Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sense of agency in the human brain

Key Points

  • Sense of agency refers to the feeling of controlling one's own actions and, through them, events in the external world.

  • Sense of agency can be measured in experimental settings by asking participants to explicitly judge whether their action caused an outcome event or by using implicit measures, such as the compression of perceived time between action and outcome.

  • Current models of motor control propose that the sense of agency is established retrospectively, by comparing delayed sensory feedback about actions and their consequences with the feedback predicted by an internal model. The connectivity between the frontal areas that develop motor plans for voluntary action and the parietal areas that monitor outcomes plays a key part in computing sense of agency.

  • Processes in the frontal cortex occurring before the initiation of action also contribute to sense of agency. For example, selecting which of a number of alternative actions to make can increase the sense of agency over the subsequent outcome. These frontal contributions to agency operate prospectively and underlie the metacognitive experience of one's own voluntary action.

  • Several neuropsychiatric disorders involve distorted or unreliable sense of agency. This suggests that successful computation of agency by the brain is a key element of normal consciousness and mental health.

  • Many key features of modern human societies, such as social responsibility or use of advanced technologies, are based on the ability of the brain to compute agency correctly, even in complex interactions.

Abstract

In adult life, people normally know what they are doing. This experience of controlling one's own actions and, through them, the course of events in the outside world is called 'sense of agency'. It forms a central feature of human experience; however, the brain mechanisms that produce the sense of agency have only recently begun to be investigated systematically. This recent progress has been driven by the development of better measures of the experience of agency, improved design of cognitive and behavioural experiments, and a growing understanding of the brain circuits that generate this distinctive but elusive experience. The sense of agency is a mental and neural state of cardinal importance in human civilization, because it is frequently altered in psychopathology and because it underpins the concept of responsibility in human societies.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Explicit judgments of agency.
Figure 2: Measuring sense of agency implicitly.
Figure 3: The comparator model for neural control of action and agency.
Figure 4: Prospective and retrospective agency.
Figure 5: Coercion reduces sense of agency.

Similar content being viewed by others

References

  1. Bandura, A. Self-efficacy mechanism in human agency. Am. Psychol. 37, 122–147 (1982).

    Article  Google Scholar 

  2. Friston, K. et al. The anatomy of choice: active inference and agency. Front. Hum. Neurosci. 7, 598 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tsakiris, M. & Fotopoulou, A. in Decomposing the Will (eds Clark, A., Kiverstein, J. & Vierkant, T.) 103–117 (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  4. Broadbent, D. E. Task combination and selective intake of information. Acta Psychol. (Amst.) 50, 253–290 (1982).

    Article  CAS  Google Scholar 

  5. Rex v. M'Naghten (UKHL J16) www.bailii.orghttp://www.bailii.org/uk/cases/UKHL/1843/J16.html (1843).

  6. Garrison, A. H. The history of the M'Naghten insanity defense and the use of posttraumatic stress disorder as a basis of insanity. Am. J. Forensic Psychol. 16, 39–88 (1998).

    Google Scholar 

  7. Marmot, M. G. et al. Health inequalities among British civil servants: the Whitehall II study. Lancet 337, 1387–1393 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Frith, C. D., Blakemore, S. J. & Wolpert, D. M. Abnormalities in the awareness and control of action. Phil. Trans. R. Soc. Lond. B 355, 1771–1788 (2000).

    Article  CAS  Google Scholar 

  9. Farrer, C., Bouchereau, M., Jeannerod, M. & Franck, N. Effect of distorted visual feedback on the sense of agency. Behav. Neurol. 19, 53–57 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sperduti, M., Delaveau, P., Fossati, P. & Nadel, J. Different brain structures related to self- and external-agency attribution: a brief review and meta-analysis. Brain Struct. Funct. 216, 151–157 (2011).

    Article  PubMed  Google Scholar 

  11. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight (Oxford Univ. Press, 2014).

    Google Scholar 

  12. Sherrington, C. S. The Integrative Action of the Nervous System (Yale Univ. Press, 1906).

    Google Scholar 

  13. Gallagher, S. Philosophical conceptions of the self: implications for cognitive science. Trends Cogn. Sci. 4, 14–21 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Marcel, A. J. in Agency and Self-Awareness: Issues in Philosophy and Psychology (eds Roessler, J. & Eilan, N.) 48–93 (Oxford: Clarendon Press, 2003).

    Google Scholar 

  15. Passingham, R. E., Bengtsson, S. L. & Lau, H. C. Medial frontal cortex: from self-generated action to reflection on one's own performance. Trends Cogn. Sci. 14, 16–21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hart, H. L. A. in Punishment and Responsibility 90–112 (Oxford Univ. Press, 1960).

    Google Scholar 

  17. Wittgenstein, L. Philosophical Investigations (Basil Blackwell, 1967).

    Google Scholar 

  18. Bandura, A. Social cognitive theory: an agentic perspective. Annu. Rev. Psychol. 52, 1–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Fried, I., Mukamel, R. & Kreiman, G. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69, 548–562 (2011). The authors, following Libet's classical volition experiments, used intracranial recordings to show that the activity of a small number of medial frontal neurons suffice to predict the moment of conscious intention that precedes a voluntary action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ford, A. in Essays on Anscombe's Intention (eds Ford, A., Hornsby, J. & Stoutland, F.) (Harvard Univ. Press, 2011).

    Book  Google Scholar 

  21. Haggard, P. Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9, 934–946 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Pacherie, E. The phenomenology of action: a conceptual framework. Cognition 107, 179–217 (2008).

    Article  PubMed  Google Scholar 

  23. Gallup, G. G. J. Chimpanzees: self-recognition. Science 167, 86–87 (1970).

    Article  Google Scholar 

  24. Sirigu, A., Daprati, E., Pradat-Diehl, P., Franck, N. & Jeannerod, M. Perception of self-generated movement following left parietal lesion. Brain 122, 1867–1874 (1999).

    Article  PubMed  Google Scholar 

  25. Georgieff, N. & Jeannerod, M. Beyond consciousness of external reality: a 'who' system for consciousness of action and self-consciousness. Conscious. Cogn. 7, 465–477 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Tsakiris, M., Haggard, P., Franck, N., Mainy, N. & Sirigu, A. A specific role for efferent information in self-recognition. Cognition 96, 215–231 (2005).

    Article  PubMed  Google Scholar 

  27. Wegner, D. M. & Wheatley, T. Apparent mental causation. Sources of the experience of will. Am. Psychol. 54, 480–492 (1999). This influential paper provided early experimental evidence favouring the view that the sense of agency is retrospectively inferred from outcomes rather than being directly perceived.

    Article  CAS  PubMed  Google Scholar 

  28. Horne, A. Macmillan: The Official Biography (Macmillan, 2008).

    Google Scholar 

  29. Synofzik, M., Vosgerau, G. & Newen, A. Beyond the comparator model: a multifactorial two-step account of agency. Conscious. Cogn. 17, 219–239 (2008).

    Article  PubMed  Google Scholar 

  30. Dewey, J. A. & Knoblich, G. Do implicit and explicit measures of the sense of agency measure the same thing? PLoS ONE 9, e110118 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Yoshie, M. & Haggard, P. Negative emotional outcomes attenuate sense of agency over voluntary actions. Curr. Biol. 23, 2028–2032 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Takahata, K. et al. It's not my fault: postdictive modulation of intentional binding by monetary gains and losses. PLoS ONE 7, e53421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berberian, B., Sarrazin, J.-C., Le Blaye, P. & Haggard, P. Automation technology and sense of control: a window on human agency. PLoS ONE 7, e34075 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hagura, N., Kanai, R., Orgs, G. & Haggard, P. Ready steady slow: action preparation slows the subjective passage of time. Proc. Biol. Sci. 279, 4399–4406 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yarrow, K., Haggard, P., Heal, R., Brown, P. & Rothwell, J. C. Illusory perceptions of space and time preserve cross-saccadic perceptual continuity. Nature 414, 302–305 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Morrone, M. C., Ross, J. & Burr, D. Saccadic eye movements cause compression of time as well as space. Nat. Neurosci. 8, 950–954 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Haggard, P., Clark, S. & Kalogeras, J. Voluntary action and conscious awareness. Nat. Neurosci. 5, 382–385 (2002). This paper was the first to describe the intentional binding effect, in which the perceptions of a voluntary action and its outcome are shifted towards each other across time, introducing a novel implicit measure of sense of agency.

    Article  CAS  PubMed  Google Scholar 

  38. Caspar, E. A., Cleeremans, A. & Haggard, P. The relationship between human agency and embodiment. Conscious. Cogn. 33, 226–236 (2015).

    Article  PubMed  Google Scholar 

  39. de Biran, P. M. The Influence of Habit on the Faculty of Thinking (The Williams & Wilkins company, 1929).

    Google Scholar 

  40. Moore, J. W., Wegner, D. M. & Haggard, P. Modulating the sense of agency with external cues. Conscious. Cogn. 18, 1056–1064 (2009).

    Article  PubMed  Google Scholar 

  41. Ganos, C. et al. Volitional action as perceptual detection: predictors of conscious intention in adolescents with tic disorders. Cortex 64, 47–54 (2015).

    Article  PubMed  Google Scholar 

  42. Shibasaki, H. & Hallett, M. What is the Bereitschaftspotential? Clin. Neurophysiol. 117, 2341–2356 (2006).

    Article  PubMed  Google Scholar 

  43. Schurger, A., Sitt, J. D. & Dehaene, S. An accumulator model for spontaneous neural activity prior to self-initiated movement. Proc. Natl Acad. Sci. USA 109, E2904–E2913 (2012). This recent paper offered a radical reappraisal of the classical readiness potential, interpreting it as the average of a stochastic process of approaching a motor threshold rather than a specific motor signal.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jo, H.-G., Wittmann, M., Hinterberger, T. & Schmidt, S. The readiness potential reflects intentional binding. Front. Hum. Neurosci. 8, 421 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Haggard, P. & Clark, S. Intentional action: conscious experience and neural prediction. Conscious. Cogn. 12, 695–707 (2003).

    Article  PubMed  Google Scholar 

  46. Barlas, Z. & Obhi, S. S. Freedom, choice, and the sense of agency. Front. Hum. Neurosci. 7, 514 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fletcher, P. C., Shallice, T. & Dolan, R. J. 'Sculpting the response space' — an account of left prefrontal activation at encoding. Neuroimage 12, 404–417 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Rowe, J. B., Hughes, L. & Nimmo-Smith, I. Action selection: a race model for selected and non-selected actions distinguishes the contribution of premotor and prefrontal areas. Neuroimage 51, 888–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Brass, M. & Haggard, P. The what, when, whether model of intentional action. Neuroscientist 14, 319–325 (2008).

    Article  PubMed  Google Scholar 

  50. Rae, C. L., Hughes, L. E., Weaver, C., Anderson, M. C. & Rowe, J. B. Selection and stopping in voluntary action: a meta-analysis and combined fMRI study. Neuroimage 86, 381–391 (2014).

    Article  PubMed  Google Scholar 

  51. Khalighinejad, N., Di Costa, S. & Haggard, P. Endogenous action selection processes in dorsolateral prefrontal cortex contribute to sense of agency: a meta-analysis of tDCS studies of 'intentional binding'. Brain Stimul. 9, 372–379 (2016). This paper showed that, across seven experiments and more than 100 participants, anodal stimulation of the PFC boosted the intentional binding effect in free-selection action tasks, which is consistent with the view that action-selection processes contribute prospectively to sense of agency.

    Article  PubMed  Google Scholar 

  52. Hughes, G., Desantis, A. & Waszak, F. Attenuation of auditory N1 results from identity-specific action-effect prediction. Eur. J. Neurosci. 37, 1152–1158 (2013).

    Article  PubMed  Google Scholar 

  53. Schlaghecken, F. & Eimer, M. Masked prime stimuli can bias 'free' choices between response alternatives. Psychon. Bull. Rev. 11, 463–468 (2004).

    Article  PubMed  Google Scholar 

  54. Wenke, D., Fleming, S. M. & Haggard, P. Subliminal priming of actions influences sense of control over effects of action. Cognition 115, 26–38 (2010).

    Article  PubMed  Google Scholar 

  55. Chambon, V. & Haggard, P. Sense of control depends on fluency of action selection, not motor performance. Cognition 125, 441–451 (2012).

    Article  PubMed  Google Scholar 

  56. Blakemore, S. J., Wolpert, D. & Frith, C. Why can't you tickle yourself? Neuroreport 11, R11–R16 (2000). This paper provided classical human behavioural evidence for a comparator model of agency, suggesting that predicted consequences of an action are subtracted from the actual consequences, resulting in attenuation of one's own agency.

    Article  CAS  PubMed  Google Scholar 

  57. Blakemore, S. J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Farrer, C. & Frith, C. D. Experiencing oneself versus another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15, 596–603 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Stetson, C., Cui, X., Montague, P. R. & Eagleman, D. M. Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron 51, 651–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Walsh, E. & Haggard, P. Action, prediction, and temporal awareness. Acta Psychol. (Amst.) 142, 220–229 (2013).

    Article  Google Scholar 

  61. Williams, S. R., Shenasa, J. & Chapman, C. E. Time course and magnitude of movement-related gating of tactile detection in humans. I. Importance of stimulus location. J. Neurophysiol. 79, 947–963 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Bays, P. M., Flanagan, J. R. & Wolpert, D. M. Attenuation of self-generated tactile sensations is predictive, not postdictive. PLoS Biol. 4, e28 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Reznik, D., Henkin, Y., Levy, O. & Mukamel, R. Perceived loudness of self-generated sounds is differentially modified by expected sound intensity. PLoS ONE 10, e0127651 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Miall, R. C., Weir, D. J., Wolpert, D. M. & Stein, J. F. Is the cerebellum a smith predictor? J. Mot. Behav. 25, 203–216 (1993).

    Article  CAS  PubMed  Google Scholar 

  65. Wegner, D. M. The Illusion of Conscious Will (MIT Press, 2002). This masterful monograph from the greatly missed Harvard social psychologist contains a well-argued exposition of the argument that volition is an illusion and that our sense of being the authors of our own actions is a retrospective inference.

    Book  Google Scholar 

  66. Aarts, H., Custers, R. & Wegner, D. M. On the inference of personal authorship: enhancing experienced agency by priming effect information. Conscious. Cogn. 14, 439–458 (2005).

    Article  PubMed  Google Scholar 

  67. Gentsch, A. & Schutz-Bosbach, S. I did it: unconscious expectation of sensory consequences modulates the experience of self-agency and its functional signature. J. Cogn. Neurosci. 23, 3817–3828 (2011).

    Article  PubMed  Google Scholar 

  68. Moore, J. & Haggard, P. Awareness of action: Inference and prediction. Conscious. Cogn. 17, 136–144 (2008).

    Article  PubMed  Google Scholar 

  69. Eagleman, D. M. & Sejnowski, T. J. Motion integration and postdiction in visual awareness. Science 287, 2036 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Farrer, C. et al. Modulating the experience of agency: a positron emission tomography study. Neuroimage 18, 324–333 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L. & Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J. Neurosci. 25, 4593–4604 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Craig, A. D. B. How do you feel — now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Chambon, V., Wenke, D., Fleming, S. M., Prinz, W. & Haggard, P. An online neural substrate for sense of agency. Cereb. Cortex 23, 1031–1037 (2013).

    Article  PubMed  Google Scholar 

  74. Eimer, M. & Schlaghecken, F. Response facilitation and inhibition in subliminal priming. Biol. Psychol. 64, 7–26 (2003).

    Article  PubMed  Google Scholar 

  75. Chambon, V., Moore, J. W. & Haggard, P. TMS stimulation over the inferior parietal cortex disrupts prospective sense of agency. Brain Struct. Funct. 220, 3627–3639 (2015).

    Article  PubMed  Google Scholar 

  76. Cavazzana, A., Penolazzi, B., Begliomini, C. & Bisiacchi, P. S. Neural underpinnings of the 'agent brain': new evidence from transcranial direct current stimulation. Eur. J. Neurosci. 42, 1889–1894 (2015).

    Article  PubMed  Google Scholar 

  77. Moore, J. W., Ruge, D., Wenke, D., Rothwell, J. & Haggard, P. Disrupting the experience of control in the human brain: pre-supplementary motor area contributes to the sense of agency. Proc. R. Soc. B 277, 2503–2509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bratman, M. E. Intention, Plans, and Practical Reason (Cambridge Univ. Press, 1999).

    Google Scholar 

  79. Desmurget, M. & Sirigu, A. A parietal-premotor network for movement intention and motor awareness. Trends Cogn. Sci. 13, 411–419 (2009).

    Article  PubMed  Google Scholar 

  80. Alloy, L. B. & Abramson, L. Y. Judgment of contingency in depressed and nondepressed students: sadder but wiser? J. Exp. Psychol. Gen. 108, 441–485 (1979).

    Article  CAS  PubMed  Google Scholar 

  81. Frith, C. D., Blakemore, S. & Wolpert, D. M. Explaining the symptoms of schizophrenia: abnormalities in the awareness of action. Brain Res. Brain Res. Rev. 31, 357–363 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Synofzik, M., Thier, P., Leube, D. T., Schlotterbeck, P. & Lindner, A. Misattributions of agency in schizophrenia are based on imprecise predictions about the sensory consequences of one's actions. Brain 133, 262–271 (2010).

    Article  PubMed  Google Scholar 

  83. Daprati, E. et al. Looking for the agent: an investigation into consciousness of action and self-consciousness in schizophrenic patients. Cognition 65, 71–86 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Blakemore, S. J., Smith, J., Steel, R., Johnstone, C. E. & Frith, C. D. The perception of self-produced sensory stimuli in patients with auditory hallucinations and passivity experiences: evidence for a breakdown in self-monitoring. Psychol. Med. 30, 1131–1139 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Shergill, S. S., Samson, G., Bays, P. M., Frith, C. D. & Wolpert, D. M. Evidence for sensory prediction deficits in schizophrenia. Am. J. Psychiatry 162, 2384–2386 (2005).

    Article  PubMed  Google Scholar 

  86. Shergill, S. S. et al. Functional magnetic resonance imaging of impaired sensory prediction in schizophrenia. JAMA Psychiatry 71, 28–35 (2014).

    Article  PubMed  Google Scholar 

  87. Haggard, P., Martin, F., Taylor-Clarke, M., Jeannerod, M. & Franck, N. Awareness of action in schizophrenia. Neuroreport 14, 1081–1085 (2003).

    Article  PubMed  Google Scholar 

  88. Waters, F. & Jablensky, A. Time discrimination deficits in schizophrenia patients with first-rank (passivity) symptoms. Psychiatry Res. 167, 12–20 (2009).

    Article  PubMed  Google Scholar 

  89. Voss, M. et al. Altered awareness of action in schizophrenia: a specific deficit in predicting action consequences. Brain 133, 3104–3112 (2010). This paper used a simple experimental manipulation to dissociate the component of sense of agency based on retrospective inference from that based on outcome prediction; patients with schizophrenia relied more on the former, and healthy volunteers more on the latter.

    Article  PubMed  Google Scholar 

  90. Moore, M. S. Law and Psychiatry: Rethinking the Relationship (Cambridge Univ. Press, 1984).

    Google Scholar 

  91. Milgram, S. Behavioral study of obedience. J. Abnorm. Psychol. 67, 371–378 (1963).

    CAS  PubMed  Google Scholar 

  92. Caspar, E. A., Christensen, J., Cleeremans, A. & Haggard, P. Coercion changes the sense of agency in the human brain. Curr. Biol. 26, 585–592 (2016). This recent study combined an implicit measure of sense of agency with Milgram's classical obedience paradigm to show how coercive instructions reduce sense of agency over action outcomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Engbert, K., Wohlschlager, A. & Haggard, P. Who is causing what? The sense of agency is relational and efferent-triggered. Cognition 107, 693–704 (2008).

    Article  PubMed  Google Scholar 

  94. Wegner, D. M. & Sparrow, B. in The Cognitive Neurosciences 3rd edn (ed. Gazzaniga, M.) 1201–1209 (MIT Press, 2004).

    Google Scholar 

  95. Lacey, N. Responsibility without consciousness. Oxford J. Legal Studies 35, 665–696 (2015).

    Google Scholar 

  96. Libet, B., Gleason, C. A., Wright, E. W. & Pearl, D. K. Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain 106, 623–642 (1983).

    Article  PubMed  Google Scholar 

  97. DPP v. Camplin [1978] (UKHL 2) www.bailii.orghttp://www.bailii.org/uk/cases/UKHL/1978/2.html (1978).

  98. Casey, B. J., Jones, R. M. & Hare, T. A. The adolescent brain. Ann. NY Acad. Sci. 1124, 111–126 (2008).

    Article  CAS  PubMed  Google Scholar 

  99. Rex v. Kiranjit Ahluwalia [1992] EWCA Crim 1 www.bailii.orghttp://www.bailii.org/ew/cases/EWCA/Crim/1992/1.html (1993).

  100. Abramson, L. Y., Seligman, M. E. & Teasdale, J. D. Learned helplessness in humans: critique and reformulation. J. Abnorm. Psychol. 87, 49–74 (1978).

    Article  CAS  PubMed  Google Scholar 

  101. Coroners and Justice Act. 2009 section 52. Partial defence to murder: diminished responsibility www.legislation.gov.ukhttp://www.legislation.gov.uk/ukpga/2009/25/section/52 (2009).

  102. Maier, S. F. & Watkins, L. R. Role of the medial prefrontal cortex in coping and resilience. Brain Res. 1355, 52–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kaye, K. & Fogel, A. The temporal structure of face-to-face communication between mothers and infants. Dev. Psychol. 16, 454–464 (1980).

    Article  Google Scholar 

  104. Ruvolo, P., Messinger, D. & Movellan, J. Infants time their smiles to make their moms smile. PLoS ONE 10, e0136492 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Cipriani, D. Children's Rights and the Minimum Age of Criminal Responsibility: A Global Perspective (Ashgate Pub., 2009).

    Google Scholar 

  106. Brown, C. My Left Foot (Simon & Schuster, 1955).

    Google Scholar 

  107. Taylor, A. H. et al. Of babies and birds: complex tool behaviors are not sufficient for the evolution of the ability to create a novel causal intervention. Proc. Biol. Sci. 281, 20140837 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Iriki, A. & Taoka, M. Triadic (ecological, neural, cognitive) niche construction: a scenario of human brain evolution extrapolating tool use and language from the control of reaching actions. Phil. Trans. R. Soc. B 367, 10–23 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Iriki, A., Tanaka, M., Obayashi, S. & Iwamura, Y. Self-images in the video monitor coded by monkey intraparietal neurons. Neurosci. Res. 40, 163–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Koralek, A. C., Jin, X., Long, J. D., Costa, R. M. & Carmena, J. M. Corticostriatal plasticity is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by European Research Council (ERC) Advanced Grant HUMVOL (agreement number 323943) and by a grant from Arts & Humanity Research Council (AHRC) (number AH/L015145/1). The article benefitted from a fellowship at the Paris Institute for Advanced Studies (France), with the financial support of the French State managed by the Agence Nationale de la Recherche, programme “Investissements d'avenir” (ANR-11-LABX-0027-01 Labex RFIEA+). The author thanks E. Brann for comments and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Haggard.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Glossary

Instrumental control

The capacity to initiate an action and thus bring about an intended change in the environment.

Volition

The process of preparing, initiating and executing an action under one's own control. Traditionally, the hallmark of volitional action is that the agent 'could have done otherwise', implying that the action was not directly caused by the current stimulus environment.

Mirror self-recognition

The capacity to recognize a visual percept as being related to one's own body. This has traditionally been assessed by a test in which a coloured mark is placed on a body location, such as the forehead, and subsequently viewed via a mirror. Only if the animal recognizes the body in the mirror as its own, will it try to remove the mark.

Transcranial magnetic stimulation

(TMS). A technique in which a strong magnetic field is applied to the scalp to influence neural activity in a cortical area beneath. If ongoing cognitive performance is impaired, the affected cortical area is assumed to be necessary for the task.

Transcranial direct current stimulation

(TDCS). A non-invasive brain stimulation technique in which a small current passes between electrodes that are positioned on the scalp. Anodal stimulation is thought to increase excitability of the underlying cortex, whereas cathodal stimulation may reduce excitability.

Efference copy

A copy of the outgoing (efferent) motor command from the brain to the muscles. An efference copy, in conjunction with a forward model, can be used to predict the sensory consequences of action.

Prediction error

The difference between the actual outcome of an action and the predicted outcome. Neural signalling of prediction error can be used to adjust and improve performance, and also to learn how to improve future predictions.

Event-related potential

An electrical potential that is generated in the brain as a consequence of neuronal activity becoming synchronized by the external stimulus. Event-related potentials are recorded by averaging electroencephalographic measurements recorded at the scalp and time-locked to a stimulus, and consist of precisely timed sequences of waves or 'components', which may each reflect a specific cognitive process in the brain.

Instrumental actions

Actions that produce a direct or indirect consequence on an animal's external environment. The transformation of the environment is the goal of the action.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haggard, P. Sense of agency in the human brain. Nat Rev Neurosci 18, 196–207 (2017). https://doi.org/10.1038/nrn.2017.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn.2017.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing