Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A cortical network for semantics: (de)constructing the N400

Key Points

  • The N400 response is one of the best-studied ERP components associated with language processing. Manipulations such as semantic priming ('coffee' → 'tea') and contextual fit ('I like my coffee with cream and sugar/socks') modulate the amplitude of the N400 response to words; this is referred to as the 'N400 effect'.

  • Two contrasting hypotheses address the functional interpretation of the N400 effect. The effect may reflect differences in the amount of effort needed to semantically integrate the incoming word into the previous sentential context; alternatively, it may reflect facilitated lexical access due to pre-activation by supportive contexts.

  • Previous imaging and patient data implicate the posterior middle temporal cortex in storing and activating information associated with lexical representations. Some evidence suggests that anterior temporal and inferior parietal cortices are involved in constructing new inputs and/or integrating them into temporary representations of the larger syntactic and semantic structure, and that the inferior frontal cortex subserves control processes of retrieval and selection of lexical representations that make the input available to integrative processes.

  • The functional anatomic model outlined leads to predictions about the locus of the N400 effect: if the effect reflects integration difficulty, it should localize to inferior frontal, anterior temporal or inferior parietal regions; if the effect reflects facilitated lexical access, it should localize to the posterior middle temporal cortex.

  • Functional MRI studies show semantic priming effects in the inferior frontal cortex only when there is a long interval between primes and targets. Priming effects are observed in the posterior middle temporal gyrus across all prime–target intervals, as is the N400 effect. Magnetoencephalography and event-related optical signal (EROS) studies of sentence context show semantic-priming and semantic-anomaly effects in the posterior temporal cortex at the same latency as the N400 effect.

  • The data from across these techniques provide strong evidence that the posterior middle temporal cortex is involved in generating the N400 effect, which supports the claim that the N400 effect is at least to some degree due to facilitated lexical access, and argues against an account in which the effect is purely integrative.

Abstract

Measuring event-related potentials (ERPs) has been fundamental to our understanding of how language is encoded in the brain. One particular ERP response, the N400 response, has been especially influential as an index of lexical and semantic processing. However, there remains a lack of consensus on the interpretation of this component. Resolving this issue has important consequences for neural models of language comprehension. Here we show that evidence bearing on where the N400 response is generated provides key insights into what it reflects. A neuroanatomical model of semantic processing is used as a guide to interpret the pattern of activated regions in functional MRI, magnetoencephalography and intracranial recordings that are associated with contextual semantic manipulations that lead to N400 effects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The standard N400 effect in sentential context.
Figure 2: Schematic model for semantic processing.
Figure 3: A visual summary of the results of semantic- priming manipulations in functional MRI.
Figure 4: Semantic priming at short and long SOAs.
Figure 5: A functional neuroanatomic model for semantic processing of words in context.

Similar content being viewed by others

References

  1. Kutas, M. & Hillyard, S. A. Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207, 203–205 (1980). This seminal study was the first to describe the N400 response, which the authors elicited by using semantically anomalous sentence endings.

    CAS  PubMed  Google Scholar 

  2. Kutas, M. & Federmeier, K. D. Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn. Sci. 4, 463–470 (2000). An influential review which argues that the N400 effect reflects facilitated activation of long-term memory representations rather than semantic-integration difficulty.

    CAS  PubMed  Google Scholar 

  3. Kutas, M., Van Petten, C. & Kluender, R. in The Handbook of psycholinguistics (eds Traxler, M. J. & Gernsbacher, M. A.) 659–724 (Elsevier, San Diego, 2006).

    Google Scholar 

  4. Friederici, A. D. Towards a neural basis of auditory sentence processing. Trends Cogn. Sci. 6, 78–84 (2002).

    PubMed  Google Scholar 

  5. Kotz, S. A. & Friederici, A. D. Electrophysiology of normal and pathological language processing. J. Neurolinguistics 16, 45–58 (2003).

    Google Scholar 

  6. Kuperberg, G. R. Neural mechanisms of language comprehension: challenges to syntax. Brain Res. 1146, 23–49 (2007).

    CAS  PubMed  Google Scholar 

  7. Hagoort, P. The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1055–1069 (2008).

    PubMed  Google Scholar 

  8. Grainger, J. & Holcomb, P. J. in The Neural Basis of Reading (eds Cornelissen, P. et al.) (Oxford Univ. Press, in the press).

  9. Van Petten, C. & Luka, B. J. Neural localization of semantic context effects in electromagnetic and hemodynamic studies. Brain Lang. 97, 279–293 (2006). This review provides a thorough summary of the N400 effect and its localization.

    PubMed  Google Scholar 

  10. Bentin, S., McCarthy, G. & Wood, C. C. Event-related potentials, lexical decision and semantic priming. Electroencephalogr. Clin. Neurophysiol. 60, 343–355 (1985).

    CAS  PubMed  Google Scholar 

  11. Rugg, M. D. The effects of semantic priming and word repetition on event-related potentials. Psychophysiology 22, 642–647 (1985).

    CAS  PubMed  Google Scholar 

  12. Rugg, M. D. & Nagy, M. E. Lexical contribution to nonword-repetition effects: evidence from event-related potentials. Mem. Cognit. 15, 473–481 (1987).

    CAS  PubMed  Google Scholar 

  13. Barrett, S. E., Rugg, M. D. & Perrett, D. I. Event-related potentials and the matching of familiar and unfamiliar faces. Neuropsychologia 26, 105–117 (1988).

    CAS  PubMed  Google Scholar 

  14. Barrett, S. E. & Rugg, M. D. Event-related potentials and the semantic matching of faces. Neuropsychologia 27, 913–922 (1989).

    CAS  PubMed  Google Scholar 

  15. Barrett, S. E. & Rugg, M. D. Event-related potentials and the semantic matching of pictures. Brain Cogn. 14, 201–212 (1990).

    CAS  PubMed  Google Scholar 

  16. Holcomb, P. J. & McPherson, W. B. Event-related brain potentials reflect semantic priming in an object decision task. Brain Cogn. 24, 259–276 (1994).

    CAS  PubMed  Google Scholar 

  17. Ganis, G., Kutas, M. & Sereno, M. I. The search for “common sense”: an electrophysiological study of the comprehension of words and pictures in reading. J. Cogn. Neurosci. 8, 89–106 (1996).

    CAS  PubMed  Google Scholar 

  18. Kutas, M. In the company of other words: electrophysiological evidence for single-word and sentence context effects. Lang. Cogn. Process. 8, 533–572 (1993).

    Google Scholar 

  19. Kutas, M. & Hillyard, S. A. Brain potentials during reading reflect word expectancy and semantic association. Nature 307, 161–163 (1984). In showing that N400 amplitude for sentence endings could be manipulated by expectancy or 'Cloze probability', this paper clearly demonstrated that the N400 response is an index of normal word processing and not only a response to violations.

    CAS  PubMed  Google Scholar 

  20. Federmeier, K. D. & Kutas, M. A rose by any other name: long-term memory structure and sentence processing. J. Mem. Lang. 41, 469–495 (1999).

    Google Scholar 

  21. Osterhout, L. & Holcomb, P. J. Event-related brain potentials elicited by syntactic anomaly. J. Mem. Lang. 31, 785–806 (1992).

    Google Scholar 

  22. Brown, C. & Hagoort, P. The processing nature of the N400: evidence from masked priming. J. Cogn. Neurosci. 5, 34–44 (1993). This ERP study used a masked-priming paradigm to provide one of the clearest arguments that the N400 effect reflects integration rather than lexical access mechanisms.

    CAS  PubMed  Google Scholar 

  23. Sereno, S. C., Rayner, K. & Posner, M. I. Establishing a time-line of word recognition: evidence from eye movements and event-related potentials. Neuroreport 9, 2195–2200 (1998).

    CAS  PubMed  Google Scholar 

  24. Hauk, O. & Pulvermuller, F. Effects of word length and frequency on the human event-related potential. Clin. Neurophysiol. 115, 1090–1103 (2004).

    CAS  PubMed  Google Scholar 

  25. Hauk, O., Davis, M. H., Ford, M., Pulvermuller, F. & Marslen-Wilson, W. D. The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30, 1383–1400 (2006).

    CAS  PubMed  Google Scholar 

  26. Federmeier, K. D. Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology 44, 491–505 (2007).

    PubMed  PubMed Central  Google Scholar 

  27. van Berkum, J. J., Hagoort, P. & Brown, C. M. Semantic integration in sentences and discourse: evidence from the N400. J. Cogn. Neurosci. 11, 657–671 (1999).

    CAS  PubMed  Google Scholar 

  28. St George, M., Mannes, S. & Hoffman, J. E. Global semantic expectancy and language comprehension. J. Cogn. Neurosci. 6, 70–83 (1994).

    Google Scholar 

  29. van Berkum, J. J., Zwitserlood, P., Hagoort, P. & Brown, C. M. When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. Brain Res. Cogn. Brain Res. 17, 701–718 (2003). An influential ERP study that demonstrated that the N400 effect can be driven by discourse context beyond the local sentence.

    PubMed  Google Scholar 

  30. Chwilla, D. J. & Kolk, H. H. J. Accessing world knowledge: evidence from N400 and reaction time priming. Cogn. Brain Res. 25, 589–606 (2005).

    Google Scholar 

  31. Camblin, C. C., Gordon, P. C. & Swaab, T. Y. The interplay of discourse congruence and lexical association during sentence processing: evidence from ERPs and eye tracking. J. Mem. Lang. 56, 103–128 (2007).

    PubMed  PubMed Central  Google Scholar 

  32. Van Petten, C. & Kutas, M. Interactions between sentence context and word frequency in event-related brain potentials. Mem. Cognit. 18, 380–393 (1990).

    CAS  PubMed  Google Scholar 

  33. Allen, M., Badecker, W. & Osterhout, L. Morphological analysis in sentence processing: an ERP study. Lang. Cogn. Process. 18, 405–430 (2003).

    Google Scholar 

  34. Holcomb, P. J. & Neville, H. J. Auditory and visual semantic priming in lexical decision: a comparison using event-related brain potentials. Lang. Cogn. Process. 5, 281–312 (1990).

    Google Scholar 

  35. Holcomb, P. J. Semantic priming and stimulus degradation: implications for the role of the N400 in language processing. Psychophysiology 30, 47–61 (1993).

    CAS  PubMed  Google Scholar 

  36. Bentin, S., Mouchetant-Rostaing, Y., Giard, M. H., Echallier, J. F. & Pernier, J. ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. J. Cogn. Neurosci. 11, 235–260 (1999).

    CAS  PubMed  Google Scholar 

  37. Anderson, J. E. & Holcomb, P. J. Auditory and visual semantic priming using different stimulus onset asynchronies: an event-related brain potential study. Psychophysiology 32, 177–190 (1995).

    CAS  PubMed  Google Scholar 

  38. Deacon, D. et al. The lifetime of automatic semantic priming effects may exceed two seconds. Cogn. Brain Res. 7, 465–472 (1999).

    CAS  Google Scholar 

  39. Hill, H., Strube, M., Roesch-Ely, D. & Weisbrod, M. Automatic vs. controlled processes in semantic priming—differentiation by event-related potentials. Int. J. Psychophysiol. 44, 197–218 (2002).

    PubMed  Google Scholar 

  40. Franklin, M. S., Dien, J., Neely, J. H., Huber, E. & Waterson, L. D. Semantic priming modulates the N400, N300, and N400RP. Clin. Neurophysiol. 118, 1053–1068 (2007).

    PubMed  Google Scholar 

  41. Kiefer, M. The N400 is modulated by unconsciously perceived masked words: further evidence for an automatic spreading activation account of N400 priming effects. Cogn. Brain Res. 13, 27–39 (2002).

    Google Scholar 

  42. Grossi, G. Relatedness proportion effects on masked associative priming: an ERP study. Psychophysiology 43, 21–30 (2006).

    PubMed  Google Scholar 

  43. Damasio, H. in Acquired Aphasia Vol. 2 (ed. Sarno, M. T.) 45–71 (Academic Press, New York, 1991).

    Google Scholar 

  44. Indefrey, P., Hagoort, P., Herzog, H., Seitz, R. J. & Brown, C. M. Syntactic processing in left prefrontal cortex is independent of lexical meaning. Neuroimage 14, 546–555 (2001).

    CAS  PubMed  Google Scholar 

  45. Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

    PubMed  Google Scholar 

  46. Hickok, G. & Poeppel, D. The cortical organization of speech processing. Nature Rev. Neurosci. 8, 393–402 (2007).

    CAS  Google Scholar 

  47. Martin, A. The representation of object concepts in the brain. Annu. Rev. Psychol. 58, 25–45 (2007).

    PubMed  Google Scholar 

  48. Gagnepain, P. et al. Spoken word memory traces within the human auditory cortex revealed by repetition priming and functional magnetic resonance imaging. J. Neurosci. 28, 5281–5289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gold, B. T., Balota, D. A., Kirchhoff, B. A. & Buckner, R. L. Common and dissociable activation patterns associated with controlled semantic and phonological processing: evidence from fMRI adaptation. Cereb. Cortex 15, 1438–1450 (2005).

    PubMed  Google Scholar 

  50. Price, C. J. et al. Brain activity during reading: the effects of exposure duration and task. Brain 117, 1255–1269 (1994).

    PubMed  Google Scholar 

  51. Pugh, K. R. et al. Cerebral organization of component processes in reading. Brain 119, 1221–1238 (1996).

    PubMed  Google Scholar 

  52. Cappa, S. F., Perani, D., Schnur, T., Tettamanti, M. & Fazio, F. The effects of semantic category and knowledge type on lexical-semantic access: a PET study. Neuroimage 8, 350–359 (1998).

    CAS  PubMed  Google Scholar 

  53. Gitelman, D. R., Nobre, A. C., Sonty, S., Parrish, T. B. & Mesulam, M. M. Language network specializations: an analysis with parallel task designs and functional magnetic resonance imaging. Neuroimage 26, 975–985 (2005).

    PubMed  Google Scholar 

  54. Gold, B. T. et al. Dissociation of automatic and strategic lexical-semantics: functional magnetic resonance imaging evidence for differing roles of multiple frontotemporal regions. J. Neurosci. 26, 6523–6532 (2006). This fMRI study provided a comprehensive investigation of a classic psychological manipulation, short- versus long-SOA in semantic priming. The paper demonstrated that priming effects modulate MTG activation across all SOAs, but that priming affects the IFG only for long SOAs.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis, M. H. & Johnsrude, I. S. Hierarchical processing in spoken language comprehension. J. Neurosci. 23, 3423–3431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Giraud, A. L. et al. Contributions of sensory input, auditory search and verbal comprehension to cortical activity during speech processing. Cereb. Cortex 14, 247–255 (2004).

    CAS  PubMed  Google Scholar 

  57. Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z. & Wagner, A. D. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 47, 907–918 (2005). This paper provided fMRI evidence demonstrating the differential contributions of the anterior and posterior IT to the mechanisms of retrieval and selection.

    CAS  PubMed  Google Scholar 

  58. Hart, J. Jr & Gordon, B. Delineation of single-word semantic comprehension deficits in aphasia, with anatomical correlation. Ann. Neurol. 27, 226–231 (1990).

    PubMed  Google Scholar 

  59. Kertesz, A. Aphasia and Associated Disorders: Taxonomy, Localization, and Recovery (Grune & Stratton, New York, 1979).

    Google Scholar 

  60. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Redfern, B. B. & Jaeger, J. J. Lesion analysis of the brain areas involved in language comprehension. Cognition 92, 145–177 (2004). This paper presented neuropsychological evidence from a large aphasic patient group. The analysis distinguished distinct operations mediated by the anterior temporal lobe and the MTG.

    PubMed  Google Scholar 

  61. Indefrey, P. & Levelt, W. J. The spatial and temporal signatures of word production components. Cognition 92, 101–144 (2004).

    CAS  PubMed  Google Scholar 

  62. Vandenberghe, R., Price, C., Wise, R., Josephs, O. & Frackowiak, R. S. Functional anatomy of a common semantic system for words and pictures. Nature 383, 254–256 (1996).

    CAS  PubMed  Google Scholar 

  63. Reddy, L. & Kanwisher, N. Coding of visual objects in the ventral stream. Curr. Opin. Neurobiol. 16, 408–414 (2006).

    CAS  PubMed  Google Scholar 

  64. Binder, J. R. et al. Human temporal lobe activation by speech and nonspeech sounds. Cereb. Cortex 10, 512–528 (2000).

    CAS  PubMed  Google Scholar 

  65. Wernicke, C. The Aphasic Symptom Complex: a Psychological Study on a Neurological Basis (Kohn and Weigert, Breslau, 1874). English translation available in Cohen, R. S. & Wartofsky, M. W. Boston Studies in the Philosophy of science Vol. 4 (Riedel, Dondrecht, 1969).

    Google Scholar 

  66. Wise, R. J. et al. Separate neural subsystems within 'Wernicke's area'. Brain 124, 83–95 (2001).

    CAS  PubMed  Google Scholar 

  67. Zekveld, A. A., Heslenfeld, D. J., Festen, J. M. & Schoonhoven, R. Top–down and bottom–up processes in speech comprehension. Neuroimage 32, 1826–1836 (2006).

    PubMed  Google Scholar 

  68. Scott, S. K. Auditory processing—speech, space and auditory objects. Curr. Opin. Neurobiol. 15, 197–201 (2005).

    CAS  PubMed  Google Scholar 

  69. Davis, M. H. & Johnsrude, I. S. Hearing speech sounds: top-down influences on the interface between audition and speech perception. Hear. Res. 229, 132–147 (2007).

    PubMed  Google Scholar 

  70. Bavelier, D. et al. Sentence reading: a functional MRI study at 4 Tesla. J. Cogn. Neurosci. 9, 664–686 (1997).

    CAS  PubMed  Google Scholar 

  71. Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    PubMed  Google Scholar 

  72. Crinion, J. T., Lambon-Ralph, M. A., Warburton, E. A., Howard, D. & Wise, R. J. Temporal lobe regions engaged during normal speech comprehension. Brain 126, 1193–1201 (2003).

    PubMed  Google Scholar 

  73. Noppeney, U. & Price, C. J. An fMRI study of syntactic adaptation. J. Cogn. Neurosci. 16, 702–713 (2004).

    CAS  PubMed  Google Scholar 

  74. Spitsyna, G., Warren, J. E., Scott, S. K., Turkheimer, F. E. & Wise, R. J. Converging language streams in the human temporal lobe. J. Neurosci. 26, 7328–7336 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Mazoyer, B. M. et al. The cortical representation of speech. J. Cogn. Neurosci. 4, 467–479 (1993).

    Google Scholar 

  76. Stowe, L. A. et al. Localizing components of a complex task: sentence processing and working memory. Neuroreport 9, 2995–2999 (1998).

    CAS  PubMed  Google Scholar 

  77. Friederici, A. D., Meyer, P. & von Cramon, D. Y. Auditory language comprehension: an event-related fMRI study on the processing of syntactic and lexical information. Brain Lang. 74, 289–300 (2000).

    CAS  PubMed  Google Scholar 

  78. Vandenberghe, R., Nobre, A. C. & Price, C. J. The response of left temporal cortex to sentences. J. Cogn. Neurosci. 14, 550–560 (2002).

    CAS  PubMed  Google Scholar 

  79. Humphries, C., Love, T., Swinney, D. A. & Hickok, G. Response of anterior temporal cortex to prosodic and syntactic manipulations during sentence processing. Hum. Brain Mapp. 26, 128–138 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Humphries, C., Binder, J. R., Medler, D. A. & Liebenthal, E. Syntactic and semantic modulation of neural activity during auditory sentence comprehension. J. Cogn. Neurosci. 18, 665–679 (2006).

    PubMed  PubMed Central  Google Scholar 

  81. Rogalsky, C. & Hickok, G. Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex. Cereb. Cortex 31 July 2008 (doi: 10.1093/cercor/bhn126).

    PubMed  PubMed Central  Google Scholar 

  82. Humphries, C., Willard, K., Buchsbaum, B. & Hickok, G. Role of anterior temporal cortex in auditory sentence comprehension: an fMRI study. Neuroreport 12, 1749–1752 (2001).

    CAS  PubMed  Google Scholar 

  83. Gorno-Tempini, M. L. et al. Cognition and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 55, 335–346 (2004).

    PubMed  PubMed Central  Google Scholar 

  84. Mummery, C. J. et al. A voxel-based morphometry study of semantic dementia: relationship between temporal lobe atrophy and semantic memory. Ann. Neurol. 47, 36–45 (2000).

    CAS  PubMed  Google Scholar 

  85. Williams, G. B., Nestor, P. J. & Hodges, J. R. Neural correlates of semantic and behavioural deficits in frontotemporal dementia. Neuroimage 24, 1042–1051 (2005).

    PubMed  Google Scholar 

  86. Noppeney, U. et al. Temporal lobe lesions and semantic impairment: a comparison of herpes simplex virus encephalitis and semantic dementia. Brain 130, 1138–1147 (2007).

    PubMed  Google Scholar 

  87. Mummery, C. J. et al. Disrupted temporal lobe connections in semantic dementia. Brain 122, 61–73 (1999).

    PubMed  Google Scholar 

  88. Humphries, C., Binder, J. R., Medler, D. A. & Liebenthal, E. Time course of semantic processes during sentence comprehension: an fMRI study. Neuroimage 36, 924–932 (2007). This fMRI study provided compelling evidence for the role of the angular gyrus in processing combinatorial semantic structure, showing that this region is selectively activated by congruent sentences.

    PubMed  Google Scholar 

  89. Binder, J. R. et al. Neural correlates of lexical access during visual word recognition. J. Cogn. Neurosci. 15, 372–393 (2003).

    CAS  PubMed  Google Scholar 

  90. Binder, J. R., Medler, D. A., Desai, R., Conant, L. L. & Liebenthal, E. Some neurophysiological constraints on models of word naming. Neuroimage 27, 677–693 (2005).

    CAS  PubMed  Google Scholar 

  91. Ischebeck, A. et al. Reading in a regular orthography: an fMRI study investigating the role of visual familiarity. J. Cogn. Neurosci. 16, 727–741 (2004).

    PubMed  Google Scholar 

  92. Rissman, J., Eliassen, J. C. & Blumstein, S. E. An event-related fMRI investigation of implicit semantic priming. J. Cogn. Neurosci. 15, 1160–1175 (2003).

    PubMed  Google Scholar 

  93. Mechelli, A., Gorno-Tempini, M. L. & Price, C. J. Neuroimaging studies of word and pseudoword reading: consistencies, inconsistencies, and limitations. J. Cogn. Neurosci. 15, 260–271 (2003).

    PubMed  Google Scholar 

  94. Noppeney, U., Josephs, O., Hocking, J., Price, C. J. & Friston, K. J. The effect of prior visual information on recognition of speech and sounds. Cereb. Cortex 18, 598–609 (2008).

    PubMed  Google Scholar 

  95. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).

    CAS  PubMed  Google Scholar 

  96. McDermott, K. B., Petersen, S. E., Watson, J. M. & Ojemann, J. G. A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia 41, 293–303 (2003).

    PubMed  Google Scholar 

  97. Buckner, R. L., Koutstaal, W., Schater, D. L. & Rosen, B. R. Functional MRI evidence for a role of frontal and inferior temporal cortex in amodal components of priming. Brain 123, 620–640 (2000).

    PubMed  Google Scholar 

  98. Gabrieli, J. D., Poldrack, R. A. & Desmond, J. E. The role of left prefrontal cortex in language and memory. Proc. Natl Acad. Sci. USA 95, 906–913 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mechelli, A., Josephs, O., Lambon-Ralph, M. A., McClelland, J. L. & Price, C. J. Dissociating stimulus-driven semantic and phonological effect during reading and naming. Hum. Brain Mapp. 28, 205–217 (2007).

    PubMed  Google Scholar 

  100. Bookheimer, S. Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annu. Rev. Neurosci. 25, 151–188 (2002).

    CAS  PubMed  Google Scholar 

  101. Poldrack, R. A. et al. Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage 10, 15–35 (1999).

    CAS  PubMed  Google Scholar 

  102. Dapretto, M. & Bookheimer, S. Y. Form and content: dissociating syntax and semantics in sentence comprehension. Neuron 24, 427–432 (1999).

    CAS  PubMed  Google Scholar 

  103. Gough, P. M., Nobre, A. C. & Devlin, J. T. Dissociating linguistic processes in the left inferior frontal cortex with transcranial magnetic stimulation. J. Neurosci. 25, 8010–8016 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    PubMed  Google Scholar 

  105. Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K. & Farah, M. J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc. Natl Acad. Sci. USA 94, 14792–14797 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Thompson-Schill, S. L., D'Esposito, M. & Kan, I. P. Effects of repetition and competition on activity in left prefrontal cortex during word generation. Neuron 23, 513–522 (1999).

    CAS  PubMed  Google Scholar 

  107. Rodd, J. M., Davis, M. H. & Johnsrude, I. S. The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity. Cereb. Cortex 15, 1261–1269 (2005). An elegant, psycholinguistically motivated fMRI investigation that underscored the importance of the posterior temporal cortex for lexical processing and the posterior IFG for lexical selection.

    PubMed  Google Scholar 

  108. Hagoort, P., Hald, L., Bastiaansen, M. & Petersson, K. M. Integration of word meaning and world knowledge in language comprehension. Science 304, 438–441 (2004). This study demonstrated that extra-linguistic world knowledge can affect the N400 semantic anomaly effect with evidence from both fMRI and ERP.

    CAS  PubMed  Google Scholar 

  109. Hagoort, P. On Broca, brain, and binding: a new framework. Trends Cogn. Sci. 9, 416–423 (2005).

    PubMed  Google Scholar 

  110. Kutas, M., Van Petten, C. & Besson, M. Event-related potential asymmetries during the reading of sentences. Electroencephalogr. Clin. Neurophysiol. 69, 218–233 (1988).

    CAS  PubMed  Google Scholar 

  111. Kutas, M., Hillyard, S. A. & Gazzaniga, M. S. Processing of semantic anomaly by right and left hemispheres of commissurotomy patients. Evidence from event-related brain potentials. Brain 111, 553–576 (1988).

    PubMed  Google Scholar 

  112. Van Petten, C. & Rheinfelder, H. Conceptual relationships between spoken words and environmental sounds: event-related brain potential measures. Neuropsychologia 33, 485–508 (1995).

    CAS  PubMed  Google Scholar 

  113. Curran, T., Tucker, D. M., Kutas, M. & Posner, M. I. Topography of the N400: brain electrical activity reflecting semantic expectancy. Electroencephalogr. Clin. Neurophysiol. 88, 188–209 (1993).

    CAS  PubMed  Google Scholar 

  114. Johnson, B. W. & Hamm, J. P. High-density mapping in an N400 paradigm: evidence for bilateral temporal lobe generators. Clin. Neurophysiol. 111, 532–545 (2000).

    CAS  PubMed  Google Scholar 

  115. Frishkoff, G. A., Tucker, D. M., Davey, C. & Scherg, M. Frontal and posterior sources of event-related potentials in semantic comprehension. Brain Res. Cogn. Brain Res. 20, 329–354 (2004).

    PubMed  Google Scholar 

  116. Iragui, V., Kutas, M. & Salmon, D. P. Event-related brain potentials during semantic categorization in normal aging and senile dementia of the Alzheimer's type. Electroencephalogr. Clin. Neurophysiol. 100, 392–406 (1996).

    CAS  PubMed  Google Scholar 

  117. Olichney, J. M. et al. Abnormal verbal event related potentials in mild cognitive impairment and incipient Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 73, 377–384 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Olichney, J. M. et al. Word repetition in amnesia. Electrophysiological measures of impaired and spared memory. Brain 123, 1948–1963 (2000).

    PubMed  Google Scholar 

  119. Hagoort, P., Brown, C. M. & Swaab, T. Y. Lexical-semantic event-related potential effects in patients with left hemisphere lesions and aphasia, and patients with right hemisphere lesions without aphasia. Brain 119, 627–649 (1996).

    PubMed  Google Scholar 

  120. Swaab, T. Y., Brown, C. & Hagoort, P. Spoken sentence comprehension in aphasia: event-related potential evidence for a lexical integration deficit. J. Cogn. Neurosci. 9, 39–66 (1997).

    CAS  PubMed  Google Scholar 

  121. Kojima, T. & Kaga, K. Auditory lexical-semantic processing impairments in aphasic patients reflected in event-related potentials (N400). Auris Nasus Larynx 30, 369–378 (2003).

    PubMed  Google Scholar 

  122. Friederici, A. D., von Cramon, D. Y. & Kotz, S. A. Language related brain potentials in patients with cortical and subcortical left hemisphere lesions. Brain 122, 1033–1047 (1999).

    PubMed  Google Scholar 

  123. Friederici, A. D., Hahne, A. & von Cramon, D. Y. First-pass versus second-pass parsing processes in a Wernicke's and a Broca's aphasic: electrophysiological evidence for a double dissociation. Brain Lang. 62, 311–341 (1998).

    CAS  PubMed  Google Scholar 

  124. Olichney, J. M. et al. Reduced sensitivity of the N400 and late positive component to semantic congruity and word repetition in left temporal lobe epilepsy. Clin. Electroencephalogr. 33, 111–118 (2002).

    PubMed  Google Scholar 

  125. Posner, M. I. & Snyder, C. R. R. Information Processing and Cognition: the Loyola symposium (ed. Solso, R. L.) 55–85 (Erlbaum, Hillsdale, New Jersey, 1975).

    Google Scholar 

  126. Neely, J. H. Semantic priming and retrieval from lexical memory: roles of inhibitionless spreading activation and limited-capacity attention. J. Exp. Psychol. Gen. 106, 226–254 (1977).

    Google Scholar 

  127. Neely, J. H., Keefe, D. E. & Ross, K. L. Semantic priming in the lexical decision task: roles of prospective prime-generated expectancies and retrospective semantic matching. J. Exp. Psychol. Learn. Mem. Cogn. 15, 1003–1019 (1989).

    CAS  PubMed  Google Scholar 

  128. Rossell, S. L., Price, C. J. & Nobre, A. C. The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia 41, 550–564 (2003).

    PubMed  Google Scholar 

  129. Nakao, M. & Miyatani, M. in Communicating Skills of Intention (ed. Sakamoto, T. ) 21–31 (Hitsuji Shobo, Tokyo, 2007).

  130. Holcomb, P. J. Automatic and attentional processing: an event-related brain potential analysis of semantic priming. Brain Lang. 35, 66–85 (1988).

    CAS  PubMed  Google Scholar 

  131. Matsumoto, A., Iidaka, T., Haneda, K., Okada, T. & Sadato, N. Linking semantic priming effect in functional MRI and event-related potentials. Neuroimage 24, 624–634 (2005).

    PubMed  Google Scholar 

  132. Federmeier, K. D., Wlotko, E. W., de Ochoa-Dewald, E. & Kutas, M. Multiple effects of sentential constraint on word processing. Brain Res. 1146, 75–84 (2007).

    CAS  PubMed  Google Scholar 

  133. Van Petten, C., Coulson, S., Rubin, S., Plante, E. & Parks, M. Time course of word identification and semantic integration in spoken language. J. Exp. Psychol. Learn. Mem. Cogn. 25, 394–417 (1999).

    CAS  PubMed  Google Scholar 

  134. van den Brink, D., Brown, C. M. & Hagoort, P. Electrophysiological evidence for early contextual influences during spoken-word recognition: N200 versus N400 effects. J. Cogn. Neurosci. 13, 967–985 (2001).

    CAS  PubMed  Google Scholar 

  135. Diaz, M. T. & Swaab, T. Y. Electrophysiological differentiation of phonological and semantic integration in word and sentence contexts. Brain Res. 1146, 85–100 (2007).

    CAS  PubMed  Google Scholar 

  136. Connolly, J. F. & Phillips, N. A. Event-related potential components reflect phonological and semantic processing of the terminal words of spoken sentences. J. Cogn. Neurosci. 6, 256–266 (1994).

    CAS  PubMed  Google Scholar 

  137. Vissers, C. T., Chwilla, D. J. & Kolk, H. H. Monitoring in language perception: the effect of misspellings of words in highly constrained sentences. Brain Res. 1106, 150–163 (2006).

    CAS  PubMed  Google Scholar 

  138. Baumgaertner, A., Weiller, C. & Büchel, C. Event-related fMRI reveals cortical sites involved in contextual sentence integration. Neuroimage 16, 736–745 (2002).

    CAS  PubMed  Google Scholar 

  139. Dien, J., Franklin, M. S., Michelson, C. A. & Lemen, L. C. fMRI characterization of the language formulation area. Brain Res. 1229, 179–192 (2008).

    CAS  PubMed  Google Scholar 

  140. Kuperberg, G. R., Holcomb, P. J., Sitnikova, T. & Greve, D. Distinct patterns of neural modulation during the processing of conceptual and syntactic anomalies. J. Cogn. Neurosci. 15, 272–293 (2003). This study carried out a detailed comparison of the ERP and fMRI responses to semantic anomaly, using the same material in both techniques.

    PubMed  Google Scholar 

  141. Devlin, J. T. et al. Susceptibility-induced loss of signal: comparing PET and fMRI on a semantic task. Neuroimage 11, 589–600 (2000).

    CAS  PubMed  Google Scholar 

  142. Uusvuori, J., Parviainen, T., Inkinen, M. & Salmelin, R. Spatiotemporal interaction between sound form and meaning during spoken word perception. Cereb. Cortex 18, 456–466 (2008).

    PubMed  Google Scholar 

  143. Helenius, P. et al. Cortical activation during spoken-word segmentation in nonreading-impaired and dyslexic adults. J. Neurosci. 22, 2936–2944 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Simos, P. G., Basile, L. F. & Papanicolaou, A. C. Source localization of the N400 response in a sentence-reading paradigm using evoked magnetic fields and magnetic resonance imaging. Brain Res. 762, 29–39 (1997).

    CAS  PubMed  Google Scholar 

  145. Helenius, P., Salmelin, R., Service, E. & Connolly, J. F. Distinct time courses of word and context comprehension in the left temporal cortex. Brain 121, 1133–1142 (1998). In this study, the first whole-head MEG study to examine the N400 response, the dipole-modelling results showed left-lateralized sources in the posterior temporal cortex.

    PubMed  Google Scholar 

  146. Helenius, P., Salmelin, R., Service, E. & Connolly, J. F. Semantic cortical activation in dyslexic readers. J. Cogn. Neurosci. 11, 535–550 (1999).

    CAS  PubMed  Google Scholar 

  147. Halgren, E. et al. N400-like magnetoencephalography responses modulated by semantic context, word frequency, and lexical class in sentences. Neuroimage 17, 1101–1116 (2002). This was the first MEG study of the semantic anomaly effect to use a distributed-source model to localize the N400 response. The study showed that early activity in the MTG later spread to more anterior regions.

    PubMed  Google Scholar 

  148. Pylkkanen, L. & McElree, B. An MEG study of silent meaning. J. Cogn. Neurosci. 19, 1905–1921 (2007).

    PubMed  Google Scholar 

  149. Service, E., Helenius, P., Maury, S. & Salmelin, R. Localization of syntactic and semantic brain responses using magnetoencephalography. J. Cogn. Neurosci. 19, 1193–1205 (2007).

    PubMed  Google Scholar 

  150. Dale, A. M. et al. Dynamical statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26, 55–67 (2000).

    CAS  PubMed  Google Scholar 

  151. Maess, B., Herrmann, C. S., Hahne, A., Nakamura, A. & Friederici, A. D. Localizing the distributed language network responsible for the N400 measured by MEG during auditory sentence processing. Brain Res. 1096, 163–172 (2006).

    CAS  PubMed  Google Scholar 

  152. Tse, C. Y. et al. Imaging cortical dynamics of language processing with the event-related optical signal. Proc. Natl Acad. Sci. USA 104, 17157–17162 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Smith, M. E., Stapleton, J. M. & Halgren, E. Human medial temporal lobe potentials evoked in memory and language tasks. Electroencephalogr. Clin. Neurophysiol. 63, 145–159 (1986).

    CAS  PubMed  Google Scholar 

  154. Halgren, E. et al. Spatio-temporal stages in face and word processing. I. Depth-recorded potentials in the human occipital, temporal and parietal lobes [corrected]. J. Physiol. (Paris) 88, 1–50 (1994).

    CAS  Google Scholar 

  155. Halgren, E. et al. Spatio-temporal stages in face and word processing. 2. Depth-recorded potentials in the human frontal and Rolandic cortices. J. Physiol. (Paris) 88, 51–80 (1994).

    CAS  Google Scholar 

  156. Nobre, A. C. & McCarthy, G. Language-related field potentials in the anterior-medial temporal lobe: II. Effects of word type and semantic priming. J. Neurosci. 15, 1090–1098 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Elger, C. E. et al. Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35, 657–667 (1997).

    CAS  PubMed  Google Scholar 

  158. McCarthy, G., Nobre, A. C., Bentin, S. & Spencer, D. D. Language-related field potentials in the anterior-medial temporal lobe: I. Intracranial distribution and neural generators. J. Neurosci. 15, 1080–1089 (1995). The authors show that recordings from intracranial electrodes in the anterior medial temporal lobe display a semantic-anomaly response that is very similar to the scalp-recorded N400 response.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pylkkanen, L. & Marantz, A. Tracking the time course of word recognition with MEG. Trends Cogn. Sci. 7, 187–189 (2003).

    PubMed  Google Scholar 

  160. Ganis, G. & Kutas, M. An electrophysiological study of scene effects on object identification. Cogn. Brain Res. 16, 123–144 (2003).

    Google Scholar 

  161. Sitnikova, T., Kuperberg, G. & Holcomb, P. J. Semantic integration in videos of real-world events: an electrophysiological investigation. Psychophysiology 40, 160–164 (2003).

    PubMed  Google Scholar 

  162. Sitnikova, T., Holcomb, P. J., Kiyonaga, K. A. & Kuperberg, G. R. Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. J. Cogn. Neurosci. 20, 2037–2057 (2008).

    PubMed  PubMed Central  Google Scholar 

  163. Plante, E., Petten, C. V. & Senkfor, A. J. Electrophysiological dissociation between verbal and nonverbal semantic processing in learning disabled adults. Neuropsychologia 38, 1669–1684 (2000).

    CAS  PubMed  Google Scholar 

  164. Orgs, G., Lange, K., Dombrowski, J. H. & Heil, M. N400-effects to task-irrelevant environmental sounds: further evidence for obligatory conceptual processing. Neurosci. Lett. 436, 133–137 (2008).

    CAS  PubMed  Google Scholar 

  165. Kintsch, W. The role of knowledge in discourse comprehension construction-integration model. Psychol. Rev. 95, 163–182 (1988).

    CAS  PubMed  Google Scholar 

  166. Crain, S. & Steedman, M. in Natural Language Parsing (eds Dowty, D. R., Karttunen, L. & Zwicky, A. M.) 320–358 (Cambridge Univ. Press, 1985).

    Google Scholar 

  167. Zwaan, R. A. & Radvansky, G. A. Situation models in language comprehension and memory. Psychol. Bull. 123, 162–185 (1998).

    CAS  PubMed  Google Scholar 

  168. Lee, T. S. & Mumford, D. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20, 1434–1448 (2003).

    Google Scholar 

  169. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2, 79–87 (1999).

    CAS  PubMed  Google Scholar 

  170. Friston, K. A theory of cortical responses. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 815–836 (2005).

    PubMed  PubMed Central  Google Scholar 

  171. DeLong, K. A., Urbach, T. P. & Kutas, M. Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neurosci. 8, 1117–1121 (2005).

    CAS  PubMed  Google Scholar 

  172. Van Berkum, J. J. A., Brown, C. M., Zwitserlood, P., Kooijman, V. & Hagoort, P. Anticipating upcoming words in discourse: evidence from ERPs and reading times. Learn. Mem. 31, 443–467 (2005).

    Google Scholar 

  173. van Wassenhove, V., Grant, K. W. & Poeppel, D. Visual speech speeds up the neural processing of auditory speech. Proc. Natl Acad. Sci. USA 102, 1181–1186 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Lau, E., Stroud, C., Plesch, S. & Phillips, C. The role of structural prediction in rapid syntactic analysis. Brain Lang. 98, 74–88 (2006).

    PubMed  Google Scholar 

  175. Otten, M., Nieuwland, M. S. & Van Berkum, J. J. A. Great expectations: specific lexical anticipation influences the processing of spoken language. BMC Neurosci. 8, 89 (2007).

    PubMed  PubMed Central  Google Scholar 

  176. Vigneau, M. et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006).

    CAS  PubMed  Google Scholar 

  177. Devlin, J. T., Jamison, H. L., Matthews, P. M. & Gonnerman, L. M. Morphology and the internal structure of words. Proc. Natl Acad. Sci. USA 101, 14984–14988 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Wheatley, T., Weisberg, J., Beauchamp, M. S. & Martin, A. Automatic priming of semantically related words reduces activity in the fusiform gyrus. J. Cogn. Neurosci. 17, 1871–1885 (2005).

    PubMed  Google Scholar 

  179. Kotz, S. A., Cappa, S. F., von Cramon, D. Y. & Friederici, A. D. Modulation of the lexical-semantic network by auditory semantic priming: an event-related functional MRI study. Neuroimage 17, 1761–1772 (2002).

    PubMed  Google Scholar 

  180. Wible, C. G. et al. Connectivity among semantic associates: an fMRI study of semantic priming. Brain Lang. 97, 294–305 (2006).

    PubMed  Google Scholar 

  181. Giesbrecht, B., Camblin, C. C. & Swaab, T. Y. Separable effects of semantic priming and imageability on word processing in human cortex. Cereb. Cortex 14, 521–529 (2004).

    PubMed  Google Scholar 

  182. Ni, W. An event-related neuroimaging study distinguishing form and content in sentence processing. J. Cogn. Neurosci. 12, 120–133 (2000).

    CAS  PubMed  Google Scholar 

  183. Friederici, A. D., Rüschemeyer, S. A., Hahne, A. & Fiebach, C. J. The role of left inferior frontal and superior temporal cortex in sentence comprehension: localizing syntactic and semantic processes. Cereb. Cortex 13, 170–177 (2003).

    PubMed  Google Scholar 

  184. Kiehl, K. A., Laurens, K. R. & Liddle, P. F. Reading anomalous sentences: an event-related fMRI study of semantic processing. Neuroimage 17, 842–850 (2002).

    PubMed  Google Scholar 

  185. Kuperberg, G. R., Sitnikova, T. & Lakshmanan, B. M. Neuroanatomical distinctions within the semantic system during sentence comprehension: evidence from functional magnetic resonance imaging. Neuroimage 40, 367–388 (2008).

    PubMed  Google Scholar 

  186. Ferstl, E. C., Rinck, M. & von Cramon, D. Y. Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study. J. Cogn. Neurosci. 17, 724–739 (2005).

    PubMed  Google Scholar 

  187. Rüschemeyer, S. A., Fiebach, C. J., Kempe, V. & Friederici, A. D. Processing lexical semantic and syntactic information in first and second language: fMRI evidence from German and Russian. Hum. Brain Mapp. 25, 266–286 (2005).

    PubMed  PubMed Central  Google Scholar 

  188. Rüschemeyer, S. A., Zysset, S. & Friederici, A. D. Native and non-native reading of sentences: an fMRI experiment. Neuroimage 31, 354–365 (2006).

    PubMed  Google Scholar 

  189. Stringaris, A. K., Medford, N. C., Giampietro, V., Brammer, M. J. & David, A. S. Deriving meaning: distinct neural mechanisms for metaphoric, literal, and non-meaningful sentences. Brain Lang. 100, 150–162 (2007).

    PubMed  Google Scholar 

  190. Newman, A. J., Pancheva, R., Ozawa, K., Neville, H. J. & Ullman, M. T. An event-related fMRI study of syntactic and semantic violations. J. Psycholinguist. Res. 30, 339–364 (2001).

    CAS  PubMed  Google Scholar 

  191. Cardillo, E. R., Aydelott, J., Matthews, P. M. & Devlin, J. T. Left inferior prefrontal cortex activity reflects inhibitory rather than facilitatory priming. J. Cogn. Neurosci. 16, 1552–1561 (2004).

    PubMed  PubMed Central  Google Scholar 

  192. Kang, A. M., Constable, R. T., Gore, J. C. & Avrutin, S. An event-related fMRI study of implicit phrase-level syntactic and semantic processing. Neuroimage 10, 555–561 (1999).

    CAS  PubMed  Google Scholar 

  193. Kuperberg, G. R., Lakshmanan, B. M., Greve, D. N. & West, W. C. Task and semantic relationship influence both the polarity and localization of hemodynamic modulation during lexico-semantic processing. Hum. Brain Mapp. 29, 544–561 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Kolk for extensive feedback on the manuscript. Preparation of this manuscript was supported by a National Science Foundation (NSF) Graduate Research Fellowship to E.F.L., 2R01DC05660 to D.P. and NSF DGE-0801465 to the University of Maryland.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Ellen Lau's homepage

Glossary

Event-related potentials

(ERPs). Electrical potentials that are generated in the brain as a consequence of the synchronized activation of neuronal networks by external stimuli. These evoked potentials are recorded at the scalp and consist of precisely timed sequences of waves or 'components'.

Morpheme

The smallest linguistic unit that has a specific meaning or syntactic function. For example, the word 'outplayed' consists of three morphemes: 'out', 'play' and 'ed'.

Semantic structure

The mental representation of how the meanings of individual words or concepts are combined to yield the meaning of entire phrases or sentences.

Syntactic structure

The mental representation of how the words and phrases within a sentence are organized to form a hierarchically nested structure.

Discourse structure

The mental representation of the information in a conversation or speech act, specifying which information is common knowledge between the speakers, which events or individuals are the current topic of discussion and what are the speakers' communicative goals.

Pseudowords

Auditory or visual strings that sound or look like words but are not actually words (for example, 'blick' but not 'lbikc').

Aphasia

A language impairment that is acquired as a result of stroke or other brain injury.

Syntactic priming

The tendency in language production to formulate sentences with recently used syntactic constructions. For example, when one speaker in a conversation uses a passive construction, other speakers become more likely to use passives.

Phoneme

Individual units of speech sound used to store the sounds of words in memory.

Split brain

A brain in which the two hemispheres have been separated by severing the commissures that connected them.

Phase coherence

The degree to which two oscillating signals (for example, as measured with electrodes from the scalp) are synchronized.

Stimulus-onset asynchrony

(SOA). The time between the onsets of sequentially presented stimuli.

Equivalent current dipole (ECD) models

Estimates of the focal source of neuronal activation derived from multi-sensor data obtained by electroencephalography or magnetoencephalography. The activation is modelled as a point source with a position, direction and intensity.

Distributed-source models

Estimates of the neuronal sources that underlie the brain activity that can be represented with magnetoencephalography or electroencephalography multi-channel data. Activity is not assumed to be focal, permitting a spatially distributed and perhaps more realistic visualization.

Mental models

Internal psychological representations of actual or hypothetical situations that can guide perception, action and reasoning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, E., Phillips, C. & Poeppel, D. A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 9, 920–933 (2008). https://doi.org/10.1038/nrn2532

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing