Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The hippocampus and memory: insights from spatial processing

Key Points

  • Damage to the hippocampus in humans can cause profound impairments in long-term episodic memory, but the precise functional contribution of the hippocampus remains the subject of several competing theories.

  • Electrophysiological studies in rodents have characterized the firing properties of 'place cells' in the hippocampus in great detail. Place cells appear to represent where an animal 'thinks' it is located in an environment, relative to environmental boundaries. Acting cooperatively, place cells encode specific environments, performing both pattern completion and pattern separation.

  • A new model of hippocampal processing that is driven by the properties of place cells (the BBB model) provides an alternative to existing psychological theories, at least in the spatial domain. The BBB model proposes that the hippocampus is needed to impose a location from which to retrieve and construct a coherent mental image of an environment. This mental image supports the online maintenance and manipulation of representations of the locations of objects and features in an environment.

  • The model suggests that episodic memory will always be hippocampus-dependent if it is associated with rich mental imagery of an environment. Other sophisticated long-term spatial (and non-spatial) representations can be acquired, stored and retrieved independent of the hippocampus. However, the hippocampus is often needed to mediate behaviours that allow such learning to take place (such as when learning a new route).

  • The BBB model further suggests that the hippocampus is required for both short-term and long-term memory for some types of information, for imagining complex visual scenes (be they real or fictitious), and more for the recognition of scenes than faces. Recent experimental evidence from studies of the effects of damage to the hippocampus in humans supports all three of these proposals.

  • Hippocampal processing beyond the spatial domain cannot be explained by the BBB model, but several theoretical positions have been advanced to address the broader role of the hippocampus in mnemonic processing.

Abstract

The hippocampus appears to be crucial for long-term episodic memory, yet its precise role remains elusive. Electrophysiological studies in rodents offer a useful starting point for developing models of hippocampal processing in the spatial domain. Here we review one such model that points to an essential role for the hippocampus in the construction of mental images. We explain how this neural-level mechanistic account addresses some of the current controversies in the field, such as the role of the hippocampus in imagery and short-term memory, and discuss its broader implications for the neural bases of episodic memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The hippocampus and its connections.
Figure 2: The traditional taxonomy of memory systems.
Figure 3: Stimuli used to investigate the role of the hippocampus in perception and short-term memory.

Similar content being viewed by others

References

  1. Andersen, P., Morris, R., Amaral, D., Bliss, T. & O'Keefe, J. The Hippocampus Book (Oxford Univ. Press, New York, 2007). This book is an excellent source for anyone interested in hippocampal function: it reviews molecular, synaptic, physiological and cognitive data.

    Google Scholar 

  2. Scoville, W. B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957). This study provided one of the first detailed descriptions of the effects of bilateral medial temporal lobe resection on memory. It included an account of the famous patient H. M.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Milner, B. Disorders of learning and memory after temporal lobe lesions in man. Clin. Neurosurg. 19, 421–446 (1972).

    Article  CAS  PubMed  Google Scholar 

  4. Zola-Morgan, S., Squire, L. R. & Amaral, D. G. Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rempel-Clower, N. L., Zola, S. M., Squire, L. R. & Amaral, D. G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Milner, B., Squire, L. R. & Kandel, E. R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Squire, L. R. Mechanisms of memory. Science 232, 1612–1619 (1986). This influential review outlines the main tenets of the Declarative Theory, and includes sections on short-term versus long-term memory, declarative versus procedural memory, and memory consolidation over time.

    Article  CAS  PubMed  Google Scholar 

  8. Squire, L. R., Stark, C. E. & Clark, R. E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Nadel, L. & Moscovitch, M. Memory consolidation, retrograde amnesia and the hippocampal complex. Curr. Opin. Neurobiol. 7, 217–227 (1997). This paper lays out the Multiple-Trace Theory alternative to the extra-hippocampal consolidation of all memories.

    Article  CAS  PubMed  Google Scholar 

  10. Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aggleton, J. P. & Brown, M. W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioural Brain Sci. 22, 425–444; discussion 445–490 (1999). This paper reviews evidence that the hippocampal–anterior-thalamic system supports recollection and the perirhinal-cortex–mammilliary-bodies system supports familiarity.

    Article  CAS  Google Scholar 

  12. Cohen, N. J. & Eichenbaum, H. Memory, Amnesia and the Hippocampal System (MIT Press, Cambridge, Massachusettes, 1993). This book outlines the theory that the hippocampal system has a crucial role in binding together multiple inputs to permit representations of the relations among the constituent elements of scenes or events.

    Google Scholar 

  13. Cohen, N. J., Poldrack, R. A. & Eichenbaum, H. Memory for items and memory for relations in the procedural/declarative memory framework. Memory 5, 131–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Eichenbaum, H. & Cohen, N. J. From Conditioning to Conscious Recollection: Memory Systems of the Brain (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

  15. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Oxford Univ. Press, 1978). This book lays out the Cognitive-Map Theory, summarizing the properties of hippocampal place cells, the effects of hippocampal lesions in rats and implications for the role of the hippocampus, including one of the first suggestions of a specific role in context-dependent memory.

    Google Scholar 

  16. Marr, D. A theory for cerebral cortex. Proc. R. Soc. Lond. B Biol. Sci. 176, 161–234 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Marr, D. Simple memory: a theory for archicortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 262, 23–81 (1971). This paper laid out the model that continues to be the dominant model of hippocampal function today (updated by references 18–22), including the ideas of memory-as-attractor-representations and pattern completion, and the relationship between rapid hippocampal learning and the slow accumulation of semantic knowledge in the neocortex.

    Article  CAS  PubMed  Google Scholar 

  18. Teyler, T. J. & DiScenna, P. The hippocampal memory indexing theory. Behav. Neurosci. 100, 147–154 (1986).

    Article  CAS  PubMed  Google Scholar 

  19. McNaughton, B. L. & Morris, R. G. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).

    Article  Google Scholar 

  20. Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    Article  PubMed  Google Scholar 

  22. Alvarez, P. & Squire, L. R. Memory consolidation and the medial temporal lobe: a simple network model. Proc. Natl Acad. Sci. USA 91, 7041–7045 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Damasio, A. R. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1, 123–132 (1989).

    Article  Google Scholar 

  24. Patterson, K., Nestor, P. J. & Rogers, T. T. Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Rev. Neurosci. 8, 976–987 (2007).

    Article  CAS  Google Scholar 

  25. Tulving, E. in Organisation and Memory (eds Tulving, E. & Donaldson, W.) 382–403 (Academic, New York, 1972).

    Google Scholar 

  26. Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    Article  PubMed  Google Scholar 

  27. Steinvorth, S., Levine, B. & Corkin, S. Medial temporal lobe structures are needed to re-experience remote autobiographical memories: evidence from H. M. and W. R. Neuropsychologia 43, 479–496 (2005). This provocative article suggested that, although remote memories might be retained following extensive medial temporal lobe damage, such memories are inflexible and cannot be 're-experienced'.

    Article  PubMed  Google Scholar 

  28. Cipolotti, L. et al. Long term retrograde amnesia. The crucial role of the hippocampus. Neuropsychologia 39, 151–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Gilboa, A. et al. Hippocampal contributions to recollection in retrograde and anterograde amnesia. Hippocampus 16, 966–980 (2006).

    Article  PubMed  Google Scholar 

  30. Noulhiane, M. et al. Autobiographical memory after temporal lobe resection: neuropsychological and MRI volumetric findings. Brain 130, 3184–3199 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Bayley, P. J., Hopkins, R. O. & Squire, L. R. Successful recollection of remote autobiographical memories by amnesic patients with medial temporal lobe lesions. Neuron 38, 135–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bright, P. et al. Retrograde amnesia in patients with hippocampal, medial temporal, temporal lobe, or frontal pathology. Learn. Mem. 13, 545–557 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Manns, J. R., Hopkins, R. O. & Squire, L. R. Semantic memory and the human hippocampus. Neuron 38, 127–133 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Cabeza, R. & St Jacques, P. Functional neuroimaging of autobiographical memory. Trends Cogn. Sci. 11, 219–227 (2007).

    Article  PubMed  Google Scholar 

  35. Jacoby, L. L. & Dallas, M. On the relationship between autobiographical memory and perceptual learning. J. Exp. Psychol. Gen. 110, 306–340 (1981).

    Article  CAS  PubMed  Google Scholar 

  36. Mandler, G. Recognizing: the judgment of previous occurrence. Psychol. Rev. 87, 252–271 (1980).

    Article  Google Scholar 

  37. Tulving, E. Memory and consciousness. Can. Psychol. 26, 1–12 (1985).

    Article  Google Scholar 

  38. O'Reilly, R. C. & Norman, K. A. Hippocampal and neocortical contributions to memory: advances in the complementary learning systems framework. Trends Cogn. Sci. 6, 505–510 (2002).

    Article  PubMed  Google Scholar 

  39. Rugg, M. D. & Yonelinas, A. P. Human recognition memory: a cognitive neuroscience perspective. Trends Cogn. Sci. 7, 313–319 (2003).

    Article  PubMed  Google Scholar 

  40. Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci. 30, 123–152 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wais, P. E., Wixted, J. T., Hopkins, R. O. & Squire, L. R. The hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron 49, 459–466 (2006). This elegant study reported that recollection decays before familiarity in both healthy adults and patients with hippocampal damage, and that both processes are impaired by hippocampal damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G. & Squire, L. R. Recognition memory and the human hippocampus. Neuron 37, 171–180 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kopelman, M. D. et al. Recall and recognition memory in amnesia: patients with hippocampal, medial temporal, temporal lobe or frontal pathology. Neuropsychologia 45, 1232–1246 (2007).

    Article  PubMed  Google Scholar 

  44. Aggleton, J. P. et al. Sparing of the familiarity component of recognition memory in a patient with hippocampal pathology. Neuropsychologia 43, 1810–1823 (2005).

    Article  PubMed  Google Scholar 

  45. Mayes, A. R., Holdstock, J. S., Isaac, C. L., Hunkin, N. M. & Roberts, N. Relative sparing of item recognition memory in a patient with adult-onset damage limited to the hippocampus. Hippocampus 12, 325–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Turriziani, P., Fadda, L., Caltagirone, C. & Carlesimo, G. A. Recognition memory for single items and for associations in amnesic patients. Neuropsychologia 42, 426–433 (2004). This group study of hippocampal amnesics described intact recognition memory for faces but not for face–face or face–word pairs.

    Article  PubMed  Google Scholar 

  48. Yonelinas, A. P. et al. Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neurosci. 5, 1236–1241 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Aggleton, J. P. & Brown, M. W. Interleaving brain systems for episodic and recognition memory. Trends Cogn. Sci. 10, 455–463 (2006).

    Article  PubMed  Google Scholar 

  50. Squire, L. R., Wixted, J. T. & Clark, R. E. Recognition memory and the medial temporal lobe: a new perspective. Nature Rev. Neurosci. 8, 872–883 (2007).

    Article  CAS  Google Scholar 

  51. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  PubMed  Google Scholar 

  52. Ekstrom, A. D. et al. Cellular networks underlying human spatial navigation. Nature 425, 184–188 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ono, T., Nakamura, K., Fukuda, M. & Tamura, R. Place recognition responses of neurons in monkey hippocampus. Neurosci. Lett. 121, 194–198 (1991).

    Article  CAS  PubMed  Google Scholar 

  54. O'Keefe, J. in The Hippocampus Book (eds Andersen, P., Morris, R., Amaral, D., Bliss, T. & O'Keefe, J.) 475–540 (Oxford Univ. Press, New York, 2007).

    Google Scholar 

  55. Cressant, A., Muller, R. U. & Poucet, B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17, 2531–2542 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O'Keefe, J. & Burgess, N. Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425–428 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. O'Keefe, J. & Speakman, A. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68, 1–27 (1987).

    Article  CAS  PubMed  Google Scholar 

  58. Lenck-Santini, P. P., Muller, R. U., Save, E. & Poucet, B. Relationships between place cell firing fields and navigational decisions by rats. J. Neurosci. 22, 9035–9047 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hafting, T., Fyhn, M., Molden, S., Moser, M. B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Lever, C., Wills, T., Cacucci, F., Burgess, N. & O'Keefe, J. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416, 90–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Wills, T., Lever, C., Cacucci, F., Burgess, N. & O'Keefe, J. Attractor dynamics in the hippocampal representation of the local environment. Science 308, 873–876 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bostock, E., Muller, R. U. & Kubie, J. L. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1, 193–205 (1991).

    Article  CAS  PubMed  Google Scholar 

  63. Byrne, P., Becker, S. & Burgess, N. Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol. Rev. 114, 340–375 (2007). This paper provided an updated version of the model first proposed in references 64 and 65, which quantitatively describes the interactions between brain regions involved in spatial memory and mental imagery; the hippocampus is required to constrain the retrieval of information to be consistent with occupying a specific location in an imagined scene.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Burgess, N., Becker, S., King, J. A. & O'Keefe, J. Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1493–1503 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Becker, S. & Burgess, N. A model of spatial recall, mental imagery and neglect. Adv. Neural Inf. Process. Syst. 13, 96–102 (2001).

    Google Scholar 

  66. Recce, M. & Harris, K. D. Memory for places: a navigational model in support of Marr's theory of hippocampal function. Hippocampus 6, 735–748 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Buckley, M. J. & Gaffan, D. Impairment of visual object-discrimination learning after perirhinal cortex ablation. Behav. Neurosci. 111, 467–475 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  70. Schacter, D. L. & Addis, D. R. The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 773–786 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hassabis, D. & Maguire, E. A. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11, 299–306 (2007).

    Article  PubMed  Google Scholar 

  72. Teng, E. & Squire, L. R. Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675–677 (1999). This influential paper described intact remote topographical memory across a variety of test paradigms in a patient with extensive medial temporal lobe damage, demonstrating that sophisticated spatial memory representations exist outside of the hippocampus.

    Article  CAS  PubMed  Google Scholar 

  73. Rosenbaum, R. S. et al. Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nature Neurosci. 3, 1044–1048 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. White, N. M. & McDonald, R. J. Multiple parallel memory systems in the brain of the rat. Neurobiol. Learn. Mem. 77, 125–184 (2002).

    Article  PubMed  Google Scholar 

  75. Hartley, T., Maguire, E. A., Spiers, H. J. & Burgess, N. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37, 877–888 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Iaria, G., Petrides, M., Dagher, A., Pike, B. & Bohbot, V. D. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: variability and change with practice. J. Neurosci. 23, 5945–5952 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Doeller, C. F. & Burgess, N. Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc. Natl Acad. Sci. USA (in the press).

  78. Pearce, J. M., Roberts, A. D. & Good, M. Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Nature 396, 75–77 (1998).

    Article  CAS  PubMed  Google Scholar 

  79. Maguire, E. A., Nannery, R. & Spiers, H. J. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129, 2894–2907 (2006).

    Article  PubMed  Google Scholar 

  80. Hassabis, D., Kumaran, D., Vann, S. D. & Maguire, E. A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl Acad. Sci. USA 104, 1726–1731 (2007). This study presented evidence that hippocampal damage causes impairment in imagining complex visual scenes, using a task that did not require the recall of specific events. The patients' reports of the imagined scenes were particularly lacking in spatial coherence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hassabis, D., Kumaran, D. & Maguire, E. A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. 27, 14365–14374 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).

    Article  PubMed  Google Scholar 

  83. Schmolck, H., Kensinger, E. A., Corkin, S. & Squire, L. R. Semantic knowledge in patient H. M. and other patients with bilateral medial and lateral temporal lobe lesions. Hippocampus 12, 520–533 (2002).

    Article  PubMed  Google Scholar 

  84. Cipolotti, L. et al. Recollection and familiarity in dense hippocampal amnesia: a case study. Neuropsychologia 44, 489–506 (2006). Together with references 87–89, this study highlighted differential effects on recognition memory following hippocampal damage, with the effects depending on the nature of the to-be-remembered materials.

    Article  PubMed  Google Scholar 

  85. Carlesimo, G. A., Fadda, L., Turriziani, P., Tomaiuolo, F. & Caltagirone, C. Selective sparing of face learning in a global amnesic patient. J. Neurol. Neurosurg. Psychiatry 71, 340–346 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Holdstock, J. S., Mayes, A. R., Gong, Q. Y., Roberts, N. & Kapur, N. Item recognition is less impaired than recall and associative recognition in a patient with selective hippocampal damage. Hippocampus 15, 203–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Taylor, K. J., Henson, R. N. & Graham, K. S. Recognition memory for faces and scenes in amnesia: dissociable roles of medial temporal lobe structures. Neuropsychologia 45, 2428–2438 (2007).

    Article  PubMed  Google Scholar 

  88. Bird, C. M., Shallice, T. & Cipolotti, L. Fractionation of memory in medial temporal lobe amnesia. Neuropsychologia 45, 1160–1171 (2007).

    Article  PubMed  Google Scholar 

  89. Bird, C. M., Vargha-Khadem, F. & Burgess, N. Impaired memory for scenes but not faces in developmental hippocampal amnesia: a case study. Neuropsychologia (in the press).

  90. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Simons, J. S., Graham, K. S., Galton, C. J., Patterson, K. & Hodges, J. R. Semantic knowledge and episodic memory for faces in semantic dementia. Neuropsychology 15, 101–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Olson, I. R., Plotzker, A. & Ezzyat, Y. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain 130, 1718–1731 (2007).

    Article  PubMed  Google Scholar 

  93. Baddeley, A. D. & Warrington, E. K. Amnesia and the distinction between long-and short-term memory. J. Verbal Learn. Verbal Behav. 9, 176–189 (1970).

    Article  Google Scholar 

  94. Shallice, T. From Neuropsychology to Mental Structure (Cambridge Univ. Press, New York, 1988).

    Book  Google Scholar 

  95. Cave, C. B. & Squire, L. R. Intact verbal and nonverbal short-term memory following damage to the human hippocampus. Hippocampus 2, 151–163 (1992).

    Article  CAS  PubMed  Google Scholar 

  96. Spiers, H. J., Maguire, E. A. & Burgess, N. Hippocampal amnesia. Neurocase 7, 357–382 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Milner, B. Interhemispheric differences in the localization of psychological processes in man. Br. Med. Bull. 27, 272–277 (1971).

    Article  CAS  PubMed  Google Scholar 

  98. Olson, I. R., Moore, K. S., Stark, M. & Chatterjee, A. Visual working memory is impaired when the medial temporal lobe is damaged. J. Cogn. Neurosci. 18, 1087–1097 (2006).

    Article  PubMed  Google Scholar 

  99. Nichols, E. A., Kao, Y. C., Verfaellie, M. & Gabrieli, J. D. Working memory and long-term memory for faces: evidence from fMRI and global amnesia for involvement of the medial temporal lobes. Hippocampus 16, 604–616 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Piekema, C. et al. Spatial and non-spatial contextual working memory in patients with diencephalic or hippocampal dysfunction. Brain Res. 1172, 103–109 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Finke, C. et al. The human hippocampal formation mediates short-term memory of colour–location associations. Neuropsychologia 16 Oct 2007 (doi:10.1016/j.neuropsychologia.2007.10.004).

    Article  PubMed  Google Scholar 

  102. Owen, A. M., Sahakian, B. J., Semple, J., Polkey, C. E. & Robbins, T. W. Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia 33, 1–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. King, J. A., Trinkler, I., Hartley, T., Vargha-Khadem, F. & Burgess, N. The hippocampal role in spatial memory and the familiarity-recollection distinction: a single case study. Neuropsychology 18, 405–417 (2004).

    Article  PubMed  Google Scholar 

  104. King, J. A., Burgess, N., Hartley, T., Vargha-Khadem, F. & O'Keefe, J. Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12, 811–820 (2002).

    Article  PubMed  Google Scholar 

  105. Shrager, Y., Bayley, P. J., Bontempi, B., Hopkins, R. O. & Squire, L. R. Spatial memory and the human hippocampus. Proc. Natl Acad. Sci. USA 104, 2961–2966 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hartley, T. et al. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17, 34–48 (2007). This study provided evidence that the hippocampus is specifically required for the representation of topographical information in visual scenes, even over very short durations.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lee, A. C. et al. Specialisation in the medial temporal lobe for processing of objects and scenes. Hippocampus 15, 782–797 (2005).

    Article  PubMed  Google Scholar 

  108. Lee, A. C. et al. Perceptual deficits in amnesia: challenging the medial temporal lobe 'mnemonic' view. Neuropsychologia 43, 1–11 (2005).

    Article  PubMed  Google Scholar 

  109. Graham, K. S. et al. Abnormal categorization and perceptual learning in patients with hippocampal damage. J. Neurosci. 26, 7547–7554 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shrager, Y., Gold, J. J., Hopkins, R. O. & Squire, L. R. Intact visual perception in memory-impaired patients with medial temporal lobe lesions. J. Neurosci. 26, 2235–2240 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Olson, I. R., Page, K., Moore, K. S., Chatterjee, A. & Verfaellie, M. Working memory for conjunctions relies on the medial temporal lobe. J. Neurosci. 26, 4596–4601 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Eacott, M. J. & Norman, G. Integrated memory for object, place, and context in rats: a possible model of episodic-like memory? J. Neurosci. 24, 1948–1953 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Gaffan, D. & Parker, A. Interaction of perirhinal cortex with the fornix-fimbria: memory for objects and “object-in-place” memory. J. Neurosci. 16, 5864–5869 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lavenex, P. B., Amaral, D. G. & Lavenex, P. Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. J. Neurosci. 26, 4546–4558 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hannula, D. E., Tranel, D. & Cohen, N. J. The long and the short of it: relational memory impairments in amnesia, even at short lags. J. Neurosci. 26, 8352–8359 (2006). Together with references 106, 107 and 111, this study found relational memory impairments over short delays in patients with focal medial temporal lobe lesions, demonstrating a role for the hippocampus in processing within the time frame traditionally thought of as 'short-term memory'.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Mayes, A., Montaldi, D. & Migo, E. Associative memory and the medial temporal lobes. Trends Cogn. Sci. 11, 126–135 (2007).

    Article  PubMed  Google Scholar 

  117. Mayes, A. R. et al. Memory for single items, word pairs, and temporal order of different kinds in a patient with selective hippocampal lesions. Cogn. Neuropsychol. 18, 97–123 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Spiers, H. J., Burgess, N., Hartley, T., Vargha-Khadem, F. & O'Keefe, J. Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching. Hippocampus 11, 715–725 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Bunsey, M. & Eichenbaum, H. Conservation of hippocampal memory function in rats and humans. Nature 379, 255–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  120. Chun, M. M. & Phelps, E. A. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neurosci. 2, 844–847 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Ryan, J. D., Althoff, R. R., Whitlow, S. & Cohen, N. J. Amnesia is a deficit in relational memory. Psychol. Sci. 11, 454–461 (2000). Together with reference 120, this study suggested that the hippocampus has a role in implicit or non-declarative relational memory.

    Article  CAS  PubMed  Google Scholar 

  122. Norman, K. A. & O'Reilly, R. C. Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol. Rev. 110, 611–646 (2003).

    Article  PubMed  Google Scholar 

  123. Bogacz, R. & Brown, M. W. Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus 13, 494–524 (2003).

    Article  PubMed  Google Scholar 

  124. Holdstock, J. S. et al. Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12, 341–351 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Bayley, P. J., Wixted, J. T., Hopkins, R. O. & Squire, L. R. Yes/no recognition, forced-choice recognition, and the human hippocampus. J. Cogn. Neurosci. 15 Nov 2007 (doi:10.1162/jocn.2008.20038).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yonelinas, A. P., Kroll, N. E., Dobbins, I. G. & Soltani, M. Recognition memory for faces: when familiarity supports associative recognition judgments. Psychon. Bull. Rev. 6, 654–661 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Blum, K. I. & Abbott, L. F. A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Redish, A. D. & Touretzky, D. S. The role of the hippocampus in solving the Morris water maze. Neural Comput. 10, 73–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  129. Samsonovich, A. V. & Ascoli, G. A. A simple neural network model of the hippocampus suggesting its pathfinding role in episodic memory retrieval. Learn. Mem. 12, 193–208 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Jensen, O. & Lisman, J. E. Novel lists of 7 +/- 2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn. Mem. 3, 257–263 (1996).

    Article  CAS  PubMed  Google Scholar 

  131. Minai, A. A. & Levy, W. B. The dynamics of sparse random networks. Biol. Cybern. 70, 177–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  132. Howard, M. W., Fotedar, M. S., Datey, A. V. & Hasselmo, M. E. The Temporal Context Model in spatial navigation and relational learning: toward a common explanation of medial temporal lobe function across domains. Psychol. Rev. 112, 75–116 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Burgess, N. & Hitch, G. J. Computational models of working memory: putting long term memory into context. Trends Cogn. Sci. 9, 535–541 (2005).

    Article  PubMed  Google Scholar 

  134. Howard, M. & Kahana, M. J. A distributed representation of temporal context. J. Math. Psychol. 46, 269–299 (2002).

    Article  Google Scholar 

  135. Manns, J. R., Howard, M. W. & Eichenbaum, H. Gradual changes in hippocampal activity support remembering the order of events. Neuron 56, 530–540 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wallenstein, G. V., Eichenbaum, H. & Hasselmo, M. E. The hippocampus as an associator of discontiguous events. Trends Neurosci. 21, 317–323 (1998).

    Article  CAS  PubMed  Google Scholar 

  137. Eichenbaum, H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Frank, L. M., Brown, E. N. & Wilson, M. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27, 169–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  139. Wood, E. R., Dudchenko, P. A., Robitsek, R. J. & Eichenbaum, H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Ferbinteanu, J. & Shapiro, M. L. Prospective and retrospective memory coding in the hippocampus. Neuron 40, 1227–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Huxter, J., Burgess, N. & O'Keefe, J. Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425, 828–832 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C. & Fried, I. Invariant visual representation by single neurons in the human brain. Nature 435, 1102–1107 (2005). This study described neurons in the human hippocampus that are tuned to respond to a single bit of abstract information, such as the identity of a specific person or monument, in a manner analogous to the place-cell representation of location.

    Article  CAS  PubMed  Google Scholar 

  143. Jeffery, K. J. & Burgess, N. A metric for the cognitive map: found at last? Trends Cogn. Sci. 10, 1–3 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Medical Research Council UK, the Biotechnology and Biological Sciences Research Council, UK, and a European Union Wayfinding Grant. We thank T. Shallice, J. O'Keefe, and three anonymous referees for their invaluable help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

FURTHER INFORMATION

Neil Burgess's homepage

Glossary

Short-term memory

The conscious retention of information over a few seconds, often through active maintenance (rehearsal). When the information held in short-term memory is manipulated, this is often referred to as working memory.

Priming

A behavioural change that is manifested in the speed or accuracy with which a stimulus is processed following prior exposure to the same or a similar stimulus.

Procedural learning

The unconscious learning of a skill, such as a series of actions or perceptual processing functions (for example, learning to ride a bike), which typically results in increased speed or accuracy with repetition.

Recurrent connections

The extensive reciprocal connections between principal CA3 neurons. This unusual neural architecture might provide a substrate for the implementation of an attractor network that supports associative memory.

Pattern completion

A process by which a stored neural representation is reactivated by a cue that consists of a subset of that representation.

Path integration

The ability to keep track of the start position of a trajectory by integrating the movements made along the path.

Pattern separation

A process by which small differences in patterns of input activity are amplified as they propagate through a network. This creates distinct representations.

Attractor network

Neural networks that have one or more stable 'states' (that is, patterns of firing across neurons). The stable states are determined by the strengths of the recurrent connections between the neurons in the network. Depending on the initial conditions, the network will end up in one of the stable states. This can allow pattern completion to occur.

Papez's circuit

A network of limbic brain structures that was originally thought to subserve emotional processing. These structures include the cingulate cortex, the hippocampus, the mammillary bodies, the anterior thalamus and the projections between these areas, such as the fornix.

Saccade

Quick, simultaneous movements of both eyes in the same direction, allowing one to fixate rapidly on elements of a visual scene or a passage of text.

Receiver operating characteristics

(ROCs). An ROC describes the relationship between hits and false alarms across varying confidence levels. Yonelinas has argued that the shape of the ROC varies according to the independent contributions of recollection and familiarity to performance on a memory task.

Sensory buffers

Dedicated neocortical systems that (independently) support the short-term maintenance of sensory, motor, linguistic or other information.

Unitized stimuli

Uni-modal elements of an event that, according to dual-process and relational theories, can be represented and subsequently recognized by brain regions outside of the hippocampus.

Theta frequency range

Rhythmic activity (4–12 Hz) detected in the local field potential or by electroencephalogram. This rhythm is particularly prominent in the hippocampus of rats during locomotion and has recently been related to mnemonic processing in both rats and humans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bird, C., Burgess, N. The hippocampus and memory: insights from spatial processing. Nat Rev Neurosci 9, 182–194 (2008). https://doi.org/10.1038/nrn2335

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing