Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The immune system and the gut microbiota: friends or foes?

Abstract

The mammalian intestine is home to a complex community of trillions of bacteria that are engaged in a dynamic interaction with the host immune system. Determining the principles that govern host–microbiota relationships is the focus of intense research. Here, we describe how the intestinal microbiota is able to influence the balance between pro-inflammatory and regulatory responses and shape the host's immune system. We suggest that improving our understanding of the intestinal microbiota has therapeutic implications, not only for intestinal immunopathologies but also for systemic immune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of intestinal epithelial cell pro-inflammatory responses by the microbiota.
Figure 2: Modulation of adaptive immune responses in the gut by the microbiota.
Figure 3: Effects of SFB colonization on the immune system.
Figure 4: Schematic representation of host–microbiota interactions in the healthy and inflamed gut.

Similar content being viewed by others

References

  1. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Eberl, G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 5 May 2010 (doi:10.1038/mi.2010.20).

    Article  CAS  PubMed  Google Scholar 

  4. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moran, N. A., McCutcheon, J. P. & Nakabachi, A. Genomics and evolution of heritable bacterial symbionts. Annu. Rev. Genet. 42, 165–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010).

    Article  CAS  Google Scholar 

  8. Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2, 478–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Rescigno, M. & Di Sabatino, A. Dendritic cells in intestinal homeostasis and disease. J. Clin. Invest. 119, 2441–2450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L. & Hooper, L. V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl Acad. Sci. USA 105, 20858–20863 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Macpherson, A. J. & Uhr, T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–1665 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fagarasan, S. et al. Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. Science 298, 1424–1427 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Malamut, G. et al. The enteropathy associated with common variable immunodeficiency: the delineated frontiers with celiac disease. Am. J. Gastroenterol. 15 Jun 2010 (doi:10.1038/ajg.2010.214).

    Article  CAS  PubMed  Google Scholar 

  20. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nature Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  Google Scholar 

  21. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Talham, G. L., Jiang, H. Q., Bos, N. A. & Cebra, J. J. Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect. Immun. 67, 1992–2000 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Klaasen, H. L. et al. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab. Anim. 27, 141–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Snel, J. et al. Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus”. Int. J. Syst. Bacteriol. 45, 780–782 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Stepankova, R. et al. Segmented filamentous bacteria in a defined bacterial cocktail induce intestinal inflammation in SCID mice reconstituted with CD45RBhigh CD4+ T cells. Inflamm. Bowel Dis. 13, 1202–1211 (2007).

    Article  PubMed  Google Scholar 

  30. Wu, H.-S. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Microbes and health sackler colloquium: proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 28 Jul 2010 (doi:10.1073/pnas.10000.82107).

  32. Chow, J. & Mazmanian, S. K. A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe 7, 265–276 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Polk, D. B. & Peek, R. M. Jr. Helicobacter pylori: gastric cancer and beyond. Nature Rev. Cancer 10, 403–414 (2010).

    Article  CAS  Google Scholar 

  34. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Carvalho, F. A. et al. Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J. Exp. Med. 206, 2179–2189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Darfeuille-Michaud, A. et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn's disease. Gastroenterology 127, 412–421 (2004).

    Article  PubMed  Google Scholar 

  37. Barnich, N. et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Invest. 117, 1566–1574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sokol, H. et al. Specificities of the fecal microbiota in inflammatory bowel disease. Inflamm. Bowel Dis. 12, 106–111 (2006).

    Article  PubMed  Google Scholar 

  40. Swidsinski, A., Weber, J., Loening-Baucke, V., Hale, L. P. & Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43, 3380–3389 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garrett, W. S. et al. Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16, 208–219 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garrett, W. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally-transmitted colitis. Cell Host Microbe (in the press).

  44. Konrad, A., Cong, Y., Duck, W., Borlaza, R. & Elson, C. O. Tight mucosal compartmentation of the murine immune response to antigens of the enteric microbiota. Gastroenterology 130, 2050–2059 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bauer, H., Horowitz, R. E., Levenson, S. M. & Popper, H. The response of the lymphatic tissue to the microbial flora. Studies on germfree mice. Am. J. Pathol. 42, 471–483 (1963).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Clarke, T. B. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nature Med. 16, 228–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Noverr, M. C. & Huffnagle, G. B. The 'microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35, 1511–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Sjogren, Y. M., Jenmalm, M. C., Bottcher, M. F., Bjorksten, B. & Sverremark-Ekstrom, E. Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin. Exp. Allergy 39, 518–526 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009).

    Article  PubMed  Google Scholar 

  52. Penders, J., Stobberingh, E. E., van den Brandt, P. A. & Thijs, C. The role of the intestinal microbiota in the development of atopic disorders. Allergy 62, 1223–1236 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Noverr, M. C., Falkowski, N. R., McDonald, R. A., McKenzie, A. N. & Huffnagle, G. B. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect. Immun. 73, 30–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bashir, M. E., Louie, S., Shi, H. N. & Nagler-Anderson, C. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J. Immunol. 172, 6978–6987 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).

    CAS  PubMed  Google Scholar 

  56. Gray, D. H., Gavanescu, I., Benoist, C. & Mathis, D. Danger-free autoimmune disease in Aire-deficient mice. Proc. Natl Acad. Sci. USA 104, 18193–18198 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hase, K. et al. Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS ONE 3, e3033 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maldonado, M. A. et al. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J. Immunol. 162, 6322–6330 (1999).

    CAS  PubMed  Google Scholar 

  59. Sinkorova, Z., Capkova, J., Niederlova, J., Stepankova, R. & Sinkora, J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2k) male mice. Hum. Immunol. 69, 845–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Breban, M. A., Moreau, M. C., Fournier, C., Ducluzeau, R. & Kahn, M. F. Influence of the bacterial flora on collagen-induced arthritis in susceptible and resistant strains of rats. Clin. Exp. Rheumatol. 11, 61–64 (1993).

    CAS  PubMed  Google Scholar 

  62. Wen, L. et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455, 1109–1113 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Giraud, A. et al. Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet. 4, e2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Samuel, B. S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl Acad. Sci. USA 105, 16767–16772 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peyrin-Biroulet, L. et al. Peroxisome proliferator-activated receptor γ activation is required for maintenance of innate antimicrobial immunity in the colon. Proc. Natl Acad. Sci. USA 107, 8772–8777 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar, A. et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26, 4457–4466 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dubuquoy, L. et al. Impaired expression of peroxisome proliferator-activated receptor γ in ulcerative colitis. Gastroenterology 124, 1265–1276 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Kelly, D. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nature Immunol. 5, 104–112 (2004).

    Article  CAS  Google Scholar 

  73. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsuji, M. et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488–1492 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  Google Scholar 

  78. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Zhou, L., Chong, M. M. & Littman, D. R. Plasticity of CD4+ T cell lineage differentiation. Immunity 30, 646–655 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Keilbaugh, S. A. et al. Activation of RegIIIβ/γ and interferon γ expression in the intestinal tract of SCID mice: an innate response to bacterial colonisation of the gut. Gut 54, 623–629 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. & Setoyama, H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol. Immunol. 39, 555–562 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Mayer, L. Evolving paradigms in the pathogenesis of IBD. J. Gastroenterol. 45, 9–16 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank W. Garrett for sharing unpublished data. Their work is supported by grants from the Institut National de la Santé et de la Recherche Médicale (INSERM), the Institut National de la Recherche Agronomique (INRA) and the Agence Nationale de la Recherche and Fondation Princesse Grace. The authors are partners of the European Community networks Cross-Talk (contract number PITN-GA-2008-215553) and Tornado (FP7 222720).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Cerf-Bensussan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

Ankylosing enthesopathy

An inflammatory autoimmune disease of the joints that naturally occurs in mice on a C57BL/10 genetic background; the disease is similar to human ankylosing spondylitis. The pathology is characterized by the proliferation of cartilage and connective tissue, which culminates in ankylosis of the joints.

Germinal centres

Highly specialized and dynamic microenvironments that are located in secondary lymphoid tissues and give rise to secondary B cell follicles during an immune response. Germinal centres are the main sites of B cell proliferation and differentiation, which leads to the generation of memory B cells and plasma cells that produce high-affinity antibodies.

Gnotobiotic mice

Germ-free mice are born and raised in sterile isolators and are devoid of colonization by any microorganisms, but after they have been experimentally colonized by known bacteria, they are said to be gnotobiotic. They are kept in isolators to control their bacterial status.

IgE-associated allergies

Type 1 hypersensitivity reactions that are mediated by IgE, which induces mast cell activation and degranulation. Such immune reactions are seen in asthma, allergic rhinitis, systemic anaphylaxis and food allergies.

Obligate and facultative symbionts

Obligate microbial symbionts need to colonize a host to develop and multiply, unlike facultative microbial symbionts, which can also develop outside a host.

Pathobionts

Microbial symbionts that can cause defined disease in predisposed hosts following changes in the gastrointestinal environment.

Microbiome

The whole genome of all of the microorganisms that colonize a specific environment.

Peyer's patches

Collections of lymphoid follicles that are located in the intestinal mucosa and are particularly abundant in the ileal mucosa. Together with mesenteric lymph nodes, they form the inductive compartment for intestinal immune responses.

Proteobacteria

Gram-negative microorganisms that colonize very distinct environments and are the second largest group of bacteria on earth. Proteobacteria that colonize the intestine include commensal, pathogenic and opportunistic species, such as Salmonella, Shigella and Helicobacter spp. and Escherichia coli strains. In healthy adults, proteobacteria represent less than 1% of the enteric microbiota, but they are a major cause of intestinal and extraintestinal diseases.

Type VI secretion system

(T6SS). Like T3SS and T4SS, T6SS is a multi-subunit complex that acts like a 'needle and syringe' to translocate bacterial products across the double-membrane of Gram-negative bacteria into the cytoplasm of eukaryotic cells.

Xenobiotics

Chemical compounds that are foreign to a living organism and that can be toxic, even at low concentrations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerf-Bensussan, N., Gaboriau-Routhiau, V. The immune system and the gut microbiota: friends or foes?. Nat Rev Immunol 10, 735–744 (2010). https://doi.org/10.1038/nri2850

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing