Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Typologies of attentional networks

Key Points

  • Attention is both the preparedness for and mental selection of certain aspects of the physical environment or ideas in one's mind. Several researchers have argued that there might be more than one singular form of attention. Converging data from behavioural, imaging, electrophysiological, developmental and genetic assay studies provide compelling evidence that alerting, orienting and executive attention constitute three largely independent networks.

  • Alerting defines the ability to increase and maintain response readiness in preparation for an impending stimulus. It is task-specific and can be distinguished from the domain-general cognitive control of arousal. Neuroimaging studies have shown activity in the frontal and parietal regions, particularly of the right hemisphere, when people are required to achieve and maintain the alert state.

  • Orienting is the ability to select specific information from among multiple sensory stimuli, and can be either overt or covert, and either exogenous or endogenous. The pulvinar, superior colliculus, superior parietal lobe, temporoparietal junction, superior temporal lobe and frontal eye fields are often activated in studies of the orienting network.

  • Executive attention describes the monitoring and resolution of conflict between computations in different neural areas. Imaging studies have identified the dorsal anterior cingulate cortex (ACC) in cognitive conflict tasks, and activation in the rostral ACC after the commission of errors. Whether the ACC monitors or resolves conflict is not clear, but ACC function seems to preferentially relate to conflict at the response level.

  • It is possible to test the limits of attentional functions by examining healthy participants under atypical conditions. Recent demonstrations using suggestion kept the experimental design unspoiled and manipulated the participants' attention instead. Extensive attention training, such as that seen in those that are experts at meditation, could allow for the rapid and volitional shifts of alternate attentional profiles.

  • The three-network theory might not be falsifiable in the Popperian sense, as it allows for the simultaneous independence and dependence of the individual networks. Nevertheless, this model has served a valuable heuristic purpose, generating a large body of research from which new theories and empirical findings have evolved. In the future, this theory could be extended and revised to permit more testable predictions as additional research is conducted using new methodologies.

  • In this age of information explosion, conceptual tools are as important as technological ones. The exponential increase in the number of articles published on attention each year has resulted in a fragmenting of research into highly specialized yet isolated subfields. Adopting a big-picture approach that encompasses a clear formulation of different typologies and nomenclatures would probably allow for better management of experimental findings, which, in turn, would lead to a more focused and cohesive research agenda in the quest to elucidate human attention.

Abstract

Attention is a central theme in cognitive science — it exemplifies the links between the brain and behaviour, and binds psychology to the techniques of neuroscience. A visionary model suggested by Michael Posner described attention as a set of independent control networks. This challenged the previously held view of attention as a uniform concept. The idea that disparate attentional networks correlate with discrete neural circuitry and can be influenced by focal brain injuries, mental state and specific drugs has since been supported by converging data from several modern methodologies. Given the recent explosion in empirical data, attentional typologies provide powerful conceptual tools with which to contextualize and integrate these findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The number of research reports encompassing attention has grown in recent years.
Figure 2: Functional activation of attentional networks.
Figure 3: Examples of psychological tasks for studying alerting, orienting and execution.
Figure 4: Stroop interference.

Similar content being viewed by others

References

  1. Raz, A. in Encyclopedia of Applied Psychology (ed. Spielbereger, C.) 203–208 (Elsevier Science, San Diego, California, 2004).

    Book  Google Scholar 

  2. Posner, M. I. & Rothbart, M. K. Influencing brain networks: implications for education. Trends Cogn. Sci. 9, 99–103 (2005).

    Article  PubMed  Google Scholar 

  3. Clarkin, J. F. & Posner, M. Defining the mechanisms of borderline personality disorder. Psychopathology 38, 56–63 (2005).

    Article  PubMed  Google Scholar 

  4. Posner, M. I. & Fan, J. in Topics in Integrative Neuroscience: From Cells to Cognition (eds Pomerantz, J. R. & Crai, M. C.) (Cambridge Univ. Press, Cambridge, UK, in the press).

  5. Rueda, M. R., Rothbart, M. K., McCandliss, B. D., Saccomanno, L. & Posner, M. I. Training, maturation, and genetic influences on the development of executive attention. Proc. Natl Acad. Sci. USA 102, 14931–14936 (2005). Shows how even a brief period of attentional training can improve performance in children.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayr, U., Awh, E. & Keele, S. W. Developing Individuality in the Human Brain: a Tribute to Michael I. Posner (APA, Washington, DC, 2005). A recent volume written in honour of Posner before his retirement and in light of his Tenth Annual George A. Miller Distinguished Lecture (presented at the Annual Meeting of the Cognitive Neuroscience Society in the spring of 2004). This book focuses on aspects of attention, such as individual differences, emotional regulation, effortful control and the potential of using attentional training and genetics to alter and elucidate phenotype, respectively.

  7. Posner, M. I. & Rothbart, M. K. Hebb's neural networks support the integration of psychological science. Can. Psychol. 45, 265–278 (2004).

    Article  Google Scholar 

  8. Fan, J., Raz, A. & Posner, M. I. in Encyclopedia of Neurological Sciences (eds Aminoff, M. J. & Daroff, R. B.) 292–299 (Elsevier Science, New York, 2003).

    Book  Google Scholar 

  9. James, W. The Principles of Psychology (Dover, New York, 1890). One of the early texts, and still one of the most insightful, to address the psychology of attention. James conflated attention with awareness, defining it as “the taking possession of the mind in clear and vivid form of one out of what seem several simultaneous objects or trains of thought”.

    Google Scholar 

  10. Mirsky, A. F., Anthony, B. J., Duncan, C. C., Ahearn, M. B. & Kellam, S. G. Analysis of the elements of attention: a neuropsychological approach. Neuropsychol. Rev. 2, 109–145 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Broadbent, D. E. Perception and Communication (Pergamon, New York, 1958). A classic book detailing Broadbent's idea of attention as a filter, which guided research for many years.

    Book  Google Scholar 

  12. Treisman, A. in The Cognitive Neurosciences III (ed. Gazzaniga, M. S.) 529–544 (MIT Press, New York, 2004).

    Google Scholar 

  13. Posner, M. I. & Rothbart, M. K. Attention, self-regulation and consciousness. Phil. Trans. R. Soc. Lond. B 353, 1915–1927 (1998).

    Article  CAS  Google Scholar 

  14. Posner, M. I. & Rothbart, M. K. Developing mechanisms of self-regulation. Dev. Psychopathol. 12, 427–441 (2000).

    Article  Google Scholar 

  15. Rothbart, M. K., Ellis, L. K. & Posner, M. I. in Handbook of Self Regulation (eds Baumeister, R. F. & Vohs, K. D.) 357–370 (Guilford, New York, 2004).

    Google Scholar 

  16. Rothbart, M. K., Ellis, L. K., Rueda, M. R. & Posner, M. I. Developing mechanisms of temperamental effortful control. J. Pers. 71, 1113–1143 (2003). Outlines the idea of effortful control as applied to attention and emotional regulation.

    Article  PubMed  Google Scholar 

  17. Durston, S. et al. A neural basis for development of inhibitory control. Dev. Sci. 5, 9–16 (2002).

    Article  Google Scholar 

  18. Posner, M. I. Cognitive Neuroscience of Attention (Guilford, New York, 2004). One of the most recent volumes on the cognitive neuroscience of attention. This textbook includes contributions from many prominent researchers who both side with and oppose Posner's influential three-network model.

    Google Scholar 

  19. Schneider, W. & Shiffrin, R. M. Controlled and automatic human information processing: I. Detection, search and attention. Psychol. Rev. 84, 1–66 (1977).

    Article  Google Scholar 

  20. Spelke, E., Hirst, W. & Neisser, U. Skills of divided attention. Cognition 4, 215–230 (1976).

    Article  Google Scholar 

  21. Raz, A., Fan, J. & Posner, M. I. Hypnotic suggestion reduces conflict in the human brain. Proc. Natl Acad. Sci. USA 102, 9978–9983 (2005). A converging data (behavioural, ERP and fMRI) approach to how atypical attention can inform basic research questions: a posthypnotic suggestion to construe words as nonsense strings reduces Stroop conflict.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Raz, A., Shapiro, T., Fan, J. & Posner, M. I. Hypnotic suggestion and the modulation of Stroop interference. Arch. Gen. Psychiatry 59, 1155–1161 (2002).

    Article  PubMed  Google Scholar 

  23. Posner, M. I. & Petersen, S. E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990). A seminal paper describing an earlier version of Posner's attentional trinity.

    Article  CAS  PubMed  Google Scholar 

  24. Posner, M. I. Timing the brain: mental chronometry as a tool in neuroscience. PLoS Biol. 3, e51 (2005).

  25. Donders, F. C. On the speed of mental processes. Acta Psychol. (Amst.) 30, 412–431 (1969). One of the earliest accounts of the subtraction method in psychology.

    Article  CAS  Google Scholar 

  26. Posner, M. I. Chronometric explorations of mind (L. Erlbaum Associates, Hillsdale, New Jersey, 1978).

    Google Scholar 

  27. Shannon, C. E. & Weaver, W. The mathematical theory of communication (Univ. of Illinois Press, Urbana, Illinois, 1949).

    Google Scholar 

  28. Posner, M. I. Components of skilled performance. Science 152, 1712–1718 (1966).

    Article  CAS  PubMed  Google Scholar 

  29. Mountcastle, V. B. Brain mechanisms for directed attention. J. R. Soc. Med. 71, 14–28 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Posner, M. I. in Master Lectures in Clinical Neuropsychology and Brain Function: Research, Measurement, and Practice (eds Boll, T. & Bryant, B.) 171–202 (American Psychological Association, Washington DC, 1988).

    Google Scholar 

  31. Luck, S. J. & Girelli, M. in The Attentive Brain (ed. Parasuraman, R.) 71–94 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  32. Posner, M. I. & Raichle, M. E. Images of Mind (revised) (Scientific American Books, Washington DC, 1996).

    Google Scholar 

  33. Rosen, B. R., Buckner, R. L. & Dale, A. M. Event-related functional MRI: past, present, and future. Proc. Natl Acad. Sci. USA 95, 773–780 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hopfinger, J. B., Luck, S. J. & Hillyard, S. A. in The Cognitive Neurosciences III (ed. Gazzaniga, M. S.) 561–574 (MIT Press, Cambridge, Massachusetts, 2004).

    Google Scholar 

  35. Wolfsberg, T. G., Wetterstrand, K. A., Guyer, M. S., Collins, F. S. & Baxevanis, A. D. A user's guide to the human genome. Nature Genet. 32 (Suppl.), 1–79 (2002).

    PubMed  Google Scholar 

  36. Fan, J., Fossella, J., Sommer, T., Wu, Y. & Posner, M. I. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl Acad. Sci. USA 100, 7406–7411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raz, A. Attention and hypnosis: neural substrates and genetic associations of two converging processes. Int. J. Clin. Exp. Hypn. 53, 237–258 (2005).

    Article  PubMed  Google Scholar 

  38. Posner, M. I. in Attention and Performance XX (eds Kanwisher, N. & Duncan, J.) 505–528 (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  39. Fossella, J., Posner, M. I., Fan, J., Swanson, J. M. & Pfaff, D. W. Attentional phenotypes for the analysis of higher mental function. Scientific World 2, 217–223 (2002).

    Article  CAS  Google Scholar 

  40. Fossella, J. et al. Assessing the molecular genetics of attention networks. BMC Neurosci. 3, 14 (2002).

  41. Posner, M. I. Imaging a science of mind. Trends Cogn. Sci. 7, 450–453 (2003).

    Article  PubMed  Google Scholar 

  42. Posner, M. I. & Boies, S. J. Components of attention. Psychol. Rev. 78, 391–408 (1971).

    Article  Google Scholar 

  43. Robertson, I. H. in Cognitive Neuroscience of Attention (ed. Posner, M. I.) 407–419 (Guilford, New York, 2004).

    Google Scholar 

  44. Fan, J., McCandliss, B. D., Sommer, T., Raz, A. & Posner, M. I. Testing the efficiency and independence of attentional networks. J. Cogn. Neurosci. 14, 340–347 (2002). A behavioural paradigm that provides a concurrent measure of the three attentional subsystems, and that has consequently been broadly used by attention researchers.

    Article  PubMed  Google Scholar 

  45. Hopfinger, J. B., Buonocore, M. H. & Mangun, G. R. The neural mechanisms of top-down attentional control. Nature Neurosci. 3, 284–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Corbetta, M., Kincade, J. M., Ollinger, J. M., McAvoy, M. P. & Shulman, G. L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci. 3, 292–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I. & Posner, M. I. The activation of attentional networks. Neuroimage 26, 471–479 (2005). A fMRI assay showing the neural substrates that subserve the attentional networks. This report provides a slightly different take on the independence of these attentional subsystems and paves the road to further refinement of the three-network model.

    Article  PubMed  Google Scholar 

  48. Posner, M. I. et al. Attentional mechanisms of borderline personality disorder. Proc. Natl Acad. Sci. USA 99, 16366–16370 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parasuraman, R., Warm, J. & See, J. in The Attentive Brain (ed. Parasuraman, R.) 221–256 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  50. Robertson, I. H. & Garavan, H. in The New Cognitive Neurosciences (ed. Gazzaniga, M. S.) 631–640 (MIT Press, New York, in the press).

  51. Washburn, D. A. John Merk Fund Summer Institute on the Biology of Developmental Disabilities July 18–23 2004 (Princeton University, New Jersey, USA).

  52. Robertson, I. H., Ward, T., Ridgeway, V. & Nimmo-Smith, I. The structure of normal human attention: the Test of Everyday Attention. J. Int. Neuropsychol. Soc. 2, 525–534 (1996). Preceding the ANT, the Test of Everyday Attention was pioneered by Ian Robertson (a well-known attention 'typologist') and colleagues, and is one of the more ecological ways to measure attention.

    Article  CAS  PubMed  Google Scholar 

  53. Manly, T. et al. The differential assessment of children's attention: the Test of Everyday Attention for Children (TEA-Ch), normative sample and ADHD performance. J. Child Psychol. Psychiatry 42, 1065–1081 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Robertson, I. H. & Garavan, H. in The Cognitive Neurosciences III (ed. Gazzaniga, M. S.) 631–640 (MIT Press, New York, 2004).

    Google Scholar 

  55. Moruzzi, G. & Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophysiol. 1, 455–473 (1949).

    Article  CAS  PubMed  Google Scholar 

  56. Olszewski, J. B. D. Cytoarchitecture of the Human Brain Stem (Karger, Basel, 1982).

    Google Scholar 

  57. Sturm, W. & Willmes, K. On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14, S76–S84 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Raz, A., Deouell, L. Y. & Bentin, S. Is pre-attentive processing compromised by prolonged wakefulness? Effects of total sleep deprivation on the mismatch negativity. Psychophysiology 38, 787–795 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Broadbent, D. E. Decision and Stress (Academic, London, 1971).

    Google Scholar 

  60. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980). Posner's Cueing Task, one of the most widely used paradigms in attentional research.

    Article  CAS  PubMed  Google Scholar 

  61. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  CAS  PubMed  Google Scholar 

  62. Kastner, S. & Ungerleider, L. G. The neural basis of biased competition in human visual cortex. Neuropsychologia 39, 1263–1276 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Carmel, D. & Bentin, S. Domain specificity versus expertise: factors influencing distinct processing of faces. Cognition 83, 1–29 (2002).

    Article  PubMed  Google Scholar 

  64. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J. Neurosci. 11, 2383–2402 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000). One of the more comprehensive reviews of attention focusing on alternative models to that described by Posner.

    Article  CAS  PubMed  Google Scholar 

  66. Martinez, A. et al. Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neurosci. 2, 364–369 (1999). A compelling demonstration that attention can modulate activity very early in the neural processing stream.

    Article  CAS  PubMed  Google Scholar 

  67. Kastner, S. et al. Functional imaging of the human lateral geniculate nucleus and pulvinar. J. Neurophysiol. 91, 438–448 (2004).

    Article  PubMed  Google Scholar 

  68. Desimone, R. Visual attention mediated by biased competition in extrastriate visual cortex. Phil. Trans. R. Soc. Lond. B 353, 1245–1255 (1998). A description of the biased competition model.

    Article  CAS  Google Scholar 

  69. Griffin, I. C. & Nobre, A. C. Orienting attention to locations in internal representations. J. Cogn. Neurosci. 15, 1176–1194 (2003).

    Article  PubMed  Google Scholar 

  70. Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M. & Nobre, A. C. Orienting attention based on long-term memory experience. Neuron 49, 905–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Fernandez-Duque, D. & Posner, M. I. Relating the mechanisms of orienting and alerting. Neuropsychologia 35, 477–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  72. Rueda, M. R. et al. Development of attentional networks in childhood. Neuropsychologia 42, 1029–1040 (2004).

    Article  PubMed  Google Scholar 

  73. Callejas, A., Lupianez, J. & Tudela, P. The three attentional networks: on their independence and interactions. Brain Cogn. 54, 225–227 (2004).

    Article  PubMed  Google Scholar 

  74. Halligan, P. W., Fink, G. R., Marshall, J. C. & Vallar, G. Spatial cognition: evidence from visual neglect. Trends Cogn. Sci. 7, 125–133 (2003).

    Article  PubMed  Google Scholar 

  75. Karnath, H. O., Fruhmann Berger, M., Kuker, W. & Rorden, C. The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb. Cortex 14, 1164–1172 (2004).

    Article  PubMed  Google Scholar 

  76. Robertson, I. H., Tegner, R., Tham, K., Lo, A. & Nimmo-Smith, I. Sustained attention training for unilateral neglect: theoretical and rehabilitation implications. J. Clin. Exp. Neuropsychol. 17, 416–430 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Thimm, M., Fink, G. R., Kust, J., Karbe, H. & Sturm, W. Impact of alertness training on spatial neglect: A behavioural and fMRI study. Neuropsychologia 6 Nov 2005 (doi: 10.1016/j.neuropsychologia.2005.09.008).

  78. Griffin, I. C., Miniussi, C. & Nobre, A. C. Orienting attention in time. Front. Biosci. 6, D660–D671 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Posner, M. I. et al. An approach to the psychobiology of personality disorders. Dev. Psychopathol. 15, 1093–1106 (2003).

    Article  PubMed  Google Scholar 

  80. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Article  Google Scholar 

  81. Simon, J. R. Reactions toward the source of stimulation. J. Exp. Psychol. 81, 174–176 (1969).

    Article  CAS  PubMed  Google Scholar 

  82. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–661 (1935). The original Stroop paper — the most cited paper in the history of experimental psychology.

    Article  Google Scholar 

  83. Kornblum, S. in Tutorials in Motor Behavior II (ed. Stelmach, G. E. & Requin, J.) 743–777 (Elsevier Science, Amsterdam, 1992).

    Google Scholar 

  84. Liu, X., Banich, M. T., Jacobson, B. L. & Tanabe, J. L. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task, as assessed by event-related fMRI. Neuroimage 22, 1097–1106 (2004). An important report delineating subtle methodological influences that could account for differences between Simon and Stroop results.

    Article  PubMed  Google Scholar 

  85. Raz, A. Anatomy of attentional networks. Anat. Rec. B New. Anat. 281, 21–36 (2004). An overview of the main anatomy and the underlying theory proposing a three-network model for attention.

    Article  PubMed  Google Scholar 

  86. Funes, M. J. & Lupiáñez, J. La teoría atencional de Posner: una tarea para medir las funciones atencionales de orientación, alerta y control cognitivo y la interacción entre ellas. Psicothema 15, 260–266 (2003).

    Google Scholar 

  87. Fernandez-Duque, D., Baird, J. A. & Posner, M. I. Executive attention and metacognitive regulation. Conscious Cogn. 9, 288–307 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Rueda, M. R., Posner, M. I. & Rothbart, M. K. in Handbook of Self Regulation (eds Baumeister, R. F. & Vohs, K. D.) 283–300 (Guilford, New York, 2004).

    Google Scholar 

  89. Critchley, H. D. et al. Human cingulate cortex and autonomic control. Brain 126, 2139–2152 (2003).

    Article  PubMed  Google Scholar 

  90. Critchley, H. D., Melmed, R. N., Featherstone, E., Mathias, C. J. & Dolan, R. J. Brain activity during biofeedback relaxation: a functional neuroimaging investigation. Brain 124, 1003–1012 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Critchley, H. D., Melmed, R. N., Featherstone, E., Mathias, C. J. & Dolan, R. J. Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 16, 909–919 (2002).

    Article  PubMed  Google Scholar 

  92. O'Connor, C., Manly, T., Robertson, I. H., Hevenor, S. J. & Levine, B. An fMRI study of sustained attention with endogenous and exogenous engagement. Brain Cogn. 54, 133–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Assmus, A., Marshall, J. C., Noth, J., Zilles, K. & Fink, G. R. Difficulty of perceptual spatiotemporal integration modulates the neural activity of left inferior parietal cortex. Neuroscience 132, 923–927 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Coull, J. T., Nobre, A. C. & Frith, C. D. The noradrenergic α2 agonist clonidine modulates behavioural and neuroanatomical correlates of human attentional orienting and alerting. Cereb. Cortex 11, 73–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Friedrich, F. J., Egly, R., Rafal, R. D. & Beck, D. Spatial attention deficits in humans: a comparison of superior parietal and temporal–parietal junction lesions. Neuropsychology 12, 193–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Karnath, H. O., Ferber, S. & Himmelbach, M. Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature 411, 950–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Corbetta, M. Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? Proc. Natl Acad. Sci. USA 95, 831–838 (1998). An alternative to the idea of independent attention subsystems. This research nicely complements Posner's model and extends aspects of the orienting system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fan, J., Flombaum, J. I., McCandliss, B. D., Thomas, K. M. & Posner, M. I. Cognitive and brain consequences of conflict. Neuroimage 18, 42–57 (2003).

    Article  PubMed  Google Scholar 

  99. Pizzagalli, D. A., Peccoralo, L. A., Davidson, R. J. & Cohen, J. D. Resting anterior cingulate activity and abnormal responses to errors in subjects with elevated depressive symptoms: a 128-channel EEG study. Hum. Brain Mapp. 27, 185–201 (2006).

    Article  PubMed  Google Scholar 

  100. Bush, G., Luu, P. & Posner, M. I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000). An influential review, albeit in need of revision in light of recent evidence, that argues for a superior cognitive and inferior emotional regulation system in the anterior cingulate cortex.

    Article  CAS  PubMed  Google Scholar 

  101. Critchley, H. D. et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126, 2139–2152 (2003).

    Article  PubMed  Google Scholar 

  102. Cohen, J. D., Aston-Jones, G. & Gilzenrat, M. S. in Cognitive Neuroscience of Attention (ed. Posner, M. I.) 71–90 (Guilford, New York, 2004).

    Google Scholar 

  103. Botvinick, M. M., Cohen, J. D. & Carter, C. S. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8, 539–546 (2004).

    Article  PubMed  Google Scholar 

  104. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Milham, M. P. et al. The relative involvement of anterior cingulate and prefrontal cortex in attentional control depends on nature of conflict. Brain Res. Cogn. Brain Res. 12, 467–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. van Veen, V. & Carter, C. S. Separating semantic conflict and response conflict in the Stroop task: a functional MRI study. Neuroimage 27, 497–504 (2005).

    Article  PubMed  Google Scholar 

  107. Schulte, D. et al. Propofol decreases stimulated dopamine release in the rat nucleus accumbens by a mechanism independent of dopamine D2, GABAA and NMDA receptors. Br. J. Anaesth. 84, 250–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  108. Thiel, C. M., Zilles, K. & Fink, G. R. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex. Neuropsychopharmacology 30, 810–820 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Kosslyn, S. M., Thompson, W. L., Costantini-Ferrando, M. F., Alpert, N. M. & Spiegel, D. Hypnotic visual illusion alters color processing in the Brain. Am. J. Psychiatry 157, 1279–1284 (2000). A PET study showing the influence hypnotic suggestion (that is, top-down effects) can wield on stimulus-driven neurophysiology (that is, bottom-up effects).

    Article  CAS  PubMed  Google Scholar 

  110. Raz, A. in Cognitive Neuroscience of Attention (ed. Posner, M. I.) 420–429 (Guilford, New York, 2004). A brief account of the idea of 'atypical attention' and how it can be used in cognitive neuroscience research to study attention.

    Google Scholar 

  111. Raz, A. & Norman, K. L. A social psychologist illuminates cognition. Behav. Brain Sci. 27, 673–674 (2004).

    Article  Google Scholar 

  112. George, M. S. et al. Transcranial magnetic stimulation. Neurosurg. Clin. N. Am. 14, 283–301 (2003).

    Article  PubMed  Google Scholar 

  113. Dillbeck, M. C. Meditation and flexibility of visual perception and verbal problem solving. Mem. Cognit. 10, 207–215 (1982).

    Article  CAS  PubMed  Google Scholar 

  114. Alexander, C. N., Langer, E. J., Newman, R. I., Chandler, H. M. & Davies, J. L. Transcendental meditation, mindfulness, and longevity: an experimental study with the elderly. J. Pers. Soc. Psychol. 57, 950–964 (1989).

    Article  CAS  PubMed  Google Scholar 

  115. Wenk-Sormaz, H. Meditation can reduce habitual responding. Altern. Ther. Health Med. 11, 42–58 (2005).

    PubMed  Google Scholar 

  116. Raz, A., Kirsch, I., Pollard, J. & Nitkin-Kaner, Y. Suggestion reduces the Stroop effect. Psychol. Sci. 17, 91–95 (2006). Proposes that suggestibility is perhaps more important than hypnotic induction and that individuals who are highly suggestible can 'deautomatize' cognitive processing (that is, Stroop interference) in the presence of hypnosis but also in its absence.

    Article  PubMed  Google Scholar 

  117. Besner, D. The myth of ballistic processing: evidence from Stroop's paradigm. Psychon. Bull. Rev. 8, 324–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Neely, J. H. & Kahan, T. in The Nature of Remembering: Essays in Honor of Robert G. Crowder (eds Roediger, H. L., Nairne, J. S., Neath, I. & Surprenant, A. M.) 69–93 (American Psychological Association, Washington, DC, 2000).

    Google Scholar 

  119. Carter, O. L. et al. Meditation alters perceptual rivalry in Tibetan Buddhist monks. Curr. Biol. 15, R412–R413 (2005). Evidence from meditative practices suggesting that attentional training can have profound influences on cognition.

    Article  CAS  PubMed  Google Scholar 

  120. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Pessoa, L., Kastner, S. & Ungerleider, L. G. Neuroimaging studies of attention: from modulation of sensory processing to top-down control. J. Neurosci. 23, 3990–3998 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Astafiev, S. V., Shulman, G. L. & Corbetta, M. Visuospatial reorienting signals in the human temporo–parietal junction are independent of response selection. Eur. J. Neurosci. 23, 591–596 (2006).

    Article  PubMed  Google Scholar 

  123. Sapir, A., d'Avossa, G., McAvoy, M., Shulman, G. L. & Corbetta, M. Brain signals for spatial attention predict performance in a motion discrimination task. Proc. Natl Acad. Sci. USA 102, 17810–17815 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nature Rev. Neurosci. 3, 201–215 (2002).

    Article  CAS  Google Scholar 

  125. Lutz, A., Greischar, L. L., Rawlings, N. B., Ricard, M. & Davidson, R. J. Long-term meditators self-induce high-amplitude γ synchrony during mental practice. Proc. Natl Acad. Sci. USA 101, 16369–16373 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Raz, A. et al. Ecological nuances in functional magnetic resonance imaging (fMRI): psychological stressors, posture, and hydrostatics. Neuroimage 25, 1–7 (2005).

    Article  PubMed  Google Scholar 

  127. Robertson, I. H., Mattingley, J. B., Rorden, C. & Driver, J. Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature 395, 169–172 (1998). Patients with neglect have long been studied as good models of a deficient orienting system. However, this study shows that the influence of phasic alerting suggests that attentional subtypes can interact, thereby redefining the concept of independence in attentional networks.

    Article  CAS  PubMed  Google Scholar 

  128. Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z. & Sapir, A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neurosci. 8, 1603–1610 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Manly, T., Dobler, V. B., Dodds, C. M. & George, M. A. Rightward shift in spatial awareness with declining alertness. Neuropsychologia 43, 1721–1728 (2005).

    Article  PubMed  Google Scholar 

  130. Rueda, R. M., Rothbart, M. K., McCandliss, B. D., Saccomanno, L. & Posner, M. Training, maturation, and genetic influences on the development of executive attention. Proc. Natl Acad. Sci. USA 102, 14931–14936 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Klingberg, T. et al. Computerized training of working memory in children with ADHD — a randomized, controlled trial. J. Am. Acad. Child Adolesc. Psychiatry 44, 177–186 (2005).

    Article  PubMed  Google Scholar 

  132. Klingberg, T., Forssberg, H. & Westerberg, H. Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791 (2002).

    Article  PubMed  Google Scholar 

  133. Olesen, P. J., Westerberg, H. & Klingberg, T. Increased prefrontal and parietal activity after training of working memory. Nature Neurosci. 7, 75–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Parasuraman, R., Greenwood, P. M., Kumar, R. & Fossella, J. Beyond heritability: neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychol. Sci. 16, 200–207 (2005). A thoughtful account of how a brain theory together with a careful correlation of genotype with phenotype can advance our understanding of attention.

    Article  PubMed  Google Scholar 

  135. Ramel, W., Goldin, P. R., Carmona, P. E. & McQuaid, J. R. The effects of mindfulness meditation on cognitive processes and affect in patients with past depression. Cognit. Ther. Res. 28, 433–455 (2004).

    Article  Google Scholar 

  136. Ekman, P., Davidson, R. J., Ricard, M. T. & Wallace, A. B. Buddhist and psychological perspectives on emotions and well-being. Curr. Dir. Psychol. Sci. 14, 59–63 (2005).

    Article  Google Scholar 

  137. Landau, S. M., Schumacher, E. H., Garavan, H., Druzgal, T. J. & D'Esposito, M. A functional MRI study of the influence of practice on component processes of working memory. Neuroimage 22, 211–221 (2004).

    Article  PubMed  Google Scholar 

  138. Garavan, H., Kelley, D., Rosen, A., Rao, S. M. & Stein, E. A. Practice-related functional activation changes in a working memory task. Microsc. Res. Tech. 51, 54–63 (2004).

    Article  Google Scholar 

  139. Fan, J., Fossella, J., Sommer, T., Wu, Y. & Posner, M. I. Mapping the genetic variation of executive attention onto brain activity. Proc. Natl Acad. Sci. USA 100, 7406–7411 (2003). Together with the work of Parasuraman et al . (see reference 134), these exploratory studies show how genetics could have a role in shaping the biological substrates of attention.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Konrad, K. et al. Development of attentional networks: an fMRI study with children and adults. Neuroimage 28, 429–439 (2005). Reference 140 and 141 provide information about the development of attentional networks.

    Article  PubMed  Google Scholar 

  141. Fan, J., Wu, Y., Fossella, J. A. & Posner, M. I. Assessing the heritability of attentional networks. BMC Neurosci. 2, 14 (2001).

  142. Parasuraman, R. & Greenwood, P. M. in Cognitive Neuroscience of Attention (ed. Posner, M. I.) 245–259 (Guilford, New York, 2004).

    Google Scholar 

  143. Diamond, A., Briand, L., Fossella, J. & Gehlbach, L. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am. J. Psychiatry 161, 125–132 (2004).

    Article  PubMed  Google Scholar 

  144. Egan, M. F. et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc. Natl Acad. Sci. USA 98, 6917–6922 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Greenwood, P. M. & Parasuraman, R. Normal genetic variation, cognition, and aging. Behav. Cogn. Neurosci. Rev. 2, 278–306 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hariri, A. R. & Weinberger, D. R. Imaging genomics. Br. Med. Bull. 65, 259–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Grandy, D. K. & Kruzich, P. J. in Cognitive Neuroscience of Attention (ed. Posner, M. I.) 260–268 (Guilford, New York, 2004).

    Google Scholar 

  148. Raz, A., Fossella, J. A., McGuiness, P., Zephrani, Z. R. & Posner, M. I. Neural correlates and exploratory genetic associations of attentional and hypnotic phenomena. Hypnose und Kognition 2, 79–92 (2005).

    Google Scholar 

  149. Sommer, T., Fossella, J. A., Fan, J. & Posner, M. I. Inhibitory control: cognitive subfunctions, individual differences and variation in dopaminergic genes. Proc. Hanse Institute (in the press).

  150. Mottaghy, F. M. et al. Systems level modeling of a neuronal network subserving intrinsic alertness. Neuroimage 29, 225–233 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Posner, R. Parasuraman and I. Robertson for helpful discussions and constructive comments regarding early versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Raz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Hypnosis

Attentive receptive concentration that allows certain individuals to change the way they experience themselves and the environment. These individuals often show heightened compliance with suggestion.

Cognitive psychology

The psychological study of the thinking, feeling or acting mind, which cuts across diverse fields of behaviour.

Cognitive neuroscience

The study of how the brain enables the mind.

Emotional regulation

The reduction, increase or maintenance of an emotional response (for example, fear, anger or pleasure) on the basis of the actions of the self or others.

Self-regulation

The ability to manipulate one's own emotions, thoughts or actions on direction from the self or another person. Emotion regulation can be a form of self-regulation, but it can also be induced by actions of others.

Effortful control

The ability to inhibit, activate or sustain a response, which includes the capacity to inhibit a dominant response in order to perform a subdominant response. In temperament research, individual differences in effortful control are measured as a factor score that combines scales dealing with attention and the ability to regulate behaviour on command.

Inhibitory control

The reduction in the probability, speed or vigour of the normal response to a stimulus based on instruction from the self or others. It is often measured by scale scores on a questionnaire or by a task that requires one to withhold or delay a response.

Top-down effect

Controlling, regulating or overriding a stimulus-driven or other bottom-up process by such factors as attention or expectation.

Event-related potentials

(ERPs). A non-invasive electrophysiological technique based on scalp electrode recordings of evoked-response potentials.

Positron emission tomography

(PET). A technique using positron-emitting radioactive tracers that are attached to molecules that enter biological pathways of interest to study the relationship between energy consumption and neural activity.

Functional MRI

(fMRI). A non-invasive technique that permits imaging of the living brain and provides findings that relate neural to cognitive activity by measuring small changes in the magnetic properties of blood.

Magnetoencephalography

(MEG). A technique similar to ERP methods that detects the changing magnetic fields associated with brain activity.

Attention networks test

(ANT). A brief behavioural task that, together with spatiotemporal cues, assesses the efficiencies of the executive, alerting and orienting attentional networks. The ANT can be used with children or adults, in both health and disease, as well as with non-human primates.

Raven's progressive matrices

A popular measure of intellectual ability that assesses reasoning in the visual modality and provides sensitive measures of abstraction abilities. Responses do not require verbalization, skilled manipulation ability or subtle differentiation of visuospatial information.

Allelic association assays

Experiments aimed at correlating genotype (that is, specific genetic polymorphisms) with phenotype (that is, carefully measured behaviours) in line with an underlying brain theory.

Vigilance tasks

A set of tasks requiring sustained attention during which participants typically monitor displays over extended periods of time for the occasional occurrence of crucial events (signals). Signals are low-probability events that require action, and are embedded in the context of recurrent non-signal events that require no overt response.

Alerting tasks

A set of tasks requiring participants to prepare for the imminent appearance of a target at a known location. For example, a visual cue could alert the participant that a subsequent target will soon appear at a known location.

Retinotopic visual area

Stimulating different areas of the visual field during a brain scan reveals their corresponding retinotopic representation (maps) in the cortex. Several distinct areas in visual cortex preserve the retina's map.

Proverbial homunculus

A term of art in neuroscience. Homunculus refers to the 'little man' inside the brain.

Transcranial magnetic stimulation

(TMS). A technique used to induce transient interruption of normal activity in a relatively restricted area of the brain by rapidly changing a strong magnetic field near the brain area of interest.

Posthypnotic suggestion

A condition during common wakefulness (after termination of the hypnotic experience) during which, on a prearranged cue, a participant readily complies with a suggestion made during the hypnotic episode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raz, A., Buhle, J. Typologies of attentional networks. Nat Rev Neurosci 7, 367–379 (2006). https://doi.org/10.1038/nrn1903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing