Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interpreting fMRI data: maps, modules and dimensions

Key Points

  • Recent fMRI studies have revealed functional specificity in the normal human brain at an increasingly fine scale, suggesting the existence of graded maps and distinct functional modules for a wide variety of functional properties.

  • One intriguing finding is the functional organization of the ventral visual pathway, which is characterized by strong selectivity for particular object categories (faces, bodies, et cetera) at the levels both of whole cortical regions and individual neurons.

  • In some cases apparently modular cortical regions can turn out to be parts of larger maps. For example, orientation columns in the primary visual cortex and barrels in the primary somatosensory cortex are embedded in a large cortical map. The same may be true of the face-, place- and body-selective areas of the ventral visual pathway, but it is still unclear whether the larger-scale map is strong enough to dismiss the possibility that these selective areas function as distinct modules.

  • The ventral visual pathway might contain maps for multiple stimulus properties, including a shape map, a process map, a semantic association map and an eccentricity map. However, studies have not yet been able to explain the strong functional specificity for, for example, faces and bodies by simpler or more unambiguously defined properties than the intuitive notion of 'object category'.

  • The strong category selectivity that is seen for faces and other object categories might arise from the nonlinear combination of multiple maps for simpler functional properties. This framework reconciles the existence of graded cortical maps for multiple stimulus properties with the existence of distinct functional modules for particular object categories.

Abstract

Neuroimaging research over the past decade has revealed a detailed picture of the functional organization of the human brain. Here we focus on two fundamental questions that are raised by the detailed mapping of sensory and cognitive functions and illustrate these questions with findings from the object-vision pathway. First, are functionally specific regions that are located close together best understood as distinct cortical modules or as parts of a larger-scale cortical map? Second, what functional properties define each cortical map or module? We propose a model in which overlapping continuous maps of simple features give rise to discrete modules that are selective for complex stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical locations of category-selective regions in the human ventral visual cortex.
Figure 2: Object category is an important factor in the mental space of objects that underlies similarity judgments.
Figure 3: The clear boundaries between regions that are selective for different object categories reflect the clear boundaries that exist between object categories in mental object space.
Figure 4: Functional specificity for familiar categories of objects and for initially novel categories of objects.
Figure 5: The existence of maps for multiple functional properties and different ways in which they might be combined.

Similar content being viewed by others

References

  1. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl Acad. Sci. USA 92, 8135–8139 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. The lateral occipital complex and its role in object recognition. Vision Res. 41, 1409–1422 (2001).

    CAS  PubMed  Google Scholar 

  3. Grill-Spector, K. et al. A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Hum. Brain Mapp. 6, 316–328 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kanwisher, N., Woods, R. P., Iacoboni, M. & Mazziotta, J. C. A locus in human extrastriate cortex for visual shape analysis. J. Cogn. Neurosci. 9, 133–142 (1997).

    CAS  PubMed  Google Scholar 

  5. Kanwisher, N. & Yovel, G. The fusiform face area: a cortical region specialized for the perception of faces. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2109–2128 (2006).

    PubMed  PubMed Central  Google Scholar 

  6. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grill-Spector, K. The neural basis of object perception. Curr. Opin. Neurobiol. 13, 159–166 (2003).

    CAS  PubMed  Google Scholar 

  8. Rossion, B. et al. A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain 126, 2381–2395 (2003).

    PubMed  Google Scholar 

  9. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    CAS  PubMed  Google Scholar 

  10. Epstein, R., Harris, A., Stanley, D. & Kanwisher, N. The parahippocampal place area: recognition, navigation, or encoding? Neuron 23, 115–125 (1999).

    CAS  PubMed  Google Scholar 

  11. Peelen, M. V. & Downing, P. E. The neural basis of visual body perception. Nature Rev. Neurosci. 8, 636–648 (2007). This was the first detailed review of the processing of visually presented bodies in the visual system and beyond.

    CAS  Google Scholar 

  12. Downing, P. E., Jiang, Y., Shuman, M. & Kanwisher, N. A cortical area selective for visual processing of the human body. Science 293, 2470–2473 (2001).

    CAS  PubMed  Google Scholar 

  13. Downing, P. E., Wiggett, A. J. & Peelen, M. V. Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. J. Neurosci. 27, 226–233 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Taylor, J. C., Wiggett, A. J. & Downing, P. E. Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. J. Neurophysiol. 98, 1626–1633 (2007).

    PubMed  Google Scholar 

  15. Schwarzlose, R. F., Baker, C. I. & Kanwisher, N. Separate face and body selectivity on the fusiform gyrus. J. Neurosci. 25, 11055–11059 (2005). This study demonstrated the power of high-resolution fMRI to dissociate the selectivity of two adjacent functional regions (one face-selective, the other body-selective) that are lumped together as one larger region with less clear selectivity by standard-resolution fMRI.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cohen, L. et al. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123, 291–307 (2000).

    PubMed  Google Scholar 

  17. Baker, C. I. et al. Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc. Natl Acad. Sci. USA 104, 9087–9092 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ben-Shachar, M., Dougherty, R. F., Deutsch, G. K. & Wandell, B. A. Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb. Cortex 17, 1604–1611 (2007).

    PubMed  Google Scholar 

  19. McCandliss, B. D., Cohen, L. & Dehaene, S. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 (2003).

    PubMed  Google Scholar 

  20. Grill-Spector, K. & Malach, R. The human visual cortex. Annu. Rev. Neurosci. 27, 649–677 (2004). This paper provides a detailed review of what fMRI has taught us about the organization of the object-vision pathway in the human cortex.

    CAS  PubMed  Google Scholar 

  21. Downing, P. E., Chan, A. W., Peelen, M. V., Dodds, C. M. & Kanwisher, N. Domain specificity in visual cortex. Cereb. Cortex 16, 1453–1461 (2006).

    CAS  PubMed  Google Scholar 

  22. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006). This is an excellent review of the many recent fMRI studies that have made use of multi-voxel pattern analyses to understand the function and organization of the human brain.

    PubMed  Google Scholar 

  23. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 523–534 (2006).

    CAS  Google Scholar 

  24. Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001). This seminal paper introduced the basic thinking behind the now widely used multi-voxel pattern analyses.

    CAS  PubMed  Google Scholar 

  25. Cox, D. D. & Savoy, R. L. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage 19, 261–270 (2003).

    PubMed  Google Scholar 

  26. Spiridon, M. & Kanwisher, N. How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron 35, 1157–1165 (2002).

    CAS  PubMed  Google Scholar 

  27. Hanson, S. J., Matsuka, T. & Haxby, J. V. Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? Neuroimage 23, 156–166 (2004).

    PubMed  Google Scholar 

  28. Grill-Spector, K., Sayres, R. & Ress, D. High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neurosci. 9, 1177–1185 (2006).

    CAS  PubMed  Google Scholar 

  29. Baker, C. I., Hutchison, T. L. & Kanwisher, N. Does the fusiform face area contain subregions highly selective for nonfaces? Nature Neurosci. 10, 3–4 (2007).

    CAS  PubMed  Google Scholar 

  30. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center–periphery organization of human object areas. Nature Neurosci. 4, 533–539 (2001). This was the first of a series of studies that suggested that the retinal position at which objects from particular categories are commonly viewed might determine the anatomical location of category-selective brain regions.

    CAS  PubMed  Google Scholar 

  31. Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    CAS  PubMed  Google Scholar 

  32. Kim, D. J. & Tong, F. Human ventral temporal areas contain flexible position-invariant information about subordinate-level objects. J. Vis. Abstr. 5, 855a (2005).

    Google Scholar 

  33. Pessoa, L. & Padmala, S. Quantitative prediction of perceptual decisions during near-threshold fear detection. Proc. Natl Acad. Sci. USA 102, 5612–5617 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Eger, E., Ashburner, J., Haynes, J. D., Dolan, R. J. & Rees, G. fMRI activity patterns in human LOC carry information about object exemplars within category. J. Cogn. Neurosci. 20, 356–370 (2008).

    PubMed  PubMed Central  Google Scholar 

  35. Kriegeskorte, N., Formisano, E., Sorger, B. & Goebel, R. Individual faces elicit distinct response patterns in human anterior temporal cortex. Proc. Natl Acad. Sci. USA 104, 20600–20605 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Eger, E., Schweinberger, S. R., Dolan, R. J. & Henson, R. N. Familiarity enhances invariance of face representations in human ventral visual cortex: fMRI evidence. Neuroimage 26, 1128–1139 (2005).

    CAS  PubMed  Google Scholar 

  37. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    CAS  PubMed  Google Scholar 

  38. Kourtzi, Z. & Kanwisher, N. Representation of perceived object shape by the human lateral occipital complex. Science 293, 1506–1509 (2001).

    CAS  PubMed  Google Scholar 

  39. Eger, E., Schyns, P. G. & Kleinschmidt, A. Scale invariant adaptation in fusiform face-responsive regions. Neuroimage 22, 232–242 (2004).

    PubMed  Google Scholar 

  40. Macevoy, S. P. & Epstein, R. A. Position selectivity in scene- and object-responsive occipitotemporal regions. J. Neurophysiol. 98, 2089–2098 (2007).

    PubMed  Google Scholar 

  41. Pourtois, G., Schwartz, S., Seghier, M. L., Lazeyras, F. & Vuilleumier, P. Portraits or people? Distinct representations of face identity in the human visual cortex. J. Cogn. Neurosci. 17, 1043–1057 (2005).

    PubMed  Google Scholar 

  42. Epstein, R., Graham, K. S. & Downing, P. E. Viewpoint-specific scene representations in human parahippocampal cortex. Neuron 37, 865–876 (2003).

    CAS  PubMed  Google Scholar 

  43. Sawamura, H., Orban, G. A. & Vogels, R. Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the FMRI adaptation paradigm. Neuron 49, 307–318 (2006). This study provided the first systematic investigation of what can and cannot be inferred about neuronal stimulus selectivity from neuronal adaptation.

    CAS  PubMed  Google Scholar 

  44. Kourtzi, Z., Erb, M., Grodd, W. & Bulthoff, H. H. Representation of the perceived 3-D object shape in the human lateral occipital complex. Cereb. Cortex 13, 911–920 (2003).

    PubMed  Google Scholar 

  45. Pinsk, M. A., Desimone, K., Moore, T., Gross, C. G. & Kastner, S. Representations of faces and body parts in macaque temporal cortex: a functional MRI study. Proc. Natl Acad. Sci. USA 102, 6996–7001 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsao, D. Y., Freiwald, W. A., Knutsen, T. A., Mandeville, J. B. & Tootell, R. B. Faces and objects in macaque cerebral cortex. Nature Neurosci. 6, 989–995 (2003).

    CAS  PubMed  Google Scholar 

  47. Tsao, D. Y., Freiwald, W. A., Tootell, R. B. & Livingstone, M. S. A cortical region consisting entirely of face-selective cells. Science 311, 670–674 (2006). This study gave the first demonstration that a strong clustering of face-selective neurons underlies the strongly face-selective regions found with fMRI in both humans and monkeys.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kiani, R., Esteky, H., Mirpour, K. & Tanaka, K. Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. J. Neurophysiol. 97, 4296–4309 (2007).

    PubMed  Google Scholar 

  49. Kayaert, G., Biederman, I. & Vogels, R. Shape tuning in macaque inferior temporal cortex. J. Neurosci. 23, 3016–3027 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Op de Beeck, H., Wagemans, J. & Vogels, R. Inferotemporal neurons represent low-dimensional configurations of parameterized shapes. Nature Neurosci. 4, 1244–1252 (2001).

    CAS  PubMed  Google Scholar 

  51. Kayaert, G., Biederman, I., Op de Beeck, H. P. & Vogels, R. Tuning for shape dimensions in macaque inferior temporal cortex. Eur. J. Neurosci. 22, 212–224 (2005).

    PubMed  Google Scholar 

  52. Logothetis, N. K. & Pauls, J. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cereb. Cortex 5, 270–288 (1995).

    CAS  PubMed  Google Scholar 

  53. Op de Beeck, H. & Vogels, R. Spatial sensitivity of macaque inferior temporal neurons. J. Comp. Neurol. 426, 505–518 (2000).

    CAS  PubMed  Google Scholar 

  54. DiCarlo, J. J. & Maunsell, J. H. Anterior inferotemporal neurons of monkeys engaged in object recognition can be highly sensitive to object retinal position. J. Neurophysiol. 89, 3264–3278 (2003).

    PubMed  Google Scholar 

  55. Horton, J. C. & Adams, D. L. The cortical column: a structure without a function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 837–862 (2005). This extensive review of decades of studies on cortical columns reaches the challenging conclusion that, despite the great amount of work that has been carried out, there is no clear evidence that a columnar structure serves any purpose.

    PubMed  PubMed Central  Google Scholar 

  56. Fodor, J. A. Modularity of Mind: An Essay on Faculty Psychology (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  57. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 24, 429–448 (1984).

    CAS  PubMed  Google Scholar 

  58. Yu, H., Farley, B. J., Jin, D. Z. & Sur, M. The coordinated mapping of visual space and response features in visual cortex. Neuron 47, 267–280 (2005).

    CAS  PubMed  Google Scholar 

  59. Buzas, P., Volgushev, M., Eysel, U. T. & Kisvarday, Z. F. Independence of visuotopic representation and orientation map in the visual cortex of the cat. Eur. J. Neurosci. 18, 957–968 (2003).

    PubMed  Google Scholar 

  60. Hubel, D. H. & Wiesel, T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 158, 267–293 (1974).

    CAS  PubMed  Google Scholar 

  61. Blasdel, G. G. Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci. 12, 3139–3161 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bonhoeffer, T. & Grinvald, A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353, 429–431 (1991).

    CAS  PubMed  Google Scholar 

  63. Ohki, K. et al. Highly ordered arrangement of single neurons in orientation pinwheels. Nature 442, 925–928 (2006).

    CAS  PubMed  Google Scholar 

  64. Weliky, M., Bosking, W. H. & Fitzpatrick, D. A systematic map of direction preference in primary visual cortex. Nature 379, 725–728 (1996).

    CAS  PubMed  Google Scholar 

  65. Durbin, R. & Mitchison, G. A dimension reduction framework for understanding cortical maps. Nature 343, 644–647 (1990).

    CAS  PubMed  Google Scholar 

  66. Swindale, N. V. How different feature spaces may be represented in cortical maps. Network 15, 217–242 (2004).

    CAS  PubMed  Google Scholar 

  67. Aflalo, T. N. & Graziano, M. S. Possible origins of the complex topographic organization of motor cortex: reduction of a multidimensional space onto a two-dimensional array. J. Neurosci. 26, 6288–6297 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lu, H. D. & Roe, A. W. Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cereb. Cortex 18 Jun 2007 (doi:10.1093/cercor/bhm081).

    PubMed  Google Scholar 

  69. Bartfeld, E. & Grinvald, A. Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Natl Acad. Sci. USA 89, 11905–11909 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Livingstone, M. & Hubel, D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740–749 (1988).

    CAS  PubMed  Google Scholar 

  71. Catania, K. C. Early development of a somatosensory fovea: a head start in the cortical space race? Nature Neurosci. 4, 353–354 (2001).

    CAS  PubMed  Google Scholar 

  72. Woolsey, T. A. & Van der Loos, H. The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res. 17, 205–242 (1970).

    CAS  PubMed  Google Scholar 

  73. Kanwisher, N. Domain specificity in face perception. Nature Neurosci. 3, 759–763 (2000).

    CAS  PubMed  Google Scholar 

  74. Haxby, J. V., Ishai, I. I., Chao, L. L., Ungerleider, L. G. & Martin, I. I. Object-form topology in the ventral temporal lobe. Response to I. Gauthier (2000). Trends Cogn. Sci. 4, 3–4 (2000).

    CAS  PubMed  Google Scholar 

  75. Ishai, A., Ungerleider, L. G., Martin, A., Schouten, J. L. & Haxby, J. V. Distributed representation of objects in the human ventral visual pathway. Proc. Natl Acad. Sci. USA 96, 9379–9384 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Edelman, S. Representation is representation of similarities. Behav. Brain Sci. 21, 449–467 (1998).

    CAS  PubMed  Google Scholar 

  77. Nosofsky, R. M. Attention, similarity, and the identification-categorization relationship. J. Exp. Psychol. Gen. 115, 39–61 (1986).

    CAS  PubMed  Google Scholar 

  78. Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    CAS  PubMed  Google Scholar 

  79. Edelman, S., Grill-Spector, K., Kushnir, T. & Malach, R. Toward direct visualization of the internal shape representation space by fMRI. Psychobiology 26, 309–321 (1998).

    Google Scholar 

  80. Loffler, G., Yourganov, G., Wilkinson, F. & Wilson, H. R. fMRI evidence for the neural representation of faces. Nature Neurosci. 8, 1386–1390 (2005).

    CAS  PubMed  Google Scholar 

  81. Jiang, X. et al. Evaluation of a shape-based model of human face discrimination using FMRI and behavioral techniques. Neuron 50, 159–172 (2006).

    CAS  PubMed  Google Scholar 

  82. Leopold, D. A., Bondar, I. V. & Giese, M. A. Norm-based face encoding by single neurons in the monkey inferotemporal cortex. Nature 442, 572–575 (2006). This systematic study of face neurons in the monkey brain showed that single neurons have monotonic tuning for a face with a specific identity and for how this face deviates from the average face.

    CAS  PubMed  Google Scholar 

  83. Rotshtein, P., Henson, R. N., Treves, A., Driver, J. & Dolan, R. J. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature Neurosci. 8, 107–113 (2005).

    CAS  PubMed  Google Scholar 

  84. Newell, F. N. & Bulthoff, H. H. Categorical perception of familiar objects. Cognition 85, 113–143 (2002).

    PubMed  Google Scholar 

  85. Panis, S., et al. Perceived similarity between objects of the same category and prototypicality gradients in the lateral occipital complex. Society for Neuroscience Meeting (Washington DC, 2005).

    Google Scholar 

  86. Spiridon, M., Fischl, B. & Kanwisher, N. Location and spatial profile of category-specific regions in human extrastriate cortex. Hum. Brain Mapp. 27, 77–89 (2006).

    PubMed  Google Scholar 

  87. Wagemans, J. P. Modules in vision: a case study of interdisciplinarity in cognitive science. Acta Psychol. (Amst.) 67, 59–93 (1988).

    CAS  Google Scholar 

  88. Yovel, G. & Kanwisher, N. Face perception; domain specific, not process specific. Neuron 44, 889–898 (2004). This paper provided a clear demonstration that the FFA is selective for a type of stimulus (namely faces), rather than for a type of processing (for example, configural processing).

    CAS  PubMed  Google Scholar 

  89. Golarai, G. et al. Differential development of high-level visual cortex correlates with category-specific recognition memory. Nature Neurosci. 10, 512–522 (2007).

    CAS  PubMed  Google Scholar 

  90. Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160, 106–154 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    CAS  PubMed  Google Scholar 

  92. Baker, T. I. & Issa, N. P. Cortical maps of separable tuning properties predict population responses to complex visual stimuli. J. Neurophysiol. 94, 775–787 (2005).

    PubMed  Google Scholar 

  93. Basole, A., White, L. E. & Fitzpatrick, D. Mapping multiple features in the population response of visual cortex. Nature 423, 986–990 (2003).

    CAS  PubMed  Google Scholar 

  94. Wilkinson, F. et al. An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. Curr. Biol. 10, 1455–1458 (2000).

    CAS  PubMed  Google Scholar 

  95. Op de Beeck, H. P., Baker, C. I., DiCarlo, J. J. & Kanwisher, N. G. Discrimination training alters object representations in human extrastriate cortex. J. Neurosci. 26, 13025–13036 (2006). This paper demonstrated that object-discrimination training alters the pattern of activity for trained objects across the extrastriate cortex in a way that is not predicted by either the pattern of activity before training or the distribution of face selectivity.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Kobatake, E. & Tanaka, K. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J. Neurophysiol. 71, 856–867 (1994).

    CAS  PubMed  Google Scholar 

  97. Tanaka, K. Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb. Cortex 13, 90–99 (2003).

    PubMed  Google Scholar 

  98. Pasupathy, A. & Connor, C. E. Population coding of shape in area V4. Nature Neurosci. 5, 1332–1338 (2002).

    CAS  PubMed  Google Scholar 

  99. Brincat, S. L. & Connor, C. E. Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nature Neurosci. 7, 880–886 (2004).

    CAS  PubMed  Google Scholar 

  100. Hayworth, K. J. & Biederman, I. Neural evidence for intermediate representations in object recognition. Vision Res. 46, 4024–4031 (2006).

    PubMed  Google Scholar 

  101. Marr, D. & Nishihara, H. K. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B Biol. Sci. 200, 269–294 (1978).

    CAS  PubMed  Google Scholar 

  102. Biederman, I. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94, 115–147 (1987).

    PubMed  Google Scholar 

  103. Knoblich, U. & Riesenhuber, M. Stimulus simplification and object representation: a modeling study. MIT Computer Science and Artificial Intelligence Laboratory [online] http://people.csail.mit.edu/knoblich/papers/AIM-2002-004.pdf (2007).

    Google Scholar 

  104. Tarr, M. J. & Gauthier, I. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neurosci. 3, 764–769 (2000).

    CAS  PubMed  Google Scholar 

  105. Tanaka, J. W. & Farah, M. J. Second-order relational properties and the inversion effect: testing a theory of face perception. Percept. Psychophys. 50, 367–372 (1991).

    CAS  PubMed  Google Scholar 

  106. Farah, M. J., Tanaka, J. W. & Drain, H. M. What causes the face inversion effect? J. Exp. Psychol. Hum. Percept. Perform. 21, 628–634 (1995).

    CAS  PubMed  Google Scholar 

  107. Farah, M. J., Wilson, K. D., Drain, M. & Tanaka, J. N. What is “special” about face perception? Psychol. Rev. 105, 482–498 (1998).

    CAS  PubMed  Google Scholar 

  108. Young, A. W., Hellawell, D. & Hay, D. C. Configurational information in face perception. Perception 16, 747–759 (1987).

    CAS  PubMed  Google Scholar 

  109. Gauthier, I., Skudlarski, P., Gore, J. C. & Anderson, A. W. Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neurosci. 3, 191–197 (2000).

    CAS  PubMed  Google Scholar 

  110. Xu, Y. Revisiting the role of the fusiform face area in visual expertise. Cereb. Cortex 15, 1234–1242 (2005).

    PubMed  Google Scholar 

  111. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P. & Gore, J. C. Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nature Neurosci. 2, 568–573 (1999).

    CAS  PubMed  Google Scholar 

  112. McKone, E., Kanwisher, N. & Duchaine, B. C. Can generic expertise explain special processing for faces? Trends Cogn. Sci. 11, 8–15 (2007). This review of the recent literature indicates that classic face-selective effects that can be measured behaviourally and neurally cannot be accounted for in terms of generic expertise.

    PubMed  Google Scholar 

  113. Robbins, R. & McKone, E. No face-like processing for objects-of-expertise in three behavioural tasks. Cognition 103, 34–79 (2007).

    PubMed  Google Scholar 

  114. Chao, L. L., Haxby, J. V. & Martin, A. Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neurosci. 2, 913–919 (1999).

    CAS  PubMed  Google Scholar 

  115. Mahon, B. Z. et al. Action-related properties shape object representations in the ventral stream. Neuron 55, 507–520 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Saxe, R. & Kanwisher, N. People thinking about thinking people. The role of the temporo-parietal junction in “theory of mind”. Neuroimage 19, 1835–1842 (2003).

    CAS  PubMed  Google Scholar 

  117. Riesenhuber, M., Jarudi, I., Gilad, S. & Sinha, P. Face processing in humans is compatible with a simple shape-based model of vision. Proc. Biol. Sci. 271 (Suppl. 6), S448–S450 (2004).

    PubMed  PubMed Central  Google Scholar 

  118. Ullman, S. Object recognition and segmentation by a fragment-based hierarchy. Trends Cogn. Sci. 11, 58–64 (2007).

    PubMed  Google Scholar 

  119. Ullman, S., Vidal-Naquet, M. & Sali, E. Visual features of intermediate complexity and their use in classification. Nature Neurosci. 5, 682–687 (2002).

    CAS  PubMed  Google Scholar 

  120. Kayaert, G., Biederman, I. & Vogels, R. Representation of regular and irregular shapes in macaque inferotemporal cortex. Cereb. Cortex 15, 1308–1321 (2005).

    PubMed  Google Scholar 

  121. Serre, T., Oliva, A. & Poggio, T. A feedforward architecture accounts for rapid categorization. Proc. Natl Acad. Sci. USA 104, 6424–6429 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Jiang, X. et al. Categorization training results in shape- and category-selective human neural plasticity. Neuron 53, 891–903 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Sigala, N. & Logothetis, N. K. Visual categorization shapes feature selectivity in the primate temporal cortex. Nature 415, 318–320 (2002).

    CAS  PubMed  Google Scholar 

  124. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. A comparison of primate prefrontal and inferior temporal cortices during visual categorization. J. Neurosci. 23, 5235–5246 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Goldstone, R. Influences of categorization on perceptual discrimination. J. Exp. Psychol. Gen. 123, 178–200 (1994).

    CAS  PubMed  Google Scholar 

  126. Op de Beeck, H., Wagemans, J. & Vogels, R. The effect of category learning on the representation of shape: dimensions can be biased but not differentiated. J. Exp. Psychol. Gen. 132, 491–511 (2003).

    PubMed  Google Scholar 

  127. Van Essen, D. C., Newsome, W. T. & Maunsell, J. H. The visual field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Res. 24, 429–448 (1984).

    CAS  PubMed  Google Scholar 

  128. Tootell, R. B., Switkes, E., Silverman, M. S. & Hamilton, S. L. Functional anatomy of macaque striate cortex. II. Retinotopic organization. J. Neurosci. 8, 1531–1568 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Sereno, M. I. et al. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889–893 (1995).

    CAS  PubMed  Google Scholar 

  130. Engel, S. A. et al. fMRI of human visual cortex. Nature 369, 525 (1994).

    CAS  PubMed  Google Scholar 

  131. Hubel, D. H. & Wiesel, T. N. Anatomical demonstration of columns in the monkey striate cortex. Nature 221, 747–750 (1969).

    CAS  PubMed  Google Scholar 

  132. Hubel, D. H. & Wiesel, T. N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B Biol. Sci. 198, 1–59 (1977).

    CAS  PubMed  Google Scholar 

  133. Cheng, K., Waggoner, R. A. & Tanaka, K. Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32, 359–374 (2001).

    CAS  PubMed  Google Scholar 

  134. Mountcastle, V. B. The columnar organization of the neocortex. Brain 120, 701–722 (1997).

    PubMed  Google Scholar 

  135. Zhao, F., Wang, P., Hendrich, K. & Kim, S. G. Spatial specificity of cerebral blood volume-weighted fMRI responses at columnar resolution. Neuroimage 27, 416–424 (2005).

    CAS  PubMed  Google Scholar 

  136. Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the human brain. Nature Neurosci. 8, 679–685 (2005). This paper provided one of the clearest demonstrations of the power of multi-voxel pattern analyses to decipher the organization of cortical areas in the absence of strong functional specificity.

    CAS  PubMed  Google Scholar 

  137. Ungerleider, L. G. & Haxby, J. V. 'What' and 'where' in the human brain. Curr. Opin. Neurobiol. 4, 157–165 (1994).

    CAS  PubMed  Google Scholar 

  138. Van Essen, D. C. Windows on the brain: the emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 12, 574–579 (2002).

    CAS  PubMed  Google Scholar 

  139. Van Essen, D. C. et al. An integrated software suite for surface-based analyses of cerebral cortex. J. Am. Med. Inform. Assoc. 8, 443–459 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Van Essen, D. C. et al. Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Res. 41, 1359–1378 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Baker, J. DiCarlo, B. Farley, G. Kayaert and J. Wagemans for their helpful comments on the manuscript. N.K. was supported by grant EY13455 and H.P.O. was supported by the Human Frontier Science Program, the Fund for Scientific Research Flanders, and grants IMPH/06/GHW and CREA/07/004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans P. Op de Beeck or Nancy G. Kanwisher.

Related links

Related links

FURTHER INFORMATION

Hans P. Op de Beeck's homepage

Nancy G. Kanwisher's homepage

Glossary

Map

A clustering of neurons with similar functional properties that is characterized by a gradual progression of preferred stimulus values across the cortical sheet.

Module

A clustering of neurons with similar functional properties that is characterized by discrete regions with clear boundaries across which there is no relation in preferred stimulus values.

Multi-voxel pattern analyses

Multivariate analysis of the spatial distribution of fMRI responses across large sets of voxels.

Eccentricity

The distance of the retinal stimulus position from the fovea (the central area of the retina that provides the best visual acuity).

fMRI adaptation

A technique that makes use of the fact that the fMRI response to two sequentially presented stimuli is smaller (adapted) when the stimuli are identical or similar compared with when they are different.

Ocular dominance

The term that describes the characteristic of cells in the striate cortex to respond more strongly to input from one eye than from the other.

Foveation

Visual detection of an object by the fovea, the central area of the retina that provides the best visual acuity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Op de Beeck, H., Haushofer, J. & Kanwisher, N. Interpreting fMRI data: maps, modules and dimensions. Nat Rev Neurosci 9, 123–135 (2008). https://doi.org/10.1038/nrn2314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing