Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neuroscience of grasping

A Corrigendum to this article was published on 01 October 2005

Key Points

  • Considerable advances in our knowledge of human and non-human primate grasping control have been made during the past decade, using a combination of behavioural, neuroimaging and electrophysiological approaches. As a result, the neural circuitry and mechanisms of grasping are being elucidated. However, few attempts have been made to reconcile findings across species.

  • Various experiments using kinematic techniques indicate that the mechanics of grasping in humans vary depending on object attributes such as fragility, size, shape, texture and weight. By contrast, kinematic studies in monkeys have been limited and confined to the testing of an object's size and shape.

  • Single-unit physiology studies indicate that grasping might be represented by neurons in a network of brain areas, including the motor, premotor and parietal cortices. Because these areas contain representations of hand actions and the structures of objects, it has been suggested that their integrity might be crucial for successful grasping.

  • Findings from patients with brain damage who have difficulty in grasping objects are difficult to reconcile with neurophysiological findings, as the patients' lesions are confined to regions that, in monkeys, do not seem to be involved in grasping-related visuomotor transformations.

  • Recent positron emission tomography and functional MRI studies in humans have indicated possible human homologues of the brain regions that seem to be involved in grasping in monkeys. However, because of the difficulty of studying real grasping in the neuroimaging environment, many laboratories have taken to studying rather unnatural tasks. So, there are inconsistencies in the experimental protocols that make these results difficult to compare and interpret.

  • One consistent region that has been identified as being involved in grasping tasks is the human homologue of the monkey anterior intraparietal area. However, in most of the studies that show such activation, participants were constrained to a single type of grasp (a precision grip), which raises the question of whether different grasping patterns are represented in this area.

  • Contextual information that is involved in the unfolding of the grasping action (for example, using the same object for different purposes) has been largely neglected. A fundamental step is to uncover whether and to what extent contextual factors affect movement organization in humans and monkeys.

  • To make progress in this field, it would be useful to implement a coordinated series of experiments in which similar protocols are applied to monkeys and humans, using various techniques. This multi-pronged approach should ideally combine functional imaging with MRI-compatible electrophysiological and kinematic recordings.

Abstract

People have always been fascinated by the exquisite precision and flexibility of the human hand. When hand meets object, we confront the overlapping worlds of sensorimotor and cognitive functions. We reach for objects, grasp and lift them, manipulate them and use them to act on other objects. This review examines one of these actions — grasping. Recent research in behavioural neuroscience, neuroimaging and electrophysiology has the potential to reveal where in the brain the process of grasping is organized, but has yet to address several questions about the sensorimotor transformations that relate to the control of the hands.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of different grasps.
Figure 2: Kinematics of grasping.
Figure 3: Comparison of the kinematics of grasping in monkeys and humans: effect of size.
Figure 4: Comparison between neural circuits for grasping in macaque monkeys and humans.
Figure 5: Types of neuron in monkey anterior intraparietal area and F5 that are involved in hand manipulation.
Figure 6: Grip aperture profiles of patients with brain damage.
Figure 7: Setups and results from two functional MRI grasping experiments.

Similar content being viewed by others

References

  1. Bell, C. The Hand: its Mechanisms and Vital Endowments as Evincing Design (William Pickering, London, 1834).

    Google Scholar 

  2. Napier, J. R. Hands (George Allen & Unwin Ltd, London, 1980).

    Google Scholar 

  3. Napier, J. R. Studies of the hands of living primates. Proc. Zool. Soc. 134, 647–657 (1960).

    Article  Google Scholar 

  4. Napier, J. R. Prehensility and opposability in the hands of primates. Symp. Zool. Soc. 5, 115–132 (1961).

    Google Scholar 

  5. Bennett, K. M. B. & Castiello, U. Insights into the Reach to Grasp Movement (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  6. Wing, A. M., Haggard, P. & Flanagan, J. R. Hand and Brain: the Neurophysiology and Psychology of Hand Movements (Academic, San Diego, 1996).

    Google Scholar 

  7. Wilson, F. R. The Hand (Vintage Books, New York, 1998). References 5–7 are books that comprehensively cover the main aspects of grasping.

    Google Scholar 

  8. Susman, R. L. Hand of Paranthropus robustus from member 1, Swartkrans. Science 240, 781–784 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Christel, M. in Hands of Primates (eds Preushoft, H. & Chivers, D. J.) 91–108 (Springer, New York, 1993).

    Book  Google Scholar 

  10. Marzke, M. W. in Insights into the Reach to Grasp Movement (eds Bennett, K. M. B. & Castiello, U.) 19–35 (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  11. Jeannerod, M. in Attention and Performance IX (eds Long, J. & Baddeley, A.) 153–168 (Erlbaum, Hillsdale, 1981). This paper was the first to characterize kinematically the reach-to-grasp movement in humans. This seminal work laid the foundation of much of our current understanding of grasping.

    Google Scholar 

  12. Jeannerod, M. The timing of natural prehension movements. J. Mot. Behav. 16, 235–254 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Jakobson, L. S. & Goodale, M. A. Factors affecting higher-order movement planning: a kinematic analysis of human prehension. Exp. Brain Res. 86, 199–208 (1991).

    Article  CAS  PubMed  Google Scholar 

  14. Paulignan, Y., Jeannerod, M., Mackenzie, C. L. & Marteniuk, R. G. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp. Brain Res. 87, 407–420 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Gentilucci, M. et al. Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 29, 361–378 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Chieffi, S. & Gentilucci, M. Coordination between the transport and the grasp component during prehension movements. Exp. Brain Res. 94, 471–477 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Castiello, U., Bennett, K. M. B. & Stelmach, G. E. The bilateral reach to grasp movement. Behav. Brain Res. 1, 43–57 (1993).

    Article  Google Scholar 

  18. Weir, P. L. in Insights into the Reach to Grasp Movement (eds Bennett, K. M. B. & Castiello, U.) 129–150 (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  19. Castiello, U. Grasping a fruit: selection for action. J. Exp. Psychol. Hum. Percept. Perform. 22, 582–603 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Paulignan, Y., Frak, V. G., Toni, I. & Jeannerod, M. Influence of object position and size on human prehension movements. Exp. Brain Res. 114, 226–234 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Castiello, U. Mechanisms of selection for the control of hand action. Trends Cogn. Sci. 3, 264–271 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Smeets, J. B. J. & Brenner, E. A new view on grasping. Mot. Cont. 3, 237–271 (1999). An excellent review of experimental studies showing the influences of object properties on grasping behaviour.

    Article  CAS  Google Scholar 

  23. Savelsbergh, G. J. P., Steenbergen, B. & van der Kamp, J. The role of fragility information in the guidance of the precision grip. Hum. Mov. Sci. 15, 115–127 (1996).

    Article  Google Scholar 

  24. Bootsma, R. J., Marteniuk, R. G., MacKenzie, C. L. & Zaal, F. T. J. M. The speed-accuracy trade off in manual prehension: effects of movement amplitude, object size and object width on kinematic characteristics. Exp. Brain. Res. 98, 535–541 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Weir, P. L., MacKenzie, C. L., Marteniuk, R. G. & Cargoe, S. L. Is object texture a constraint on human prehension?: kinematic evidence. J. Mot. Behav. 23, 205–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Weir, P. L., MacKenzie, C. L., Marteniuk, R. G., Cargoe, S. L. & Fraser, M. B. The effects of object weight on the kinematics of prehension. J. Mot. Behav. 23, 192–204 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Johansson, R. S. & Westling, G. Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Exp. Brain Res. 71, 59–71 (1988).

    CAS  PubMed  Google Scholar 

  28. Gordon, A. M., Forssberg, H., Johansson, R. S. & Westling, G. Visual size cues in the programming of manipulative forces during precision grip. Exp. Brain Res. 83, 477–482 (1991).

    CAS  PubMed  Google Scholar 

  29. Cuijpers, R. H., Smeets, J. B. J. & Brenner, E. On the relation between object shape and grasping kinematics. J. Neurophysiol. 91, 2598–2606 (2004).

    Article  PubMed  Google Scholar 

  30. Santello, M. & Soechting, J. F. Gradual molding of the hand to object contours. J. Neurophysiol. 79, 1307–1320 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Santello, M. & Soechting, J. F. Force synergies for multifingered grasping. Exp. Brain Res. 133, 457–467 (1998).

    Article  Google Scholar 

  32. Santello, M., Flanders, M. & Soechting, J. F. Patterns of hand motion during grasping and the influence of sensory guidance. J. Neurosci. 22, 1426–1435 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Schieber, M. H. & Santello, M. Hand function: peripheral and central constraints on performance. J. Appl. Physiol. 96, 2293–2300 (2004).

    Article  PubMed  Google Scholar 

  34. Mason, C. R., Gomez, J. E. & Ebner, T. J. Hand synergies during reach-to-grasp. J. Neurophysiol. 86, 2896–2910 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Mason, C. R., Theverapperuma, L. S., Hendrix, C. M. & Ebner, T. J. Monkey hand postural synergies during reach-to-grasp in the absence of vision of the hand and object. J. Neurophysiol. 91, 2826–2837 (2004).

    Article  PubMed  Google Scholar 

  36. Smeets, J. B. J., Brenner, E. & Biegstraaten, M. Independent control of the digits predicts an apparent hierarchy of visuomotor channels in grasping. Behav. Brain Res. 136, 427–432 (2002).

    Article  PubMed  Google Scholar 

  37. Smeets, J. B. J. & Brenner, E. Independent movements of the digits in grasping. Exp. Brain Res. 139, 92–100 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Castiello, U., Bennett, K. M. M. & Stelmach, G. E. Reach-to-grasp: the natural response to perturbation of object size. Exp. Brain Res. 94, 163–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Edin, B. B. & Johansson, R. S. Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. (Lond.) 487, 243–251 (1995).

    Article  CAS  Google Scholar 

  40. Johansson, R. S. in Hand and Brain: the Neurophysiology and Psychology of Hand Movements (eds Wing, A. M., Haggard, P. & Flanagan, J. R.) 381–414 (Academic, San Diego, 1996).

    Book  Google Scholar 

  41. Johansson, R. S. in Sensory Guidance of Movement. Novartis Found. Symp. 219 (eds Block, G. R. & Goode, J. A.) 45–63 (John Wiley, New York, 1998).

    Google Scholar 

  42. Witney, A. G., Wing, A., Thonnard, J. L. & Smith, A. M. The cutaneous contribution to adaptive precision grip. Trends Neurosci. 27, 637–643 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Faugier–Grimaud, S., Frenois, C. & Stein, D. G. Effects of posterior parietal lesions on visually guided behaviour in monkeys. Neuropsychologia 16, 151–168 (1978).

    Article  PubMed  Google Scholar 

  44. Roy, A. C., Paulignan, Y., Farnè, A., Jouffrais, C. & Boussaoud, D. Hand kinematics during reaching and grasping in the macaque monkey. Behav. Brain Res. 117, 75–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Christel, M. I. & Billard, A. Comparison between macaques' and humans' kinematics of prehension: the role of morphological differences and control mechanisms. Behav. Brain Res. 131, 169–184 (2002). References 44 and 45 show differences and similarities in the kinematics of grasping between humans and monkeys.

    Article  PubMed  Google Scholar 

  46. Lawrence, D. G. & Hopkins, D. A. The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 99, 235–254 (1976).

    Article  CAS  PubMed  Google Scholar 

  47. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91, 1–14 (1968).

    Article  CAS  PubMed  Google Scholar 

  48. Lawrence, D. G. & Kuypers, H. G. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91, 15–36 (1968).

    Article  CAS  PubMed  Google Scholar 

  49. Muir, R. B. & Lemon, R. N. Corticospinal neurons with a special role in precision grip. Brain Res. 261, 312–316 (1983).

    Article  CAS  PubMed  Google Scholar 

  50. Porter, R. & Lemon, R. N. in Corticospinal Function and Voluntary Movement (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

  51. Hepp-Reymond, M. C., Huesler, E. J. & Maier, M. A. in Hand and Brain: the Neurophysiology and Psychology of Hand Movements (eds Wing, A. M., Haggard, P. & Flanagan, J. R.) 37–62 (Academic, San Diego, 1996).

    Book  Google Scholar 

  52. Gibson, A. R., Horn, K. M. & Van Kan, P. L. E. in Insights into the Reach to Grasp Movement (eds Bennett, K. M. B. & Castiello, U.) 129–150 (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  53. Smith, A. M. & Boubonnais, D. Neural activity in cerebellar cortex related to control of prehensile force. J. Neurophysiol. 45, 286–303 (1981).

    Article  CAS  PubMed  Google Scholar 

  54. Robertson, E. M. Neural features of the reach and grasp. Mot. Control 4, 117–120 (2000).

    Article  CAS  Google Scholar 

  55. Jeannerod, M., Arbib, A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995). An excellent review of the neural mechanisms of grasping. It also provides insightful suggestions with regard to the application of computational modelling to grasping neurophysiology.

    Article  CAS  PubMed  Google Scholar 

  56. Matelli, M., Luppino, G. & Rizzolatti, G. Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey. Behav. Brain Res. 18, 125–136 (1985). An important paper that presents the cytoarchitectonics of the monkey's premotor cortex.

    Article  CAS  PubMed  Google Scholar 

  57. Matelli, M. & Rizzolatti, G. Anatomo-functional organization of the agranular frontal cortex in primates. Electroencephal. Clin. Neurophysiol. Electromyog. Mot. Cont. 97, S8 (1995).

    Article  Google Scholar 

  58. Luppino, G., Murata, A., Govoni, P. & Matelli, M. Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp. Brain Res. 128, 181–187 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Matelli, M. & Luppino, G. Parietofrontal circuits for action and space perception in the macaque monkey. Neuroimage 14, 27–32 (2001).

    Article  Google Scholar 

  60. Rizzolatti, G. et al. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Exp. Brain Res. 71, 491–507 (1988). This paper described the identification of the F5 neurons that are responsible for specific types of grasp.

    Article  CAS  PubMed  Google Scholar 

  61. Taira, M., Mine, S., Georgopoulos, A. P., Murata, A. & Sakata, H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp. Brain Res. 83, 29–36 (1990).

    Article  CAS  PubMed  Google Scholar 

  62. Sakata, H., Taira, M., Murata, A. & Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex 5, 429–438 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Rizzolatti, G., Luppino, G. & Matelli, M. The organisation of the cortical motor system: new concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580–2601 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Murata, A. et al. Object representation in the ventral premotor cortex (area F5) of the monkey. J. Neurophysiol. 78, 2226–2230 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Rizzolatti, G., Fogassi, L. & Gallese, V. Parietal cortex: from sight to action. Curr. Opin. Neurobiol. 7, 562–567 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Rizzolatti, G., Fogassi, L. & Gallese, V. Motor and cognitive functions of the ventral premotor cortex. Curr. Opin. Neurobiol. 12, 149–154 (2002). An important review that summarizes the organization of the ventral premotor cortex and discusses in detail some of the higher functions of premotor areas.

    Article  CAS  PubMed  Google Scholar 

  68. Fagg, A. H. & Arbib, M. A. Modeling parietal-premotor interactions in primate control of grasping. Neural Networks 11, 1277–1303 (1998).

    Article  PubMed  Google Scholar 

  69. Fogassi, L. et al. Cortical mechanism for the visual guidance of hand grasping movements in the monkey: a reversible inactivation study. Brain 124, 571–586 (2001). The inactivation of area F5ab produced a selective deficit of visually guided hand shaping producing hand postures that were not appropriate for the size and shape of the object. The specificity of the deficits caused by F5ab lesion indicates that this F5 sector has a crucial role in visuomotor transformation for object interaction.

    Article  CAS  PubMed  Google Scholar 

  70. Gallese, V., Fadiga, L., Fogassi, L., Luppino, G. & Murata, A. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thiers, P. & Karnath, H. O.) 255–270 (Springer, Berlin, 1997).

    Book  Google Scholar 

  71. Gallese, V., Murata, A., Kaseda, M., Niki, N. & Sakata, H. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529 (1994).

    Article  CAS  PubMed  Google Scholar 

  72. Gardner, E. P., Debowy, D. J., Ro, J. Y., Ghosh, S. & Srinivasa, B. Sensory monitoring of prehension in the parietal lobe: a study using digital video. Behav. Brain Res. 135, 213–224 (2002).

    Article  PubMed  Google Scholar 

  73. Denny-Brown, D. Disintegration of motor function resulting from cerebral lesions. J. Nerv. Ment. Dis. 112, 1–45 (1950).

    Article  CAS  PubMed  Google Scholar 

  74. Lassek, A. M. in The Pyramidal Tract: Its Status in Medicine (Charles C. Thomas, Springfield, 1954).

    Google Scholar 

  75. Lang, C. E. & Schieber, M. H. Reduced muscle selectivity during individuated finger movements in humans after damage to the motor cortex or corticospinal tract. J. Neurophysiol. 91, 1722–1733 (2004).

    Article  PubMed  Google Scholar 

  76. Binkofski, F. et al. Human anterior intraparietal area subserves prehension. Neurology 50, 1253–1259 (1998). An excellent and comprehensive neuropsychological and fMRI study showing that the AIP can be considered to be the area of grasping in humans, as it is in monkeys.

    Article  CAS  PubMed  Google Scholar 

  77. Glover, S. Optic ataxia as a deficit specific to the on-line control of actions. Neurosci. Biobehav. Rev. 27, 447–456 (2003). An important review that proposes a new theoretical approach to optic ataxia.

    Article  PubMed  Google Scholar 

  78. Rossetti, Y., Vighetto, A. & Pisella, L. Optic ataxia revisited: immediate motor control versus visually guided action. Exp. Brain Res. 153, 171–179 (2003).

    Article  PubMed  Google Scholar 

  79. Jeannerod, M. Mechanisms of visuomotor coordination: a study in normal and brain-damaged subjects. Neuropsychologia 24, 41–78 (1986). The first paper to describe the kinematics of grasping abnormalities in patients with optic ataxia.

    Article  CAS  PubMed  Google Scholar 

  80. Jakobson, L. S., Archibald, Y., Carey, D. & Goodale, M. A. A kinematic analysis of reaching and grasping movements in a patient recovering from optic ataxia. Neuropsychologia 29, 803–809 (1991).

    Article  CAS  PubMed  Google Scholar 

  81. Milner, A. D., Dijkerman, H. C., McIntosh, R. D., Rossetti, Y. & Pisella, L. Delayed reaching and grasping in patients with optic ataxia. Progr. Brain Res. 142, 225–242 (2003).

    Article  CAS  Google Scholar 

  82. Milner, A. D. et al. Grasping the past: delay can improve visuomotor performance. Curr. Biol. 11, 1896–1901 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Jeannerod, M., Decety, J. & Michel, F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia 32, 369–380 (1994). An important study showing that grasping abnormalities in a patient with a posterior parietal lesion occurred for neutral geometric objects but not for familiar visual objects.

    Article  CAS  PubMed  Google Scholar 

  84. Galletti, C., Fattori, P., Kutz, D. F. & Battaglini, P. P. Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule of special interest. Eur. J. Neurosci. 9, 410–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Milner, A. D. in Parietal Lobe Contributions to Orientation in 3D Space (eds Thiers, P. & Karnath, H. O.) 3–22 (Springer, Berlin, 1997).

    Book  Google Scholar 

  86. Decety, J. in Insights into the Reach to Grasp Movement (eds Bennett, K. M. B. & Castiello, U.) 109–126 (Elsevier Science, Amsterdam, 1994).

    Google Scholar 

  87. Grafton, S. T., Fagg, A. H., Woods, R. P. & Arbib, M. A. Functional anatomy of pointing and grasping in humans. Cereb. Cortex 6, 226–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  88. Matsumura, M. et al. Changes in rCBF during grasping in humans examined by PET. Neuroreport 7, 749–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Faillenot, I., Toni, I., Decety, J., Gregoire, M. C. & Jeannerod, M. Visual pathways for object-oriented action and object recognition: functional anatomy with PET. Cereb. Cortex 7, 77–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Rizzolatti, F. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp. Brain Res. 111, 246–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  91. Castiello, U. et al. Human inferior parietal cortex 'programs' the action class of grasping. Cogn. Syst. Res. 1, 89–97 (1998).

    Article  Google Scholar 

  92. Grafton, S. T., Fagg, A. H. & Arbib, M. A. Dorsal premotor cortex and conditional movement selection: a PET functional mapping study. J. Neurophysiol. 79, 1092–1097 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Culham, J. C. et al. Visually-guided grasping produces activation in dorsal but not ventral stream brain areas. Exp. Brain Res. 153, 158–170 (2003). An expertly conducted study that convincingly shows increased AIP activity during grasping tasks.

    Article  Google Scholar 

  94. James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126, 2463–2475 (2003).

    Article  PubMed  Google Scholar 

  95. Culham, J. in Functional Neuroimaging of Visual Cognition: Attention and Performance XX (eds Kanwisher, N. & Duncan, J.) 417–438 (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  96. Frey, S. H., Vinton, D., Norlund, R. & Grafton, S. T. Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn. Brain Res. 23, 397–405 (2005).

    Article  Google Scholar 

  97. Grezes, J., Armony, L., Rowe, J. & Passingham, R. E. Activations related to 'mirror' and 'canonical' neurons in the human brain: an fMRI study. Neuroimage 18, 928–937 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Chapman, H. et al. Posterior parietal cortex control of reach-to-grasp movements in humans. Eur. J. Neurosci. 15, 2037–2042 (2002).

    Article  PubMed  Google Scholar 

  99. Ehrsson, H. H. et al. Cortical activity in precision- versus power-grip tasks: an fMRI study. J. Neurophysiol. 83, 528–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Ehrsson, H. H., Fagergren, E. & Forssberg, H. Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. J. Neurophysiol. 85, 2613–2623 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Culham, J. C. & Kanwisher, N. G. Neuroimaging of cognitive functions in human parietal cortex. Curr. Opin. Neurobiol. 11, 157–163 (2001). An insightful review of the cognitive functions in human parietal cortex. It also provides a comparison of human and monkey parietal cortex.

    Article  CAS  PubMed  Google Scholar 

  102. Amunts, K. et al. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412, 319–341 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Glover, S. Separate visual representations in the planning and control of action. Behav. Brain Sci. 27, 3–78 (2004).

    PubMed  Google Scholar 

  104. Kimura, D. & Vanderwolf, C. H. The relation between hand preference and the performance of individual finger movements by left and right hand. Brain 93, 769–774 (1970).

    Article  CAS  PubMed  Google Scholar 

  105. Schieber, M. H. Individuated finger movements of rhesus monkeys: a means of quantifying the independence of the digits. J. Neurophysiol. 65, 1381–1391 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Sanes, J. N. & Schieber, M. H. Orderly somatotopy in primary motor cortex: does it exist? Neuroimage 13, 968–974 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Eckhorn, R. & Thomas, U. A new method for the insertion of multiple microprobes into neural and muscular tissue, including fiber electodes, fine wires, needles and microsensors. J. Neurosci. Methods 49, 175–179 (1993).

    Article  CAS  PubMed  Google Scholar 

  108. Brochier, T., Spinks, R. L., Umiltá, M. A. & Lemon, R. N. Patterns of muscle activity underlying object-specific grasp by the macaque monkey. J. Neurophysiol. 92, 1770–1782 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Basser, P. J. & Pajevic, S. In vitro fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Mori, S. & Kaufmann, W. K. In vivo visualization of human neural pathways by MRI. Ann. Neurol. 47, 412–414 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Ramnani, N., Behrens, T. E. J., Penny, W. & Matthews, P. M. New approaches for exploring anatomical and functional connectivity in the human brain. Biol. Psychiatry 56, 613–619 (2004).

    Article  PubMed  Google Scholar 

  113. Walsh, V. & Rushworth, M. F. S. A primer of magnetic stimulation as a tool for neuropsychology. Neuropsychologia 37, 125–136 (1999).

    CAS  PubMed  Google Scholar 

  114. Glover, S., Miall, R. C. & Rushworth, M. F. S. Parietal rTMS selectively disrupts the initiation of on-line adjustments to a perturbation of object size. J. Cogn. Neurosci. 17, 124–136 (2005).

    Article  PubMed  Google Scholar 

  115. Cattaneo, L. et al. A cortico-cortical mechanism mediating object-driven grasp in humans. Proc. Natl Acad. Sci. USA 102, 898–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Paus, T. et al. Transcranial magnetic stimulation during positron emission tomography: a new method for studying connectivity of the human cerebral cortex. J. Neurosci. 17, 3178–3184 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Logothetis, N. K., Guggenbergen, H., Peled, S. & Pauls, J. Functional imaging of the monkey brain. Nature Neurosci. 2, 555–562 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to A. Allport, J. Culham, S. Glover, J. Grezes, P. Haggard, S. Petrucco, M. Santello and R. Tirindelli for comments and stimulating discussions, and to A. Pierno and D. Varotto for their help with the figures. I apologize to those whose work I failed to cite because of the limited scope of the review. Work from my laboratory has been supported by the Leverhulme Trust (UK), MIUR (Ministero dell'Istruzione, dell'Università e della Ricerca), the National Health and Medical Research Council (Australia), the Royal Society (UK) and the Wellcome Trust (UK).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Glossary

PRECISION GRIP

Precision grip is characterized by opposition of the thumb to one or more of the other fingers.

POWER GRIP

In power grip, the fingers are flexed to form a clamp against the palm.

KINEMATICS

Kinematics consider movement in terms of position and displacement (angular and linear) of body segments, centre of gravity, and acceleration and velocities of the whole body or segments of the body.

MOTOR VOCABULARY

The motor vocabulary comprises 'words', each of which is represented by a population of F5 neurons. These words select specific 'motor prototypes', such as the configuration of fingers that is necessary for the precision grasp.

REGIONS OF INTEREST

(ROI). A type of neuroimaging analysis in which specific areas rather than the entire brain are targeted and analysed.

MULTI-ELECTRODE TECHNIQUES

Allows the insertion of several glass-insulated platinum electrodes (diameter 80 μm) into the cortex in a 4-by-4 grid with an inter-electrode spacing of only 300 μm. Each electrode can be independently positioned.

DIFFUSION TENSOR IMAGING

(DTI). This method can provide quantitative information with which to visualize and study connectivity and continuity of neural pathways in the central and peripheral nervous systems in vivo.

TRANSCRANIAL MAGNETIC STIMULATION

(TMS). TMS involves creating a strong localized transient magnetic field that induces current flow in underlying neural tissue, causing a temporary disruption of activity in small regions of the brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castiello, U. The neuroscience of grasping. Nat Rev Neurosci 6, 726–736 (2005). https://doi.org/10.1038/nrn1744

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1744

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing