Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phantom limb pain: a case of maladaptive CNS plasticity?

Key Points

  • Despite many advances in medicine, phantom limb pain — pain in a no longer existing or deafferented limb — still occurs in 50–80% of all amputees.

  • Pathological neuronal activity in the residual limb or the dorsal root ganglion, which can be enhanced by sympathetic activation, could be one important factor in phantom limb pain.

  • Spinal changes include reorganization of the body map as well as sensitization of spinal transmission neurons.

  • Supraspinal changes seem to be important and might have a special focus in the cortex, where maladaptive map reorganization has been found to be closely related to the magnitude of phantom pain.

  • Similarities of phantom limbs and phantom pain to other abnormal sensory phenomena such as somatosensory and body image-related illusions suggest that frontal and parietal brain regions might be important in the generation of phantom limbs and phantom pain.

  • Previous painful experience could culminate in a pain memory that might have a role in phantom pain and involve both sensory and affective components.

  • Behavioural interventions such as use of a mirror, imagery, sensory discrimination training or use of a myoelectric prosthesis could reduce maladaptive plastic changes and subsequently phantom limb pain; pharmacological interventions and stimulation methods might be similarly effective.

Abstract

Phantom pain refers to pain in a body part that has been amputated or deafferented. It has often been viewed as a type of mental disorder or has been assumed to stem from pathological alterations in the region of the amputation stump. In the past decade, evidence has accumulated that phantom pain might be a phenomenon of the CNS that is related to plastic changes at several levels of the neuraxis and especially the cortex. Here, we discuss the evidence for putative pathophysiological mechanisms with an emphasis on central, and in particular cortical, changes. We cite both animal and human studies and derive suggestions for innovative interventions aimed at alleviating phantom pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic diagram of the areas involved in the generation of phantom limb pain and the main peripheral and central mechanisms.
Figure 2: Cortical changes related to phantom limb pain.
Figure 3: Brain correlates of the telescoping phenomenon.

Similar content being viewed by others

References

  1. Hunter, J. P., Katz, J. & Davis, K. D. The effect of tactile and visual sensory inputs on phantom limb awareness. Brain 126, 579–589 (2003).

    Article  PubMed  Google Scholar 

  2. Nikolajsen, L. J. & Jensen, T. S. in Wall and Melzack's Textbook of Pain (eds Koltzenburg, M. & McMahon, S. B.) 961–971 (Elsevier, Amsterdam, 2005). A comprehensive overview of factors that contribute to phantom limbs, and treatment options.

    Google Scholar 

  3. Rothemund, Y., Grüsser, S. M., Liebeskind, U., Schlag, P. M. & Flor, H. Phantom phenomena in mastectomized patients and their relation to chronic and acute pre-mastectomy pain. Pain 107, 140–146 (2004).

    Article  PubMed  Google Scholar 

  4. Melzack, R. & Loeser, J. D. Phantom body pain in paraplegics: evidence for a 'central pattern generating mechanism' for pain. Pain 4, 195–210 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Waxman, S. G. & Hains, B. C. Fire and phantoms after spinal cord injury: Na+ channels and central pain. Trends Neurosci. 29, 207–215 (2006). An overview of molecular mechanisms of pain after spinal cord injury.

    Article  CAS  PubMed  Google Scholar 

  6. Hill, A. Phantom limb pain: a review of the literature on attributes and potential mechanisms. J. Pain Symptom Manage. 17, 125–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Houghton, A. D., Nicholls, G., Houghton, A. L., Saadah, E. & McColl, L. Phantom pain: natural history and association with rehabilitation. Ann. R. Coll. Surg. Engl. 76, 22–25 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ephraim, P. L., Wegener, S. T., MacKenzie, E. J., Dillingham, T. R. & Pezzin, L. E. Phantom pain, residual limb pain, and back pain in amputees: results of a national survey. Arch. Phys. Med. Rehabil. 86, 1910–1919 (2005).

    Article  PubMed  Google Scholar 

  9. Lacoux, P. A., Crombie, I. K. & Macrae, W. A. Pain in traumatic upper limb amputees in Sierra Leone. Pain 99, 309–312 (2002).

    Article  PubMed  Google Scholar 

  10. Wilkins, K. L., McGrath, P. J., Finley, G. A. & Katz, J. Phantom limb sensation and phantom limb pain in child and adolescent amputees. Pain 78, 7–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Saadah, E. S. M. & Melzack, R. Phantom limb experiences in congenital limb-deficient adults. Cortex 30, 479–485 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Sherman, R. A., Arena, J. G., Sherman, C. J. & Ernst, J. L. The mystery of phantom limb pain: growing evidence for psychophysiological mechanisms. Biofeedback Self Regul. 14, 267–280 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Jensen, T. S., Krebs, B., Nielsen, J. & Rasmussen, P. Immediate and long-term phantom limb pain in amputees: incidence, clinical characteristics and relationship to pre-amputation limb pain. Pain 21, 267–278 (1985).

    Article  CAS  PubMed  Google Scholar 

  14. Yarnitski, D., Barron, S. A. & Bental, E. Disappearance of phantom pain after focal brain infarction. Pain 32, 285–287 (1988).

    Article  Google Scholar 

  15. Jänig, W. & McLachlan, E. On the fate of sympathetic and sensory neurons projecting into a neuroma of the superficial peroneal nerve in the cat. J. Comp. Neurol. 225, 302–311 (1984).

    Article  PubMed  Google Scholar 

  16. Fried, K., Govrin-Lippman, R., Rosenthal, F., Ellisman, M. H. & Devor, M. Ultrastructure of afferent axon endings in a neuroma. J. Neurocytol. 20, 682–701 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Wall, P. D. & Gutnick, M. Ongoing activity in peripheral nerves: the physiology and pharmacology of impulses originating from a neuroma. Exp. Neurol. 43, 580–593 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Devor, M. in Wall and Melzack's Textbook of Pain (eds Koltzenburg, M. & McMahon, S. B.) 905–927 (Elsevier, Amsterdam, 2005).

    Google Scholar 

  19. Devor, M. Sodium channels and mechanisms of neuropathic pain. J. Pain 7, S3–S12 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Gorodetskaya, N., Constantin, C. & Jänig, W. Ectopic activity in cutaneous regenerating afferent nerve fibers following nerve lesion in the rat. Eur. J. Neurosci. 18, 2487–2497 (2003).

    Article  PubMed  Google Scholar 

  21. Blumberg, H. & Jänig, W. Activation of fibers via experimentally produced stump neuromas of skin nerves: ephaptic transmission or retrograde sprouting? Exp. Neurol. 76, 468–482 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Nyström, B. & Hagbarth, K. E. Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci. Lett. 27, 211–216 (1981).

    Article  PubMed  Google Scholar 

  23. Chen, Y., Michaelis, M., Jänig, W. & Devor, M. Adrenoreceptor subtype mediating sympathetic-sensory coupling in injured sensory neurons. J. Neurophysiol. 76, 3721–3730 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Katz, J. Psychophysiological contributions to phantom limbs. Can. J. Psychiatry 37, 282–298 (1992). A comprehensive discussion of psychophysiological factors in phantom pain.

    Article  CAS  PubMed  Google Scholar 

  25. Chabal, C., Jacobson, L., Russell, L. C. & Burchiel, K. J. Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain 49, 9–12 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Fagius, J., Nordin, M. & Wall, M. Sympathetic nerve activity to amputated lower leg in humans. Evidence of altered skin vasoconstrictor discharge. Pain 98, 37–45 (2002).

    Article  PubMed  Google Scholar 

  27. Birbaumer, N. et al. Effects of regional anesthesia on phantom limb pain are mirrored in changes in cortical reorganization. J. Neurosci. 17, 5503–5508 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baron, R. & Maier, C. Phantom limb pain: are cutaneous nociceptors and spinothalamic neurons involved in the signaling and maintenance of spontaneous and touch-evoked pain? A case report. Pain 60, 223–228.

  29. Schmidt, A. P., Takahashi, M. E. & de Paula Posso, I. Phantom limb pain induced by spinal anesthesia. Clinics 60, 263–264 (2005).

    Article  PubMed  Google Scholar 

  30. Woolf, C. J. & Salter, M. W. in Wall and Melzack's Textbook of Pain (eds Koltzenburg, M. & McMahon, S. B.) 91–105 (Elsevier, Amsterdam, 2005).

    Google Scholar 

  31. Woolf, C. J. Dissecting out mechanisms responsible for peripheral neuropathic pain: implications for diagnosis and therapy. Life Sci. 74, 2605–1510 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Moore, K. A. et al. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J. Neurosci. 22, 6724–6731 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coull, J. A. et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438, 1017–1021 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, S. et al. A rat model of unilateral hindpaw burn injury: slowly developing rightwards shift of the morphine dose-response curve. Pain 116, 87–95 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Wiesenfeld-Hallin, Z, Xu, X. J. & Hökfelt, T. The role of spinal cholecystokinin in chronic pain states. Pharmacol. Toxicol. 91, 398–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Torsney, C. & MacDermott, A. B. Disinhibition opens the gate to pathological pain signaling in superficial neurokinin 1 receptor-expressing neurons in rat spinal cord. J. Neurosci. 26, 1833–1843 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ueda, H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol. Ther. 109, 57–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Devor, M. & Wall, P. D. Reorganisation of spinal cord sensory map after peripheral nerve injury. Nature 276, 75–76 (1978).

    Article  CAS  PubMed  Google Scholar 

  39. Swanson, L. W. Mapping the human brain: past present, and future. Trends Neurosci. 18, 471–474 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Florence, S. L., Taub, H. B. & Kaas, J. H. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science 282, 1117–1121 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Davis, K. D. et al. Phantom sensations generated by thalamic microstimulation. Nature 391, 385–387 (1998). In this study phantom sensation was elicited by thalamic stimulation in human amputees.

    Article  CAS  PubMed  Google Scholar 

  42. Jones, E. G. & Pons, T. P. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 282, 1121–1125 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Wu, C. W. & Kaas, J. H. The effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord. Somatosens. Mot. Res. 19, 153–163 (2002).

    Article  PubMed  Google Scholar 

  44. Kaas, J. H., Florence, S. L. & Jain, N. Subcortical contributions to massive cortical reorganization. Neuron 22, 657–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Jain, N., Florence, S. L., Qi, H. X. & Kaas, J. H. Growth of new brainstem connections in adult monkeys with massive sensory loss. Proc. Natl Acad. Sci. USA 97, 5546–5550 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ergenzinger, E. R., Glasier, M. M., Hahm, J. O. & Pons, T. P. Cortically induced thalamic plasticity in the primate somatosensory system. Nature Neurosci. 1, 226–229 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Kaas, J. H. Is most of neural plasticity in the thalamus cortical? Proc. Natl Acad. Sci. USA 96, 7622–7623 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Merzenich, M. M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984).

    Article  CAS  PubMed  Google Scholar 

  49. Pons, T. P. et al. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 252, 1857–1860 (1991). Revealed massive changes in the cortical map related to dorsal rhizotomies in adult monkeys.

    Article  CAS  PubMed  Google Scholar 

  50. Ramachandran, V. S., Rogers-Ramachandran, D. & Stewart, M. Perceptual correlates of massive cortical reorganization. Science 258, 1159–1160 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Cronholm, B. Phantom limbs in amputees. A study of changes in the integration of centripetal impulses with special reference to referred sensations. Acta Psychiatr. Neurol. Scand. Suppl. 72, 1–310 (1951).

    CAS  PubMed  Google Scholar 

  52. Halligan, P. W., Marshall, J. C., Wade, D. T., Davey, J. & Morrisson, D. Thumb in cheek? Sensory reorganization and perceptual plasticity after limb amputation. Neuroreport 4, 233–236 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Grüsser, S. M. et al. Remote activation of referred phantom sensation and cortical reorganization in human upper extremity amputees. Exp. Brain Res. 154, 97–102 (2004).

    Article  PubMed  Google Scholar 

  54. Grüsser, S. M. et al. The relationship of perceptual phenomena and cortical reorganization in upper extremity amputees. Neuroscience 102, 263–272 (2001).

    Article  PubMed  Google Scholar 

  55. Halligan, P. W., Marshall, J. C. & Wade, D. T. Sensory disorganization and perceptual plasticity after limb amputation: a follow-up study. Neuroreport 27, 1341–1345 (1994).

    Google Scholar 

  56. Yang, T. T. et al. Sensory maps in the human brain. Nature 368, 592–593 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Elbert, T. R. et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 5, 2593–2597 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Flor, H. et al. Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375, 482–484 (1995). Showed a close association between the magnitude of map changes in the SI cortex and the severity of phantom limb pain.

    Article  CAS  PubMed  Google Scholar 

  59. Flor, H. et al. Cortical reorganization and phantom phenomena in congenital and traumatic upper-extremity amputees. Exp. Brain Res. 119, 205–212 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, C. W. & Kaas, J. H. Reorganization in primary motor cortex of primates with long-standing therapeutic amputations. J. Neurosci. 19, 7679–7697 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cohen, L. G., Bandinelli, S., Findley, T. W. & Hallett, M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain 114, 615–627 (1991).

    Article  PubMed  Google Scholar 

  62. Karl, A., Birbaumer, N., Lutzenberger, W., Cohen, L. G. & Flor, H. Reorganization of motor and somatosensory cortex in upper extremity amputees with phantom limb pain. J. Neurosci. 21, 3609–3618 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Karl, A., Mühlnickel, W., Kurth, R. & Flor, H. Neuroelectric source imaging of steady-state movement-related cortical potentials in human upper extremity amputees with and without phantom limb pain. Pain 110, 90–102 (2004).

    Article  PubMed  Google Scholar 

  64. Lotze, M., Flor, H., Grodd, W., Larbig, W. & Birbaumer, N. Phantom movements and pain: an fMRI study in upper limb amputees. Brain 124, 2268–2277 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Spitzer, M., Böhler, P., Weisbrod, M. & Kischka, U. A neural network model of phantom limbs. Biol. Cybern. 72, 197–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Calford, M. B. & Tweedale, R. C-fibres provide a source of masking inhibition to primary somatosensory cortex. Proc. Biol. Sci. 243, 269–275 (1991).

    Article  CAS  PubMed  Google Scholar 

  67. Bowlus, T. H. et al. Comparison of reorganization of the somatosensory system in rats that sustained forelimb removal as neonates and as adults. J. Comp. Neurol. 465, 335–348 (2003).

    Article  PubMed  Google Scholar 

  68. Churchill, J. D., Muja, N., Myers, W. A., Besheer, J. & Garraghty, P. E. Somatotopic consolidation: a third phase of reorganization after peripheral nerve injury in adult squirrel monkeys. Exp. Brain Res. 118, 189–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Churchill, J. D., Tharp, J. A., Wellman, C. L., Sengelaub, D. R. & Garraghty, P. E. Morphological correlates of injury-induced reorganization in primate somatosensory cortex. BMC Neurosci. 5, 43 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kaas, J. H. & Florence, S. L. Mechanisms of reorganization in sensory systems of primates after peripheral nerve injury. Adv. Neurol. 73, 147–158 (1997).

    CAS  PubMed  Google Scholar 

  71. Levy, L. M., Ziemann, U., Chen, R. & Cohen, L. G. Rapid modulation of GABA in sensorimotor cortex induced by acute deafferentation. Ann. Neurol. 52, 755–761 (2005).

    Article  CAS  Google Scholar 

  72. Canu, M. H. et al. Concentration of amino acid neurotransmitters in the somatosensory cortex of the rat after surgical or functional deafferentation. Exp. Brain Res. 173, 623–628 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Larbig, W. et al. Evidence for a change in neural processing after amputation. Pain 67 275–283 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Karl, A., Diers, M. & Flor, H. P300-amplitudes in upper limb amputees with and without phantom limb pain in a visual oddball paradigm. Pain 110, 40–46 (2004).

    Article  PubMed  Google Scholar 

  75. Elbert, T. et al. Input-increase and input-decrease types of cortical reorganization after upper extremity amputation in humans. Exp. Brain Res. 117, 161–164 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Ehrsson, H. H., Spence, C. & Passingham, R. E. That's my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science 305, 875–877 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Harris, A. J. Cortical origin of pathological pain. Lancet 354, 1464–1466 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. McCabe, C. S., Haigh, R. C., Halligan, P. W. & Blake, D. R. Simulating sensory-motor incongruence in healthy volunteers: implications for a cortical model of pain. Rheumatology 44, 509–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Moseley, G. L. & Gandevia, S. C. Sensory-motor incongruence and reports of 'pain'. Rheumatology 44, 1083–1085 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Chen, L. M., Friedman, R. M. & Roe, A. W. Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302, 881–885 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Katz, J. & Melzack, R. Pain 'memories' in phantom limbs: review and clinical observations. Pain 43, 319–336 (1990). These authors were the first to describe the concept of pain memories in phantom limbs.

    Article  CAS  PubMed  Google Scholar 

  82. Nikolajsen, L., Ilkjaer, S., Kroner, K., Christensen, J. H. & Jensen, T. S. The influence of preamputation pain on postamputation stump and phantom pain. Pain 72, 393–405 (1997).

    Article  CAS  PubMed  Google Scholar 

  83. Flor, H. Phantom-limb pain: characteristics, causes, and treatment. Lancet Neurol. 1, 182–189 (2002).

    Article  PubMed  Google Scholar 

  84. Flor, H. The functional organization of the brain in chronic pain. Prog. Brain Res. 129, 313–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Flor, H., Braun, C., Elbert, T. & Birbaumer, N. Extensive reorganization of primary somatosensory cortex in chronic back pain patients. Neurosci. Lett. 224, 5–8 (1997).

    Article  CAS  PubMed  Google Scholar 

  86. Soros, P. et al. Functional reorganization of the human primary somatosensory cortex after acute pain demonstrated by magnetoencephalography. Neurosci. Lett. 298, 195–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Kenshalo, D. R. & Willis, W. D. in Pain and the Cerebral Cortex (ed. Peters, A.) 153–212 (Plenum, New York, 1991).

    Google Scholar 

  88. Head, H. & Holmes, G. Sensory disturbances from cerebral lesions. Brain 34, 102–254 (1911).

    Article  Google Scholar 

  89. Appenzeller, O. & Bicknell, J. M. Effects of nervous system lesions on phantom experience in amputees. Neurology 19, 141–146 (1969).

    Article  CAS  PubMed  Google Scholar 

  90. Doetsch, G. S. Perceptual significance of somatosensory cortical reorganization following peripheral denervation. NeuroReport 9, 29–35 (1998).

    Article  Google Scholar 

  91. Hanley, M. A. et al. Preamputation pain and acute pain predict chronic pain after lower extremity amputation. J. Pain (in the press).

  92. Jensen, T. S. & Nikolajsen, L. Pre-emptive analgesia in postamputation pain: an update. Prog Brain Res. 129, 493–503 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Woolf, C. J. & Chong, M. S. Preemptive analgesia — treating postoperative pain by preventing the establishment of central sensitization. Anesth. Analg. 77, 362–379 (1993).

    Article  CAS  PubMed  Google Scholar 

  94. Nikolajsen, L., Ilkjaer, S., Christensen, J. H., Krøner, K. & Jensen, T. S. Randomised trial of epidural bupivacaine and morphine in prevention of stump and phantom pain in lower-limb amputation. Lancet 350, 1353–1357 (1997). This controlled study showed no added effect of pre-emptive analgesia for the prevention of phantom limb pain.

    Article  CAS  PubMed  Google Scholar 

  95. Wiech, K. et al. Prevention of phantom limb pain and cortical reorganization in the early phase after amputation in humans. Soc. Neurosci. Abstr. 28, 163.9 (2001).

    Google Scholar 

  96. Nikolajsen, L., Ilkjaer, S. & Jensen, T. S. Relationship between mechanical sensitivity and postamputation pain: a prospective study. Eur. J. Pain 4, 327–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Ruda, M. A., Ling, Q. D., Hohmann, A. G., Peng, Y. B. & Tachibana, T. Altered nociceptive neuronal circuits after neonatal peripheral inflammation. Science 289, 628–631 (2000). Showed that neonatal pain leads to the alteration of nociceptive circuits, therefore supporting the idea of pain memories.

    Article  CAS  PubMed  Google Scholar 

  98. Hermann, C., Hohmeister, J., Demirakca, S., Zohsel, K. & Flor, H. Long-term alteration of sensory perception and pain sensitivity in school-aged children with early pain experiences. Pain (in the press).

  99. Wilder-Smith, O. H. & Arendt-Nielsen, L. Postoperative hyperalgesia: its clinical importance and relevance. Anesthesiology 104, 601–607 (2006).

    Article  PubMed  Google Scholar 

  100. Rosen, G. et al. Different brain areas activated during imagery of painful and non-painful 'finger movements' in a subject with an amputated arm. Neurocase 7, 255–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Willoch, F. et al. Phantom limb pain in the human brain: unraveling neural circuitries of phantom limb sensations using positron emission tomography. Ann. Neurol. 48, 842–849 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Wei, F. & Zhuo, M. Potentiation of sensory responses in the anterior cingulate cortex following digit amputation in the anaesthetised rat. J. Physiol. 532, 823–833 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Recanzone, G. H., Merzenich, M. M., Jenkins, W. M., Grajski, K. A. & Dinse, H. R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B. & Taub, E. Increased cortical representation of the fingers of the left hand in string players. Science 270, 305–307 (1995).

    Article  CAS  PubMed  Google Scholar 

  105. Lotze, M. et al. Does use of a myoelectric prosthesis reduce cortical reorganization and phantom limb pain? Nature Neurosci. 2, 501–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Flor, H., Denke, C., Schaefer, M. & Grüsser, S. Effect of sensory discrimination training on cortical reorganisation and phantom limb pain. Lancet 357, 1763–1764 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Huse, E., Preissl, H., Larbig, W. & Birbaumer, N. Phantom limb pain. Lancet 358, 1015 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Giraux, P. & Sirigu, A. Illusory movements of the paralyzed limb restore motor cortex activity. Neuroimage 20, 107–111 (2003).

    Article  Google Scholar 

  109. Ramachandran, V. S. & Rogers-Ramachandran, D. Synesthesia in phantom limbs induced with mirrors. Proc. R. Soc. Lond. B Biol. Sci. 263, 377–386 (1996).

    Article  CAS  Google Scholar 

  110. MacLachlan, M., McDonald, D. & Waloch, J. Mirror treatment of lower limb phantom pain: a case study. Disabil. Rehabil. 26, 901–904 (2004).

    Article  PubMed  Google Scholar 

  111. Moseley, G. L. Is successful rehabilitation of complex regional pain syndrome due to sustained attention to the affected limb? A randomised clinical trial. Pain 114, 54–61 (2005). Showed specific effects on pain related to hand laterality recognition, imagined movement and mirror training in complex regional pain syndrome.

    Article  PubMed  Google Scholar 

  112. Fregni, F. et al. A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain 122, 197–209 (2006).

    Article  PubMed  Google Scholar 

  113. Ehrsson, H. H., Holmes, N. P. & Passingham, R. E. Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J. Neurosci. 25, 10564–10573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fink, G. R. et al. The neural consequences of conflict between intention and the senses. Brain 122, 497–512 (1999).

    Article  PubMed  Google Scholar 

  115. Craig, A. D. How do you feel? Interoception: the sense of the physiological condition of the body. Nature Rev. Neurosci. 3, 655–666 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of T. Pons, whose work inspired many of the findings reported here. This work was supported by the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung (German Neuropathic Pain Network) and the Lundbeck Foundation, Denmark. The authors would like to thank W. Jänig for helpful comments on an earlier version of this article and M. Lotze for help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta Flor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Flor's laboratory

Glossary

Neuroma

When a limb is severed, a terminal swelling or 'endbulb' is formed and axonal sprouting occurs. In the case of an amputation, sprouting and endbulb formation lead to a neuroma, a tangled mass that forms when the axons cannot reconnect or can only partially reconnect, as is the case in partial lesions. These neuromas generate abnormal activity that is called ectopic because it does not originate from the nerve endings.

Dorsal root ganglion

A nodule on a dorsal root that contains cell bodies of afferent spinal neurons, which convey somatosensory input to the CNS.

Paraesthesia

An abnormal skin sensation such as tingling or itching.

Microglia

Glial cells are the 'glue' of the nervous system, and support and protect the neurons. Microglia are a special form of small glial cells; they have immune functions and can be involved in inflammatory actions.

Substance P

A neuropeptide that plays an important role in nociception and is released by the primary somatosensory afferents in the spinal cord.

C-afferents

Unmyelinated fibres, 0.4–1.2 μm in diameter, conducting nerve impulses at a velocity of 0.7–2.3 ms−1. They conduct secondary, delayed pain.

Aδ afferents

Thinly myelinated nerve fibres with a conduction velocity of 10–30 ms−1 that convey nociceptive information to the spinal cord. These receptors convey first, sharp, pricking pain and are located mainly on hairy skin.

Aβ fibres

Large-diameter myelinated fibres that have a conduction velocity of 40 ms−1 and normally carry non-nociceptive information.

Myoelectric prosthesis

A motor-driven prosthesis that can, for example, be used for grip movements and is operated through the use of electromyographic signals from muscles.

Complex regional pain syndrome

(CRPS). A chronic neuropathic pain syndrome of two types. CRPS1 occurs most often in the arms or legs after a minor or major injury and is accompanied by severe pain, swelling, oedema, sudomotor abnormalities and increased sensitivity to touch. CRPS2 is related to an identified nerve injury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flor, H., Nikolajsen, L. & Staehelin Jensen, T. Phantom limb pain: a case of maladaptive CNS plasticity?. Nat Rev Neurosci 7, 873–881 (2006). https://doi.org/10.1038/nrn1991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing