Opp, M. R. & Krueger, J. M. Anti-interleukin-1β reduces sleep and sleep rebound after sleep deprivation in rats. Am. J. Physiol. 266, R688–R695 (1994).

    CAS  PubMed  Google Scholar 

  37. Opp, M. R. & Krueger, J. M. Interleukin 1-receptor antagonist blocks interleukin 1-induced sleep and fever. Am. J. Physiol. 260, R453–R457 (1991).

    CAS  PubMed  Google Scholar 

  38. Cearley, C., Churchill, L. & Krueger, J. M. Time of day differences in IL1β and TNFα mRNA levels in specific regions of the rat brain. Neurosci. Lett. 352, 61–63 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Moldofsky, H., Lue, F. A., Eisen, J., Keystone, E. & Gorczynski, R. M. The relationship of interleukin-1 and immune functions to sleep in humans. Psychosom. Med. 48, 309–318 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Lue, F. A. et al. Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. Int. J. Neurosci. 42, 179–183 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Opp, M. R. & Toth, L. A. Neural-immune interactions in the regulation of sleep. Front. Biosci. 8, d768–d779 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Turrin, N. P. et al. Pro-inflammatory and anti-inflammatory cytokine mRNA induction in the periphery and brain following intraperitoneal administration of bacterial lipopolysaccharide. Brain Res. Bull. 54, 443–453 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., Gaekwad, J., Wolfert, M. A. & Boons, G. J. Modulation of innate immune responses with synthetic lipid A derivatives. J. Am. Chem. Soc. 129, 5200–5216 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Datta, S. C. & Opp, M. R. Lipopolysaccharide-induced increases in cytokines in discrete mouse brain regions are detectable using Luminex xMAP technology. J. Neurosci. Methods 175, 119–124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krueger, J. M. & Majde, J. A. Microbial products and cytokines in sleep and fever regulation. Crit. Rev. Immunol. 14, 355–379 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Imeri, L., Opp, M. R. & Krueger, J. M. An IL-1 receptor and an IL-1 receptor antagonist attenuate muramyl dipeptide- and IL-1-induced sleep and fever. Am. J. Physiol. 265, R907–R913 (1993).

    CAS  PubMed  Google Scholar 

  47. Dunn, A. J. Effects of cytokines and infections on brain neurochemistry. Clin. Neurosci. Res. 6, 52–68 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brodie, B. B., Pletscher, A. & Shore, P. A. Evidence that serotonin has a role in brain function. Science 122, 968 (1955).

    Article  CAS  PubMed  Google Scholar 

  49. Jacobs, B. L. & Azmitia, E. C. Structure and function of the brain serotonin system. Physiol. rev. 72, 165–229 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Ursin, R. Serotonin and sleep. Sleep Med. Rev. 6, 55–69 (2002).

    Article  PubMed  Google Scholar 

  51. Anisman, H., Merali, Z. & Hayley, S. Neurotransmitter, peptide and cytokine processes in relation to depressive disorder: comorbidity between depression and neurodegenerative disorders. Prog. Neurobiol. 85, 1–74 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Jouvet, M. Sleep and serotonin: an unfinished story. Neuropsychopharmacology 21, 24s–27s (1999). A historical review of 40 years of investigation into 5-HT's role in regulating arousal state by the investigator who is best known for his contributions to this topic. Data are interpreted within the framework of the hypothesis that 5-HT promotes wakefulness but stimulates the synthesis or release of unknown sleep factors that induce subsequent sleep.

    CAS  PubMed  Google Scholar 

  53. Cespuglio, R., Gomez, M. E., Walker, E. & Jouvet, M. Effets du refroidissement et de la stimulation des noyaux du systeme du raphe sur les etats de vigilance chez le chat. Electroenceph. Clin. Neurophysiol. 47, 289–308 (1979).

    Article  CAS  PubMed  Google Scholar 

  54. Cespuglio, R., Faradji, H., Gomez, M. E. & Jouvet, M. Single unit recordings in the nuclei raphe dorsalis and magnus during sleep-waking cycle of semi-chronic prepared cats. Neurosci. Lett. 24, 133–138 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Lydic, R., McCarley, R. W. & Hobson, J. A. Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch. Ital. Biol. 125, 317–343 (1987).

    CAS  PubMed  Google Scholar 

  56. McGinty, D. J. & Harper, R. M. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res. 101, 569–575 (1976). This was the first study to demonstrate state-dependent activity of serotonergic neurons.

    Article  CAS  PubMed  Google Scholar 

  57. Trulson, M. E. & Jacobs, B. L. Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res. 163, 135–150 (1979).

    Article  CAS  PubMed  Google Scholar 

  58. Cespuglio, R. et al. Voltammetric detection of the release of 5-hydroxyindole compounds throughout the sleep-waking cycle of the rat. Exp. Brain Res. 80, 121–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  59. Gemma, C., Imeri, L., De Simoni, M. G. & Mancia, M. Interleukin-1 induces changes in sleep, brain temperature, and serotonergic metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 272, R601–R606 (1997).

    Article  CAS  Google Scholar 

  60. Portas, C. M. & McCarley, R. W. Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res. 648, 306–312 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Portas, C. M. et al. On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83, 807–814 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Dugovic, C. Functional activity of 5-HT2 receptors in the modulation of the sleep/wakefulness states. J. Sleep Res. 1, 163–168 (1992).

    Article  CAS  PubMed  Google Scholar 

  63. Saper, C. B., Chou, T. C. & Scammell, T. E. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 24, 726–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Jones, B. E. From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol. Sci. 26, 578–586 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Imeri, L., Mancia, M., Bianchi, M. & Opp, M. R. 5-hydroxytryptophan, but not L-tryptophan, alters sleep and brain temperature in rats. Neuroscience 95, 445–452 (2000). The first of several papers by these authors to demonstrate that activation of the 5-HT system has a biphasic effect on arousal state, with initial wakefulness followed by subsequent NREM sleep.

    Article  CAS  PubMed  Google Scholar 

  66. Imeri, L., Bianchi, S. & Opp, M. R. Antagonism of corticotropin-releasing hormone alters serotonergic-induced changes in brain temperature, but not sleep, of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R1116–R1123 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Morrow, J. D., Vikraman, S., Imeri, L. & Opp, M. R. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/56J and interleukin-6-deficient mice are dose and time related. Sleep 31, 21–33 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  68. McCarley, R. W. Neurobiology of REM and NREM sleep. Sleep Med. 8, 302–330 (2007).

    Article  PubMed  Google Scholar 

  69. Lu, J., Sherman, D., Devor, M. & Saper, C. B. A putative flip-flop switch for control of REM sleep. Nature 441, 589–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Adrien, J., Alexandre, C., Boutrel, B. & Popa, D. Contribution of the “knock-out” technology to understanding the role of serotonin in sleep regulations. Arch. Ital. Biol. 142, 369–377 (2004).

    CAS  PubMed  Google Scholar 

  71. Hagan, J. J. et al. Characterization of SB-269970-A, a selective 5-HT7 receptor antagonist. Br. J. Pharmacol. 130, 539–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hedlund, P. B., Huitron-Resendiz, S., Henriksen, S. J. & Sutcliffe, J. G. 5-HT7 receptor inhibition and inactivation induce antidepressantlike behavior and sleep pattern. Biol. Psychiatry 58, 831–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Obal, F. Jr & Krueger, J. M. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci. 8, d520–d550 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Manfridi, A. et al. Interleukin-1β enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. Eur. J. Neurosci. 18, 1041–1049 (2003).

    Article  PubMed  Google Scholar 

  75. Brambilla, D., Franciosi, S., Opp, M. R. & Imeri, L. Interleukin-1 inhibits firing of serotonergic neurons in the dorsal raphe nucleus and enhances GABAergic inhibitory post-synaptic potentials. Eur. J. Neurosci. 26, 1862–1869 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Serantes, R. et al. Interleukin-1β enhances GABAA receptor cell-surface expression by a phosphatidylinositol 3-kinase/Akt pathway: relevance to sepsis-associated encephalopathy. J. Biol. Chem. 281, 14632–14643 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Miller, L. G., Galpern, W. R., Dunlap, K., Dinarello, C. A. & Turner, T. J. Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Mol. Pharmacol. 39, 105–108 (1991).

    CAS  PubMed  Google Scholar 

  78. Tabarean, I. V., Korn, H. & Bartfai, T. Interleukin-1β induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience 141, 1685–1695 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Feleder, C., Arias, P., Refojo, D., Nacht, S. & Moguilevsky, J. Interleukin-1 inhibits NMDA-stimulated GnRH secretion: associated effects on the release of hypothalamic inhibitory amino acid neurotransmitters. Neuroimmunomodulation 7, 46–50 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Zeise, M. L., Madamba, S. & Siggins, G. R. Interleukin-1β increases synaptic inhibition in rat hippocampal pyramidal neurons in vitro. Regul. Pept. 39, 1–7 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Luk, W. P. et al. Adenosine: a mediator of interleukin-1β-induced hippocampal synaptic inhibition. J. Neurosci. 19, 4238–4244 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Alam, M. N. et al. Interleukin-1β modulates state-dependent discharge activity of preoptic area and basal forebrain neurons: role in sleep regulation. Eur. J. Neurosci. 20, 207–216 (2004). These authors demonstrated for the first time that IL-1 applied directly to the hypothalamus inhibits wake-active neurons. The paper also reported increases in discharge rates in a subset of sleep-active neurons.

    Article  PubMed  Google Scholar 

  83. Baker, F. C. et al. Interleukin 1β enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288, R998–R1005 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Shintani, F. et al. Interleukin-1β augments release of norepinephrine, dopamine, and serotonin in the rat anterior hypothalamus. J. Neurosci. 13, 3574–3581 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Denoyer, M., Sallanon, M., Kitahama, K., Aubert, C. & Jouvet, M. Reversibility of para-chlorophenylalanine-induced insomnia by intrahypothalamic microinjection of L-5-hydroxytryptophan. Neuroscience 28, 83–94 (1989). These authors demonstrated that the anterior hypothalamus is the only brain region where 5-HTP rescues sleep in cats made insomniac by depletion of brain 5-HT.

    Article  CAS  PubMed  Google Scholar 

  86. Khateb, A., Fort, P., Alonso, A., Jones, B. E. & Muhlethaler, M. Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur. J. Neurosci. 5, 541–547 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Imeri, L., Bianchi, S. & Mancia, M. Muramyl dipeptide and IL-1 effects on sleep and brain temperature after inhibition of serotonin synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273, R1663–R1668 (1997).

    Article  CAS  Google Scholar 

  88. Imeri, L., Mancia, M. & Opp, M. R. Blockade of 5-HT2 receptors alters interleukin-1-induced changes in rat sleep. Neuroscience 92, 745–749 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Gemma, C., Imeri, L. & Opp, M. R. Serotonergic activation stimulates the pituitary-adrenal axis and alters interleukin-1 mRNA expression in rat brain. Psychoneuroendocrinology 28, 875–884 (2003). This was the first paper to report that activation of the serotonergic system alters IL-1 mRNA expression in the brain.

    Article  CAS  PubMed  Google Scholar 

  90. Dinarello, C. A. et al. Interleukin 1 induces interleukin 1. I. Induction of circulating interleukin 1 in rabbits in vivo and in human mononuclear cells in vitro. J. Immunol. 139, 1902–1910 (1987).

    CAS  PubMed  Google Scholar 

  91. Taishi, P., Churchill, L., De, A., Obal, F. Jr & Krueger, J. M. Cytokine mRNA induction by interleukin-1β or tumor necrosis factor α in vitro and in vivo. Brain Res. 1226, 89–98 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Turnbull, A. V. & Rivier, C. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. rev. 79, 1–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Mignot, E. Why we sleep: the temporal organization of recovery. PLoS Biol. 6, e106 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Siegel, J. M. Clues to the functions of mammalian sleep. Nature 437, 1264–1271 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Toth, L. A., Tolley, E. A. & Krueger, J. M. Sleep as a prognostic indicator during infectious disease in rabbits. Proc. Soc. Exp. Biol. Med. 203, 179–192 (1993). This retrospective analysis of data derived from almost 100 rabbits revealed associations between the quality of sleep and clinical symptoms, morbidity and mortality. Survival from infectious pathogens is associated with better quality sleep.

    Article  CAS  PubMed  Google Scholar 

  96. Parmeggiani, P. L. Thermoregulation and sleep. Front. Biosci. 8, s557–s567 (2003).

    Article  PubMed  Google Scholar 

  97. Kluger, M. J., Kozak, W., Conn, C. A., Leon, L. R. & Soszynski, D. The adaptive value of fever. Infect. Dis. Clin. North Am. 10, 1–21 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Obál, F. Jr, Rubicsek, G., Sary, G. & Obál, F. Changes in the brain and core temperatures in relation to the various arousal states in rats in the light and dark periods of the day. Pflügers Arch. 404, 73–79 (1985).

    Article  PubMed  Google Scholar 

  99. Glotzbach, S. F. & Heller, H. C. Central nervous regulation of body temperature during sleep. Science 194, 537–538 (1976).

    Article  CAS  PubMed  Google Scholar 

  100. Kluger, M. J. Fever. It's Biology, Evolution and Function (Princeton Univ. Press, Princeton, 1979).

    Google Scholar 

  101. Pollmacher, T. et al. Experimental immunomodulation, sleep, and sleepiness in humans. Ann. NY Acad. Sci. 917, 488–499 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Mullington, J. et al. Dose-dependent effects of endotoxin on human sleep. Am. J. Physiol. 278, R947–R955 (2000).

    CAS  Google Scholar 

  103. Haack, M., Schuld, A., Kraus, T. & Pollmacher, T. Effects of sleep on endotoxin-induced host responses in healthy men. Psychosom. Med. 63, 568–578 (2001). Along with references 101 and 102, this paper demonstrated the effects on the sleep of healthy human volunteers of host defence activation by injection of endotoxin.

    Article  CAS  PubMed  Google Scholar 

  104. Friess, E., Wiedemann, K., Steiger, A. & Holsboer, F. The hypothalamic-pituitary-adrenocortical system and sleep in man. Adv. Neuroimmunol. 5, 111–125 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Steiger, A. Sleep and the hypothalamo-pituitary-adrenocortical system. Sleep Med. Rev. 6, 125–138 (2002).

    Article  PubMed  Google Scholar 

  106. Palmblad, J., Pertrini, B., Wasserman, J. & Kerstedt, T. A. Lymphocyte and granulocyte reactions during sleep deprivation. Psychosom. Med. 41, 273–278 (1979). The first study of human subjects to specifically focus on the impact of sleep loss on immunity.

    Article  CAS  PubMed  Google Scholar 

  107. Dinges, D. F. et al. Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. J. Clin. Invest. 93, 1930–1939 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Irwin, M. R., Wang, M., Campomayor, C. O., Collado-Hidalgo, A. & Cole, S. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation. Arch. Intern. Med. 166, 1756–1762 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Marshall, L. & Born, J. Brain-immune interactions in sleep. Int. Rev. Neurobiol. 52, 93–131 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Rada, P. et al. Interleukin-1β decreases acetylcholine measured by microdialysis in the hippocampus of freely moving rats. Brain Res. 550, 287–290 (1991).

    Article  CAS  PubMed  Google Scholar 

  111. Carmeliet, P., Van Damme, J. & Denef, C. Interleukin-1 beta inhibits acetylcholine synthesis in the pituitary corticotropic cell line AtT20. Brain Res. 491, 199–203 (1989).

    Article  CAS  PubMed  Google Scholar 

  112. Li, Y. et al. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J. Neurosci. 20, 1–149 (2000).

    Article  Google Scholar 

  113. Fogal, B. & Hewett, S. J. Interleukin-1β: a bridge between inflammation and excitotoxicity? J. Neurochem. 106, 1–23 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Basheer, R., Strecker, R. E., Thakkar, M. M. & McCarley, R. W. Adenosine and sleep-wake regulation. Prog. Neurobiol. 73, 379–396 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Sperlagh, B., Baranyi, M., Hasko, G. & Vizi, E. S. Potent effect of interleukin-1β to evoke ATP and adenosine release from rat hippocampal slices. J. Neuroimmunol. 151, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Zhu, G. et al. Involvement of Ca2+-induced Ca2+ releasing system in interleukin-1β-associated adenosine release. Eur. J. Pharmacol. 532, 246–252 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Rosenbaum, E. Warum müssen wir schlafen? Eine neue Theorie des Schlafes (August Hirschwald, Berlin, 1892).

    Google Scholar 

  118. Tigerstedt, R. & Bergman, P. Niere und kreislauf. Arch. Physiol. 8, 223–271 (1898).

    Google Scholar 

  119. Baylis, W. & Starling, E. The mechanism of pancreatic secretion. J. Physiol. 28, 325–353 (1902).

    Article  Google Scholar 

  120. Ishimori, K. True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23, 429–459 (1909).

    Google Scholar 

  121. Legendre, R. & Piéron, H. Recherches sur le besoin de sommeil consecutif a une vielle prolongee. Z. Allg. Physiol. 14, 235–262 (1913).

    Google Scholar 

  122. Kornmüller, A., Lux, H., Winkel, K. & Klee, M. Neurohumoral ausgelöste schlafzustände an tieren mit gekreuztem kreislfau unter kontrolle von EEG-ableitungen. Naturwissenschaften 14, 503–505 (1961).

    Article  Google Scholar 

  123. Schoenenberger, G. A., Maier, P. F., Tobler, H. J. & Monnier, M. A naturally occuring delta-EEG enhancing nonapeptide in rabbits. Pflügers Arch. 369, 99–109 (1977).

    Article  CAS  PubMed  Google Scholar 

  124. Nagasaki, H., Iriki, M., Inoue, S. & Uchizono, K. Proceedings: Sleep promoting substances in the brain stem of rats. Nippon Seirigaku Zasshi 36, 293 (1974).

    CAS  PubMed  Google Scholar 

  125. Pappenheimer, J. R., Miller, T. B. & Goodrich, C. A. Sleep-promoting effects of cerebrospinal fluid from sleep-deprived goats. Proc. Natl Acad. Sci. USA 58, 513–517 (1967).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fencl, V., Koski, G. & Pappenheimer, J. R. Factors in cerebrospinal fluid from goats that affect sleep and activity in rats. J. Physiol. 216, 565–589 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pappenheimer, J. R., Koski, G., Fencl, V., Karnovsky, M. L. & Krueger, J. Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J. Neurophysiol. 38, 1299–1311 (1975).

    Article  CAS  PubMed  Google Scholar 

  128. Krueger, J. M., Pappenheimer, J. R. & Karnovsky, M. L. Sleep-promoting factor S: purification and properties. Proc. Natl Acad. Sci. USA 75, 5235–5238 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Krueger, J. M., Pappenheimer, J. R. & Karnovsky, M. L. The composition of sleep-promoting factor isolated from human urine. J. Biol. Chem. 257, 1664–1669 (1982).

    Article  CAS  PubMed  Google Scholar 

  130. Krueger, J. M., Pappenheimer, J. R. & Karnovsky, M. L. Sleep-promoting effects of muramyl peptides. Proc. Natl Acad. Sci. USA 79, 6102–6106 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fontana, A., Kristensen, F., Dubs, R., Gemsa, D. & Weber, E. Production of prostaglandin E and an interleukin-1 like factor by cultured astrocytes and C6 glioma cells. J. Immunol. 129, 2413–2419 (1982).

    CAS  PubMed  Google Scholar 

  132. Krueger, J. M., Dinarello, C. A. & Chedid, L. Promotion of slow-wave sleep (SWS) by a purified interleukin-1 (IL-1) preparation. Fed. Proc. 42, 356 (1983).

    Google Scholar 

  133. Krueger, J. M., Walter, J., Dinarello, C. A., Wolff, S. M. & Chedid, L. Sleep-promoting effects of endogenous pyrogen (interleukin-1). Am. J. Physiol. 246, R994–R999 (1984). This and reference 134 were the first research articles to demonstrate the effects of IL-1 on sleep and the electroencephalogram.

    CAS  PubMed  Google Scholar 

  134. Tobler, I., Borbély, A. A., Schwyzer, M. & Fontana, A. Interleukin-1 derived from astrocytes enhances slow wave activity in sleep EEG of the rat. Eur. J. Pharmacol. 104, 191–192 (1984).

    Article  CAS  PubMed  Google Scholar 

  135. Shoham, S., Davenne, D., Cady, A. B., Dinarello, C. A. & Krueger, J. M. Recombinant tumor necrosis factor and interleukin 1 enhance slow-wave sleep. Am. J. Physiol. 253, R142–R149 (1987).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by US National Institutes of Health Grants MH64843 and HL080972, the Department of Anesthesiology of the University of Michigan Medical School, and the Ministero dell'Istruzione, dell'Universita' e della Ricerca, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Opp.

Related links

Related links

FURTHER INFORMATION

Luca Imeri's homepage

Mark R. Opp's homepage

Glossary

Encephalitis lethargica

An infectious process and an associated inflammatory response involving the brain and characterized by pronounced somnolence. The first cases were described in 1916 by the Viennese neurologist von Economo. The pathology is typical of viral infections and is localized principally to the midbrain, the subthalamus and the hypothalamus. The causative agent has not been definitively determined.

Trypanosomiasis

A disease caused by the protozoan Trypanosoma brucei and transmitted by several species of the tsetse fly. When the brain and meninges become involved, usually in the second year of infection, a chronic progressive neurologic syndrome results. Complete loss of the timing of sleep, alterations in sleep architecture, and later apathy, stupor and coma characterize the syndrome.

Sleep fragmentation

Interruption of sleep bouts by brief arousals such that the duration of the bout is reduced and transitions from one behavioural state to another occur more frequently.

Lipid A

The innermost, hydrophobic, lipid component of lipopolysaccharide. Lipid A anchors the lipopolysaccharide to the outer membrane of the Gram-negative bacterial cell wall.

Lipopolysaccharide

A component (also known as endotoxin) of the outer wall of Gram-negative bacterial cell walls. It is composed of a lipid and polysaccharides joined by covalent bonds. It elicits strong immune responses through signalling pathways coupled to Toll-like receptor 4.

Muramyl dipeptide

The synthetic analogue of muramyl peptides, the monomeric building blocks of bacterial cell wall peptidoglycan. Muramyl peptides are released by mammalian macrophages during the digestion of bacterial cell walls.

Inhibitory postsynaptic potential

(IPSP). Hyperpolarization of the membrane potential of a postsynaptic neuron. IPSPs are induced by a neurotransmitter released by a presynaptic neuron. Hyperpolarization reduces neuronal excitability because it is more difficult to trigger an action potential in a hyperpolarized neuron.

Acute-phase response

The reaction that develops in response to an injury or infection. It is mediated by pro-inflammatory cytokines (such as IL-1) and is characterized by a local response (inflammation) and a systemic component, which includes the production of acute-phase proteins by hepatocytes, leukocytosis, fever and profound changes in lipid, protein and carbohydrate metabolism.

Sickness behaviour

The constellation of symptoms (decreased food intake, depressed activity, loss of interest in usual activities, disappearance of self-maintenance behaviours and altered sleep) that accompany responses to infection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imeri, L., Opp, M. How (and why) the immune system makes us sleep. Nat Rev Neurosci 10, 199–210 (2009). https://doi.org/10.1038/nrn2576

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2576

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing