Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quantitative and logic modelling of molecular and gene networks

Key Points

  • Computational models of molecular and gene networks are now commonplace. They are becoming larger and more complex, and are based on various approaches. Standard formats permit the sharing and reuse of models for different purposes.

  • Different types of representations of biological processes provide different levels of insight. The choice of representation affects the modelling and simulation methods, as well as the processing of data for model building and validation.

  • A model can be based on prior information gathered from the literature or pathway databases. Alternatively, models can be based on empirical data and the regulatory networks inferred from measurements.

  • Quantitative models can be developed at different levels of granularity, and such simulations provide quantitative temporal predictions.

  • Logic models are increasingly being used in cases in which a lack of quantitative information prevents the use of chemical kinetics approaches.

  • Modelling of entire cells requires the use of modular models based on different approaches and simulation procedures.

Abstract

Behaviours of complex biomolecular systems are often irreducible to the elementary properties of their individual components. Explanatory and predictive mathematical models are therefore useful for fully understanding and precisely engineering cellular functions. The development and analyses of these models require their adaptation to the problems that need to be solved and the type and amount of available genetic or molecular data. Quantitative and logic modelling are among the main methods currently used to model molecular and gene networks. Each approach comes with inherent advantages and weaknesses. Recent developments show that hybrid approaches will become essential for further progress in synthetic biology and in the development of virtual organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granularity of time representation and variable values for various modelling approaches.
Figure 2: The four views of systems biology.
Figure 3: Network inference methods.

Similar content being viewed by others

References

  1. Bray, D., Bourret, R. & Simon, M. Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. Mol. Biol. Cell 4, 482–469 (1993).

    Google Scholar 

  2. Tindall, M. J., Gaffney, E. A., Maini, P. K. & Armitage, J. P. Theoretical insights into bacterial chemotaxis. Wiley Interdiscip. Rev. Syst. Biol. Med. 4, 247–259 (2012).

    CAS  PubMed  Google Scholar 

  3. Thiele, I. et al. A community-driven global reconstruction of human metabolism. Nature Biotech. 31, 419–425 (2013).

    CAS  Google Scholar 

  4. Karr, J. R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012). This study presents a modular model of an entire M. genitalium cell, including the expression of all genes, all metabolites and signalling pathways. The model is simulated using a hybrid approach that includes stochastic simulations, ODEs and flux balance analysis.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Schliess, F. et al. Integrated metabolic spatial-temporal model for the prediction of ammonia detoxification during liver damage and regeneration. Hepatology 60, 2040–2051 (2014).

    CAS  PubMed  Google Scholar 

  6. Chew, Y. H. et al. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc. Natl Acad. Sci. 111, E4127–E4136 (2014).

    CAS  PubMed  Google Scholar 

  7. Gerstein, M. B. et al. Architecture of the human regulatory network derived from ENCODE data. Nature 489, 91–100 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. De Jong, H. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002).

    CAS  PubMed  Google Scholar 

  10. Chance, B., Greenstein, D. S., Higvongins, J. & Yang, C. C. The mechanism of catalase action. II. Electric analog computer studies. Arch. Biochem. Biophys. 37, 322–339 (1952).

    CAS  PubMed  Google Scholar 

  11. Savageau, M. A. Biochemical systems analysis. 3. Dynamic solutions using a power-law approximation. J. Theor. Biol. 26, 215–226 (1970).

    CAS  PubMed  Google Scholar 

  12. Kacser, H. & Burns, J. The control of flux. Symp. Soc. Exp. Biol. 27, 65–104 (1973).

    CAS  PubMed  Google Scholar 

  13. Joshi, A. & Palsson, B. O. Metabolic dynamics in the human red cell: Part I — a comprehensive kinetic model. J. Theor. Biol. 141, 515–528 (1989).

    CAS  PubMed  Google Scholar 

  14. Goldbeter, A. & Koshland, D. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).

    CAS  PubMed  Google Scholar 

  15. Arkin, A., Ross, J. & Mcadams, H. H. Stochastic kinetic analysis of developmental pathway bifurcation in phage λ-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Von Dassow, G., Meir, E., Munro, E. & Odell, G. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000). This paper presents a dynamic quantitative model of the segment polarity gene network in Drosophila melanogaster and a systematic study of the effects of parameter value changes. It concludes that the model is robust compared with any of the parameters, but only a tiny fraction of the entire parameter space leads to expected results.

    CAS  PubMed  Google Scholar 

  17. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  18. Gardner, T., Cantor, C. & Collins, J. Construction of a genetic toggle switch in Escherichia coli.> Nature 403, 339–342 (2000).

    CAS  PubMed  Google Scholar 

  19. Kauffman, S. A. Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969).

    CAS  PubMed  Google Scholar 

  20. Thomas, R. Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973).

    CAS  PubMed  Google Scholar 

  21. Barabási, A.-L. & Oltvai, Z. N. Network biology: understanding the cell's functional organization. Nature Rev. Genet. 5, 101–113 (2004).

    PubMed  Google Scholar 

  22. Bordbar, A., Monk, J. M., King, Z. A. & Palsson, B. O. Constraint-based models predict metabolic and associated cellular functions. Nature Rev. Genet. 15, 107–120 (2014).

    CAS  PubMed  Google Scholar 

  23. Takahashi, K., Arjunan, S. N. V. & Tomita, M. Space in systems biology of signaling pathways — towards intracellular molecular crowding in silico. FEBS Lett. 579, 1783–1788 (2005).

    CAS  PubMed  Google Scholar 

  24. Dobrzynski, M., Rodríguez, J. V., Kaandorp, J. A. & Blom, J. G. Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23, 1969–1977 (2007).

    CAS  PubMed  Google Scholar 

  25. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rual, J.-F. et al. Towards a proteome-scale map of the human protein–protein interaction network. Nature 437, 1173–1178 (2005).

    CAS  PubMed  Google Scholar 

  27. Stelzl, U. et al. A human protein–protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    CAS  PubMed  Google Scholar 

  28. Muñoz Descalzo, S. et al. A competitive protein interaction network buffers Oct4-mediated differentiation to promote pluripotency in embryonic stem cells. Mol. Syst. Biol. 9, 694 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Xu, H., Ang, Y.-S., Sevilla, A., Lemischka I. R. & Ma'ayan, A. Construction and validation of a regulatory network for pluripotency and self-renewal of mouse embryonic stem cells. PLoS Comput. Biol. 10, e1003777 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, J., Chu, J., Shen, X., Wang, J. & Orkin, S. H. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132, 1049–1061 (2008).

    CAS  PubMed  Google Scholar 

  32. Boyer, L. A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gohlke, J. M. et al. Characterization of the proneural gene regulatory network during mouse telencephalon development. BMC Biol. 6, 15 (2008).

    PubMed  PubMed Central  Google Scholar 

  34. Deneris, E. S. & Wyler, S. C. Serotonergic transcriptional networks and potential importance to mental health. Nature Neurosci. 15, 519–527 (2012).

    CAS  PubMed  Google Scholar 

  35. Dagley, S. & Nicholson, D. Introduction to Metabolic Pathways (Blackwell, 1970).

    Google Scholar 

  36. Michal, G. Biochemical Pathways (Wiley-Blackwell, 1999).

    Google Scholar 

  37. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    CAS  PubMed  Google Scholar 

  38. Croft, D. et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 42, D472–D477 (2014).

    CAS  PubMed  Google Scholar 

  39. Kohn, K. Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 16, 1065–1075 (1998).

    CAS  PubMed  Google Scholar 

  40. Le Novère, N. et al. The Systems Biology Graphical Notation. Nature Biotech. 27, 735–741 (2009). This paper presents SBGN, a set of standard graphical languages for describing biological pathways. Akin to electrical circuit standards, the use of SBGN allows the interpretation of maps without the need for a legend or external information.

    Google Scholar 

  41. Tozluoglu, M., Karaca, E., Haliloglu, T. & Nussinov, R. Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucleic Acids Res. 36, 5033–5049 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohn, K. Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol. Biol. Cell 10, 2703–2734 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L. & Kohn, K. W. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 23, 2934–2949 (2004).

    CAS  PubMed  Google Scholar 

  44. Hlavacek, W. S. et al. Rules for modeling signal-transduction systems. Sci. STKE 2006, re6 (2006).

    PubMed  Google Scholar 

  45. Danos, V., Feret, J., Fontana, W., Harmer, R. & Krivine, J. in CONCUR 2007 — Concurrency Theory: Lecture Notes in Computer Science Vol. 4703 (eds Caires, L. & Vasconcelos, V. T.) 17–41 (Springer, 2007).

    Google Scholar 

  46. Lopez, C. F., Muhlich, J. L., Bachman, J. A. & Sorger, P. K. Programming biological models in Python using PySB. Mol. Syst. Biol. 9, 646 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Bidkhori, G., Moeini, A. & Masoudi-Nejad, A. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS ONE 7, e48004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kiyatkin, A. et al. Scaffolding protein Grb2-associated binder 1 sustains epidermal growth factor-induced mitogenic and survival signaling by multiple positive feedback loops. J. Biol. Chem. 281, 19925–19938 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ung, C. Y. et al. Simulation of the regulation of EGFR endocytosis and EGFR–ERK signaling by endophilin-mediated RhoA–EGFR crosstalk. FEBS Lett. 582, 2283–2290 (2008).

    CAS  PubMed  Google Scholar 

  50. Yamada, S., Shiono, S., Joo, A. & Yoshimura, A. Control mechanism of JAK/STAT signal transduction pathway. FEBS Lett. 534, 190–196 (2003).

    CAS  PubMed  Google Scholar 

  51. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003). This paper presents SBML, a game-changing tool that allows modellers to exchange and reuse models in different programs without rewriting them from scratch. Its explicit semantics allowed the development of new approaches to process, analyse and enrich models.

    CAS  PubMed  Google Scholar 

  52. Fernández-Suárez, X. M., Rigden, D. J. & Galperin, M. Y. The 2014 Nucleic Acids Research Database Issue and an updated NAR online Molecular Biology Database Collection. Nucleic Acids Res. 42, D1–D6 (2014).

    PubMed  Google Scholar 

  53. Orchard, S. et al. The MIntAct project — IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    CAS  PubMed  Google Scholar 

  54. Franceschini, A. et al. STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815 (2013).

    CAS  PubMed  Google Scholar 

  55. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res. 42, D459–D471 (2014).

    CAS  PubMed  Google Scholar 

  56. Kamburov, A., Stelzl, U., Lehrach, H. & Herwig, R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 41, D793–D800 (2013).

    CAS  PubMed  Google Scholar 

  57. Bader, G. D., Cary, M. P. & Sander, C. Pathguide: a pathway resource list. Nucleic Acids Res. 34, D504–D506 (2006).

    CAS  PubMed  Google Scholar 

  58. Wittig, U. et al. SABIO-RK — database for biochemical reaction kinetics. Nucleic Acids Res. 40, D790–D796 (2012).

    CAS  PubMed  Google Scholar 

  59. Scheer, M. et al. BRENDA, the enzyme information system in 2011. Nucleic Acids Res. 39, D670–D676 (2011).

    CAS  PubMed  Google Scholar 

  60. Büchel, F. et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7, 116 (2013).

    PubMed  PubMed Central  Google Scholar 

  61. Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. How to infer gene networks from expression profiles. Mol. Syst. Biol. 3, 78 (2007).

    PubMed  PubMed Central  Google Scholar 

  62. Hurley, D. et al. Gene network inference and visualization tools for biologists: application to new human transcriptome datasets. Nucleic Acids Res. 40, 2377–2398 (2012).

    CAS  PubMed  Google Scholar 

  63. Chang, G. et al. High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Res. 24, 293–306 (2014).

    CAS  PubMed  Google Scholar 

  64. Villaverde, A. F. & Banga, J. R. Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J. R. Soc. Interface. 11, 20130505 (2013). This review summarizes the various aspects of reverse engineering used to build models, including network inference, model identifiability and parameter estimation, taken from different points of view.

    PubMed  Google Scholar 

  65. De Smet, R. & Marchal, K. Advantages and limitations of current network inference methods. Nature Rev. Microbiol. 8, 717–729 (2010).

    CAS  Google Scholar 

  66. He, F., Balling, R. & Zeng, A.-P. Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J. Biotechnol. 144, 190–203 (2009).

    CAS  PubMed  Google Scholar 

  67. Haury, A., Mordelet, F., Vera-licona, P. & Vert, J. TIGRESS: Trustful Inference of Gene REgulation using Stability Selection. BMC Syst. Biol. 6, 145 (2012).

    PubMed  PubMed Central  Google Scholar 

  68. Dunn, S.-J. Martello, G., Yordanov, B., Emmott, S. & Smith, T. G. Defining an essential transcription factor program for naive pluripotency. Science. 344, 1156–1160 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Faith, J. J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Margolin, A. a et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinform. 7 (Suppl. 1), 7 (2006).

    Google Scholar 

  71. Gitter, A., Klein-Seetharaman, J., Gupta, A. & Bar-Joseph, Z. Discovering pathways by orienting edges in protein interaction networks. Nucleic Acids Res. 39, e22 (2011).

    PubMed  Google Scholar 

  72. Friedman, N. Linial, M., Nachman, I. & Pe'er, D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601–620 (2000).

    CAS  PubMed  Google Scholar 

  73. Yu, J., Smith, V. A., Wang, P. P., Hartemink, A. J. & Jarvis, E. D. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20, 3594–3603 (2004).

    CAS  PubMed  Google Scholar 

  74. Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A. & Nolan, G. P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308, 523–529 (2005).

    CAS  PubMed  Google Scholar 

  75. Feizi, S., Marbach, D., Médard, M. & Kellis, M. Network deconvolution as a general method to distinguish direct dependencies in networks. Nature Biotech. 31, 726–733 (2013).

    CAS  Google Scholar 

  76. Nelander, S. et al. Models from experiments: combinatorial drug perturbations of cancer cells. Mol. Syst. Biol. 4, 216 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Bonneau, R. et al. The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol. 7, R36 (2006).

    PubMed  PubMed Central  Google Scholar 

  78. Gardner, T. S., di Bernardo, D., Lorenz, D. & Collins, J. J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  PubMed  Google Scholar 

  79. Jaeger, J. et al. Dynamic control of positional information in the early Drosophila embryo. 430, 2–5 (2004).

    Google Scholar 

  80. Cantone, I. et al. A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches. Cell 137, 172–181 (2009).

    CAS  PubMed  Google Scholar 

  81. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nature Methods 9, 796–804 (2012). The study presents the results of the network inference challenge of the DREAM5 competition. Although within each type of approach some tools perform better than others, the overall best result is obtained by using a combination of several approaches.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hurley, D. G. et al. NAIL, a software toolset for inferring, analyzing and visualizing regulatory networks. Bioinformatics 31, 277–278 (2015).

    CAS  PubMed  Google Scholar 

  83. Allen, J. P. in Biophysical Chemistry 134–162 (Wiley-Blackwell, 2008).

    Google Scholar 

  84. Le Novère, N. & Endler, L. Using chemical kinetics to model biochemical pathways. Methods Mol. Biol. 1021, 147–67 (2013).

    PubMed  Google Scholar 

  85. Keller, R. et al. The systems biology simulation core algorithm. BMC Syst. Biol. 7, 55 (2013).

    PubMed  PubMed Central  Google Scholar 

  86. Hoops, S. et al. COPASI — a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).

    CAS  PubMed  Google Scholar 

  87. Polynikis, A., Hogan, S. J. & Bernardo, M. Comparing different ODE modelling approaches for gene regulatory networks. J. Theor. Biol. 261, 511–530 (2009). This paper presents a systematic and quantitative comparison of different ODE methods used to model gene regulatory networks. The work presents the underlying hypothesis, as well as advantages and shortcomings.

    CAS  PubMed  Google Scholar 

  88. Dalle Pezze, P. et al. A dynamic network model of mTOR signaling reveals TSC-independent mTORC2 regulation. Sci. Signal. 5, ra25 (2012).

    PubMed  Google Scholar 

  89. Nelson, D. et al. Oscillations in NF-κB signaling control the dynamics of gene expression. Science 306, 704–708 (2004).

    CAS  PubMed  Google Scholar 

  90. Ashall, L. et al. Pulsatile stimulation determines timing and specificity of NF-κB-dependent transcription. Science 324, 242–246 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Bergethon, P. R. in The Physical Basis of Biochemistry 480–497 (Springer, 1998).

    Google Scholar 

  92. Huang, C. Y. & Ferrell, J. E. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl Acad. Sci. USA 93, 10078–10083 (1996).

    CAS  PubMed  Google Scholar 

  93. Chen, W. W., Niepel, M. & Sorger, P. K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 861–1875 (2010).

  94. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley-Blackwell, 1993).

    Google Scholar 

  95. Cornish-Bowden, A. Fundamentals of Enzyme Kinetics (Wiley VCH, 2012).

    Google Scholar 

  96. Voit, E. O. Biochemical systems theory: a review. ISRN Biomath. 2013, 1–53 (2013).

    Google Scholar 

  97. Parthimos, D., Haddock, R. E., Hill, C. E. & Griffith, T. M. Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys. J. 93, 1534–1556 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Yao, G., Tan, C., West, M., Nevins, J. R. & You, L. Origin of bistability underlying mammalian cell cycle entry. Mol. Syst. Biol. 7, 485 (2011).

    PubMed  PubMed Central  Google Scholar 

  99. Novák, B. & Tyson, J. J. Design principles of biochemical oscillators. Nature Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Google Scholar 

  100. Goldbeter, A. & Pourquié, O. Modeling the segmentation clock as a network of coupled oscillations in the Notch, Wnt and FGF signaling pathways. J. Theor. Biol. 252, 574–585 (2008).

    CAS  PubMed  Google Scholar 

  101. Ozbudak, E. M. & Lewis, J. Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet. 4, e15 (2008).

    PubMed  PubMed Central  Google Scholar 

  102. Glass, L. & Kauffman, S. The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973).

    CAS  PubMed  Google Scholar 

  103. Coutinho, R., Fernandez, B., Lima, R. & Meyroneinc, A. Discrete time piecewise affine models of genetic regulatory networks. J. Math. 52, 524–570 (2006).

    CAS  Google Scholar 

  104. De Jong, H. et al. Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004).

    PubMed  Google Scholar 

  105. De Jong, H., Geiselmann, J., Hernandez, C. & Page, M. Genetic Network Analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19, 336–344 (2003).

    CAS  PubMed  Google Scholar 

  106. Moles, C. G., Mendes, P. & Banga, J. R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Morris, M. K., Saez-Rodriguez, J. & Sorger, P. K. & Lauffenburger, D. A. Logic-based models for the analysis of cell signaling networks. Biochemistry 49, 3216–3224 (2010). This paper provides a good introduction to logic modelling, including the different variants and the available software tools.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sánchez, L., Van Helden, J. & Thieffry, D. Establishment of the dorso-ventral pattern during embryonic development of Drosophila melanogaster: a logical analysis. J. Theor. Biol. 189, 377–389 (1997).

    PubMed  Google Scholar 

  109. Yuh, C.-H., Bolouri, H. & Davidson, E. H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).

    CAS  PubMed  Google Scholar 

  110. Bonzanni, N. et al. Hard-wired heterogeneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics 29, i80–i88 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Wittmann, D. M. et al. Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling. BMC Syst. Biol. 3, 98 (2009).

    PubMed  PubMed Central  Google Scholar 

  112. Calzone, L. et al. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput. Biol. 6, e1000702 (2010).

    PubMed  PubMed Central  Google Scholar 

  113. Grieco, L. et al. Integrative modelling of the influence of MAPK network on cancer cell fate decision. PLoS Comput. Biol. 9, e1003286 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L. & De Micheli, G. Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24, 1917–1925 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Ahmad, J., Bernot, G., Comet, J.-P., Lime, D. & Roux, O. Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3, 231–251 (2006).

    Google Scholar 

  116. Shmulevich, I., Dougherty, E. R., Kim, S. & Zhang, W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002).

    CAS  PubMed  Google Scholar 

  117. Vahedi, G., Faryabi, B., Chamberland, J.-F., Datta, A. & Dougherty, E. R. Sampling-rate-dependent probabilistic Boolean networks. J. Theor. Biol. 261, 540–547 (2009).

    PubMed  Google Scholar 

  118. Liang, J. & Han, J. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks. BMC Syst. Biol. 6, 113 (2012).

    PubMed  PubMed Central  Google Scholar 

  119. Helikar, T., Kochi, N., Konvalina, J. & Rogers, J. A. Boolean modeling of biochemical networks. Open Bioinform. J. 5, 16–25 (2011).

    Google Scholar 

  120. Aldridge, B. B., Saez-Rodriguez, J., Muhlich, J. L. & Sorger, P. K. & Lauffenburger, D. A. Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput. Biol. 5, e1000340 (2009).

    PubMed  PubMed Central  Google Scholar 

  121. Terfve, C. et al. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6, 133 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. MacNamara, A. & Terfve, C. State–time spectrum of signal transduction logic models. Phys. Biol. 9, 045003 (2012).

    PubMed  Google Scholar 

  123. Carrillo, M. Góngora, P. A. & Rosenblueth, D. A. An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. Front. Plant Sci. 3, 155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Jusko, W. J. Moving from basic toward systems pharmacodynamic models. J. Pharm. Sci. 102, 2930–2940 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Takahashi, K., Kaizu, K., Hu, B. & Tomita, M. A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20, 538–546 (2004).

    CAS  PubMed  Google Scholar 

  126. McAdams, H. & Shapiro, L. Circuit simulation of genetic networks. Science 269, 650–656 (1995).

    CAS  PubMed  Google Scholar 

  127. Singhania, R. Sramkoski, R. M., Jacobberger, J. W. & Tyson, J. J. A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. 7, e1001077 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ryll, A et al. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models. Biosystems 124, 26–38 (2014).

    CAS  PubMed  Google Scholar 

  129. Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. & Palsson, B. Ø. Integrating high-throughput and computational data. Nature 429, 92–96 (2004).

    CAS  PubMed  Google Scholar 

  130. Herrgård, M. J., Lee, B., Portnoy, V. & Palsson, B. Ø. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 16, 627–635 (2006).

    PubMed  PubMed Central  Google Scholar 

  131. Shlomi, T., Eisenberg, Y., Sharan, R. & Ruppin, E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol. Syst. Biol. 3, 101 (2007).

    PubMed  PubMed Central  Google Scholar 

  132. Mattioni, M. & Le Novère, N. Integration of biochemical and electrical signaling-multiscale model of the medium spiny neuron of the striatum. PLoS ONE 8, e66811 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8, 445–544 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bhalla, U. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    CAS  PubMed  Google Scholar 

  135. Stefan, M. I., Edelstein, S. J. & Le Novère, N. An allosteric model of calmodulin explains differential activation of PP2B and CaMKII. Proc. Natl Acad. Sci. USA 105, 10768–10773 (2008).

    CAS  PubMed  Google Scholar 

  136. Le Novère, N. et al. Minimum information requested in the annotation of biochemical models (MIRIAM). Nature Biotech. 23, 1509–1515 (2005).

    Google Scholar 

  137. Waltemath, D. et al. Minimum information about a simulation experiment (MIASE). PLoS Comput. Biol. 7, e1001122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Waltemath, D. et al. Reproducible computational biology experiments with SED-ML — the Simulation Experiment Description Markup Language. BMC Syst. Biol. 5, 198 (2011).

    PubMed  PubMed Central  Google Scholar 

  139. François, P. & Hakim, V. Core genetic module: the mixed feedback loop. Phys. Rev. E 72, 031908 (2005).

    Google Scholar 

  140. Naldi, A. et al. Logical modelling of regulatory networks with GINsim 2.3. Biosystems 97, 134–139 (2009).

    CAS  PubMed  Google Scholar 

  141. Calzone, L., Fages, F. & Soliman, S. BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22, 1805–1897 (2006).

    CAS  PubMed  Google Scholar 

  142. Funahashi, A., Morohashi, M., Kitano, H. & Tanimura, N. CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. BIOSILICO 1, 159–162 (2003).

    Google Scholar 

  143. Myers, C. J. et al. iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics 25, 2848–2849 (2009).

    CAS  PubMed  Google Scholar 

  144. Ermentrout, B. in Computational Systems Neurobiology (ed. Le Novère, N.) 519–531 (Springer, 2012).

    Google Scholar 

  145. Müssel, C. Hopfensitz, M. & Kestler, H. A. BoolNet — an R package for generation, reconstruction, and analysis of Boolean networks. Bioinformatics 26, 1378–1380 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

The author is grateful to L. Calzone and M. Froehlich for extensive reading and correction of the manuscript, to L. Stephens and S. Edelstein for their corrections and advice, and to C. Chaouiya, P. Mendes, J. Saez-Rodriguez and D. Thieffry for help with the bibliography.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Le Novère.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Glossary

Mathematical models

Descriptions of a system using mathematical concepts and language. Models are composed of a set of variables and a set of equations that establish relationships between the variables.

Numerical simulations

Reproductions of the behaviour of a system, obtained by iteratively computing the values of variables in a mathematical model over a certain number of time steps.

Parameter values

The temporal evolution of model variables (for example, protein concentrations) is affected by the values of other variables and by parameters such as dissociation constants, kinetic rate constants and reaction orders. Parameter values affect the dynamic behaviour of model variables.

Initial conditions

Values for the model variables at the start of numerical simulations. These initial conditions might affect the simulation results — for instance, in the case of systems with several stable states that can be reached from different trajectories.

Quantitative models

Mathematical models in which the values of the variables are determined by numerical analysis of the variables and parameters in the system.

Chemical kinetics

The study of rates of chemical processes and how they affect the evolution of chemical compounds in a system.

Open standards

Standards that are publicly available and that can be implemented without restriction by licensing terms. In computational biology, open standards are additionally developed by the community, and implementations are not subjected to fees.

Systems Biology Graphical Notation

(SBGN). A set of standardized symbols to represent the entities included in a biochemical network and their relationships. The notation is formed of three complementary languages to represent activity flows, entity relationships and process descriptions.

Bipartite graphs

Graphs that contain two types of nodes, in which nodes of one type are only connected to nodes of the other type. For example, in a metabolic network, nodes representing biochemical species connect to nodes representing reactions.

Systems Biology Markup Language

(SBML). A format to encode mathematical models that is used in systems biology. Although initially focused on non-spatial, reaction-based biochemical models, the language now features packages covering different modelling approaches. SBML is supported by software libraries in different programming languages and can be imported or exported by hundreds of modelling and simulation tools.

Biological network interference

A procedure whereby an unknown set of biological interactions and processes is deduced from the molecular phenotypes it produces: for instance, a list of gene expression, of molecular concentrations or of phenotypes on perturbation.

Information theoretic methods

Inference methods based on the information theory. Variables (nodes) are linked in a network if information about one variable (for instance, the distribution of its values) is affected by the knowledge of the values of the other.

Bayesian inference

A method of inference using Bayes' theorem to evaluate the probability of a network given a data set, as a function of the probability that this network produces the data set, the chance probability of this network and the chance probability of the data set.

Logic models

Mathematical models in which the discrete values of variables are determined by logical combinations of the values of other variables.

Ordinary differential equations

(ODEs). Equations describing the change of a variable in a system over time as a function of the values of other variables and parameters in the system. In a model of a biochemical systems, the ODEs are derived from the combination of the different processes in which the entity represented by the variable is involved.

Stochastic simulation

Simulation of a model in which each process has a certain probability to occur. Examples of stochastic simulations are solutions of stochastic differential equations in which noise factors are added to otherwise deterministic ordinary differential equations, and dynamic Monte Carlo simulations in which reaction rates are sampled from distributions.

Reaction order

The order of a reaction for a given reactant is defined as the exponent to which its concentration is raised in the rate law that characterizes the reaction. In the case of reactions taking place in a well-stirred, diluted medium, the reaction order of a molecular species is equal to its stoichiometry for this reaction.

Mass action law

A law stating that the velocity of a reaction is proportional to the concentration of the reactants it consumes raised to the power of their stoichiometry. For instance, the rate of a reaction consuming two molecules of A and one molecule of B will be proportional to [A]2 × [B].

Henry–Michaelis–Menten kinetics

A kinetic scheme used in enzymatic reactions. If the formation of an enzyme–substrate complex is faster than the formation of the enzymatic product or if the concentration of enzyme–substrate complex is constant, one can explicitly avoid representing the enzyme–substrate complex. The rate of formation of the enzymatic product is then proportional to the fraction of enzyme bound to the substrate: that is, [E] × [S] / (Km + [S]), where Km is the concentration of substrate necessary to achieve half the maximal reaction velocity.

S-systems

Modelling approaches for biochemical systems in which the creation and destruction of molecular species are expressed as products of the concentration of all of the molecular species in the systems raised to a phenomenological order (obtained by fitting the model to experimental data).

Global optimization

A branch of numerical analysis that deals with the global optimization of a function or a set of functions according to some criteria. Examples of global optimization problems in biological network modelling are parameter estimation and flux balance analysis.

Identifiable model

A model in which the values of its parameters can be unambiguously determined by the data sets available. A model is non-identifiable if alternative sets of parameter values can fit the data sets.

Attractors

Stable behaviour of a system, as reflected by a fixed trajectory in the space of all possible states of the system. Examples of attractors are periodic behaviours (for example, oscillations) and steady states.

Fuzzy logic

Approximate logic computation in which the variables can have partial truth values ranging from 0 (false) to 1 (true).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Novère, N. Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16, 146–158 (2015). https://doi.org/10.1038/nrg3885

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing