Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Down syndrome and the complexity of genome dosage imbalance

Key Points

  • Trisomy 21 is probably a disorder of altered gene expression.

  • The dysregulation of gene expression in trisomy 21 is not confined to genes on chromosome 21, but is instead a genome-wide effect. This dysregulation may be linked to chromatin domains.

  • The development of many mouse models for partial or full trisomy provides the opportunity to understand the molecular pathophysiology of Down syndrome; these models are extremely useful in the preclinical development of therapeutic interventions.

  • Considerable progress has been made in the understanding of some of the phenotypic consequences of trisomy 21.

  • The idea of a Down Syndrome Genomes Project is proposed for the understanding of the genomic variation that causes or predisposes individuals to the various phenotypic characteristics of Down syndrome.

  • Recent pharmaceutical treatment efforts are discussed.

Abstract

Down syndrome (also known as trisomy 21) is the model human phenotype for all genomic gain dosage imbalances, including microduplications. The functional genomic exploration of the post-sequencing years of chromosome 21, and the generation of numerous cellular and mouse models, have provided an unprecedented opportunity to decipher the molecular consequences of genome dosage imbalance. Studies of Down syndrome could provide knowledge far beyond the well-known characteristics of intellectual disability and dysmorphic features, as several other important features, including congenital heart defects, early ageing, Alzheimer disease and childhood leukaemia, are also part of the Down syndrome phenotypic spectrum. The elucidation of the molecular mechanisms that cause or modify the risk for different Down syndrome phenotypes could lead to the introduction of previously unimaginable therapeutic options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional elements of HSA21.
Figure 2: Variation in expression of amyloid precursor protein.
Figure 3: Leukaemogenesis in Down syndrome.
Figure 4: Haploinsufficiency of genes on HSA21.
Figure 5: Determinants contributing to the Down syndrome phenotypes.

Similar content being viewed by others

References

  1. Langdon-Down, J. Observations on an ethnic classification of idiots. London Hospital Reports 3, 259–262 (1866). First description of the phenotype of DS.

    Google Scholar 

  2. LeJeune, J., Gautier, M. & Turpin, R. Etudes des chromosomes somatiques de neufs enfants mongoliens. C. R. Hebd Seances Acad. Sci. 248, 1721–1722 (in French) (1959). Identification of the extra chromosome as the genomic cause of DS.

    CAS  PubMed  Google Scholar 

  3. Davisson, M. T., Schmidt, C. & Akeson, E. C. Segmental trisomy of murine chromosome 16: a new model system for studying Down syndrome. Prog. Clin. Biol. Res. 360, 263–280 (1990). Description of the most widely used mouse model of DS.

    CAS  PubMed  Google Scholar 

  4. Hattori, M. et al. The DNA sequence of human chromosome 21. Nature 405, 311–319 (2000). The landmark paper on the sequence of the long arm of chromosome 21.

    Article  CAS  PubMed  Google Scholar 

  5. Antonarakis, S. E. 10 years of genomics, chromosome 21, and Down syndrome. Genomics 51, 1–16 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Antonarakis, S. E. Chromosome 21: from sequence to applications. Curr. Opin. Genet. Dev. 11, 241–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Antonarakis, S. E. & Epstein, C. J. The challenge of Down syndrome. Trends Mol. Med. 12, 473–479 (2006).

    Article  PubMed  Google Scholar 

  8. Antonarakis, S. E., Lyle, R., Dermitzakis, E. T., Reymond, A. & Deutsch, S. Chromosome 21 and down syndrome: from genomics to pathophysiology. Nat. Rev. Genet. 5, 725–738 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Letourneau, A. & Antonarakis, S. E. Genomic determinants in the phenotypic variability of Down syndrome. Prog. Brain Res. 197, 15–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Hartley, D. et al. Down syndrome and Alzheimer's disease: common pathways, common goals. Alzheimers Dement. 11, 700–709 (2015).

    Article  PubMed  Google Scholar 

  11. Wiseman, F. K. et al. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat. Rev. Neurosci. 16, 564–574 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dierssen, M. Down syndrome: the brain in trisomic mode. Nat. Rev. Neurosci. 13, 844–858 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Reeves, R. H., Baxter, L. L. & Richtsmeier, J. T. Too much of a good thing: mechanisms of gene action in Down syndrome. Trends Genet. 17, 83–88 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Reeves, R. H. & Garner, C. C. A year of unprecedented progress in Down syndrome basic research. Ment. Retard. Dev. Disabil. Res. Rev. 13, 215–220 (2007).

    Article  PubMed  Google Scholar 

  15. Salehi, A., Faizi, M., Belichenko, P. V. & Mobley, W. C. Using mouse models to explore genotype–phenotype relationship in Down syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 13, 207–214 (2007).

    Article  PubMed  Google Scholar 

  16. Lo, Y. M. et al. Presence of fetal DNA in maternal plasma and serum. Lancet 350, 485–487 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Chiu, R. W. et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc. Natl Acad. Sci. USA 105, 20458–20463 (2008).

    Article  PubMed  Google Scholar 

  18. Wong, F. C. & Lo, Y. M. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu. Rev. Med. 67, 419–432 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Consortium, E. P. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  20. Emmrich, S. et al. miR-99a/100125b tricistrons regulate hematopoietic stem and progenitor cell homeostasis by shifting the balance between TGFβ and Wnt signaling. Genes Dev. 28, 858–874 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Loghlen, A. et al. MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. Cell Stem Cell 10, 33–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bamburg, J. R. & Bloom, G. S. Cytoskeletal pathologies of Alzheimer disease. Cell Motil. Cytoskeleton 66, 635–649 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Letourneau, A. et al. HSA21 single-minded 2 (Sim2) binding sites co-localize with super-enhancers and pioneer transcription factors in pluripotent mouse ES cells. PLoS ONE 10, e0126475 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Costa, V. et al. Massive-scale RNA-Seq analysis of non ribosomal transcriptome in human trisomy 21. PLoS ONE 6, e18493 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sethupathy, P. et al. Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. Am. J. Hum. Genet. 81, 405–413 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gutierrez-Arcelus, M. et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e00523 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gutierrez-Arcelus, M. et al. Correction: passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2, e01045 (2013).

    Article  PubMed Central  Google Scholar 

  29. Kilpinen, H. et al. Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription. Science 342, 744–747 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waszak, S. M. et al. Population variation and genetic control of modular chromatin architecture in humans. Cell 162, 1039–1050 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Olmos-Serrano, J. L. et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 89, 1208–1222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prandini, P. et al. Natural gene-expression variation in Down syndrome modulates the outcome of gene-dosage imbalance. Am. J. Hum. Genet. 81, 252–263 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dahoun, S. et al. Monozygotic twins discordant for trisomy 21 and maternal 21q inheritance: a complex series of events. Am. J. Med. Genet. A146A, 2086–2093 (2008).

  34. Letourneau, A. et al. Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature 508, 345–350 (2014). The study that established the genome-wide transcriptome dysregulation due to trisomy 21.

    Article  CAS  PubMed  Google Scholar 

  35. Guelen, L. et al. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453, 948–951 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Pope, B. D. & Gilbert, D. M. Genetics: up and down in Down's syndrome. Nature 508, 323–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Hibaoui, Y. & Feki, A. Human pluripotent stem cells: applications and challenges in neurological diseases. Front. Physiol. 3, 267 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Briggs, J. A. et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells 31, 467–478 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Sullivan, K. D. et al. Trisomy 21 consistently activates the interferon response. eLife 5, e16220 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tan, Y. H., Schneider, E. L., Tischfield, J., Epstein, C. J. & Ruddle, F. H. Human chromosome 21 dosage: effect on the expression of the interferon induced antiviral state. Science 186, 61–63 (1974).

    Article  CAS  PubMed  Google Scholar 

  41. Wisniewski, K. E., Wisniewski, H. M. & Wen, G. Y. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann. Neurol. 17, 278–282 (1985). One of the first reports of neuropathology similar to that of Alzheimer dementia in DS.

    Article  CAS  PubMed  Google Scholar 

  42. Wu, J. & Morris, J. K. The population prevalence of Down's syndrome in England and Wales in 2011. Eur. J. Hum. Genet. 21, 1016–1019 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rumble, B. et al. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. N. Engl. J. Med. 320, 1446–1452 (1989). One of the first studies of amyloid deposition in the brains of AD and DS.

    Article  CAS  PubMed  Google Scholar 

  44. Lemere, C. A. et al. Sequence of deposition of heterogeneous amyloid β-peptides and APO E in Down syndrome: implications for initial events in amyloid plaque formation. Neurobiol. Dis. 3, 16–32 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Hooli, B. V. et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology 78, 1250–1257 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Theuns, J. et al. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am. J. Hum. Genet. 78, 936–946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prasher, V. P. et al. Molecular mapping of Alzheimer-type dementia in Down's syndrome. Ann. Neurol. 43, 380–383 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. GTEx Consortium. Human genomics. the Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015). The GTEx study revealing gene expression regulatory variation in numerous human tissues.

  49. Teller, J. K. et al. Presence of soluble amyloid β-peptide precedes amyloid plaque formation in Down's syndrome. Nat. Med. 2, 93–95 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Salehi, A. et al. Increased App expression in a mouse model of Down's syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51, 29–42 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Granholm, A. C., Sanders, L. A. & Crnic, L. S. Loss of cholinergic phenotype in basal forebrain coincides with cognitive decline in a mouse model of Down's syndrome. Exp. Neurol. 161, 647–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Whitehouse, P. J. et al. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article  CAS  PubMed  Google Scholar 

  53. Yates, C. M., Simpson, J., Maloney, A. F., Gordon, A. & Reid, A. H. Alzheimer-like cholinergic deficiency in Down syndrome. Lancet 2, 979 (1980).

    Article  CAS  PubMed  Google Scholar 

  54. Cataldo, A. M. et al. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. Am. J. Pathol. 157, 277–286 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, W. et al. Amyloid precursor protein-mediated endocytic pathway disruption induces axonal dysfunction and neurodegeneration. J. Clin. Invest. 126, 1815–1833 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cossec, J. C. et al. Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum. Mol. Genet. 21, 3156–3172 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu, L. et al. Reduction of synaptojanin 1 accelerates Aβ clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J. Biol. Chem. 288, 32050–32063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hasle, H., Clemmensen, I. H. & Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 355, 165–169 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Zipursky, A., Poon, A. & Doyle, J. Leukemia in Down syndrome: a review. Pediatr. Hematol. Oncol. 9, 139–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  60. Al-Kasim, F. et al. Incidence and treatment of potentially lethal diseases in transient leukemia of Down syndrome: Pediatric Oncology Group Study. J. Pediatr. Hematol. Oncol. 24, 9–13 (2002).

    Article  PubMed  Google Scholar 

  61. Hitzler, J. K. & Zipursky, A. Origins of leukaemia in children with Down syndrome. Nat. Rev. Cancer 5, 11–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Mateos, M. K., Barbaric, D., Byatt, S. A., Sutton, R. & Marshall, G. M. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr. 4, 76–92 (2015).

    PubMed  PubMed Central  Google Scholar 

  63. Buitenkamp, T. D. et al. Acute lymphoblastic leukemia in children with Down syndrome: a retrospective analysis from the Ponte di Legno study group. Blood 123, 70–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mullighan, C. G. et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 41, 1243–1246 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hertzberg, L. et al. Down syndrome acute lymphoblastic leukemia, a highly heterogeneous disease in which aberrant expression of CRLF2 is associated with mutated JAK2: a report from the International BFM Study Group. Blood 115, 1006–1017 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Nikolaev, S. I. et al. Frequent cases of RAS-mutated Down syndrome acute lymphoblastic leukaemia lack JAK2 mutations. Nat. Commun. 5, 4654 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lane, A. A. et al. Triplication of a 21q22 region contributes to B cell transformation through HMGN1 overexpression and loss of histone H3 Lys27 trimethylation. Nat. Genet. 46, 618–623 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roy, A., Roberts, I., Norton, A. & Vyas, P. Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br. J. Haematol. 147, 3–12 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Roberts, I. et al. GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. Blood 122, 3908–3917 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yoshida, K. et al. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat. Genet. 45, 1293–1299 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Elagib, K. E. et al. RUNX1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101, 4333–4341 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Stankiewicz, M. J. & Crispino, J. D. AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL. Leukemia 27, 1339–1347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harewood, L. et al. Amplification of AML1 on a duplicated chromosome 21 in acute lymphoblastic leukemia: a study of 20 cases. Leukemia 17, 547–553 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Weber, S. et al. Gain of chromosome 21 or amplification of chromosome arm 21q is one mechanism for increased ERG expression in acute myeloid leukemia. Genes Chromosomes Cancer 55, 148–157 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Banno, K. et al. Systematic cellular disease models reveal synergistic interaction of trisomy 21 and GATA1 mutations in hematopoietic abnormalities. Cell Rep. 15, 1228–1241 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Malinge, S., Izraeli, S. & Crispino, J. D. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 113, 2619–2628 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nikolaev, S. I. et al. Exome sequencing identifies putative drivers of progression of transient myeloproliferative disorder to AMKL in infants with Down syndrome. Blood 122, 554–561 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Malinge, S. et al. Development of acute megakaryoblastic leukemia in Down syndrome is associated with sequential epigenetic changes. Blood 122, e33–e43 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ferencz, C. et al. Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J. Pediatr. 114, 79–86 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Roizen, N. J. & Patterson, D. Down's syndrome. Lancet 361, 1281–1289 (2003).

    Article  PubMed  Google Scholar 

  81. Barlow, G. M. et al. Down syndrome congenital heart disease: a narrowed region and a candidate gene. Genet. Med. 3, 91–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Korbel, J. O. et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc. Natl Acad. Sci. USA 106, 12031–12036 (2009).

    Article  PubMed  Google Scholar 

  83. Lyle, R. et al. Genotype–phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur. J. Hum. Genet. 17, 454–466 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Dunlevy, L. et al. Down's syndrome-like cardiac developmental defects in embryos of the transchromosomic Tc1 mouse. Cardiovasc. Res. 88, 287–295 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu, T. et al. A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 19, 2780–2791 (2010). The first mouse model for the human entire trisomy 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sago, H. et al. Ts1Cje, a partial trisomy 16 mouse model for Down syndrome, exhibits learning and behavioral abnormalities. Proc. Natl Acad. Sci. USA 95, 6256–6261 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Shinohara, T. et al. Mice containing a human chromosome 21 model behavioral impairment and cardiac anomalies of Down's syndrome. Hum. Mol. Genet. 10, 1163–1175 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Lana-Elola, E. et al. Genetic dissection of Down syndrome-associated congenital heart defects using a new mouse mapping panel. eLife 5, e11614 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Grossman, T. R. et al. Over-expression of DSCAM and COL6A2 cooperatively generates congenital heart defects. PLoS Genet. 7, e1002344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sailani, M. R. et al. The complex SNP and CNV genetic architecture of the increased risk of congenital heart defects in Down syndrome. Genome Res. 23, 1410–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramachandran, D. et al. Genome-wide association study of Down syndrome-associated atrioventricular septal defects. G3 5, 1961–1971 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. van Bon, B. W. et al. Intragenic deletion in DYRK1A leads to mental retardation and primary microcephaly. Clin. Genet. 79, 296–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Ji, J. et al. DYRK1A haploinsufficiency causes a new recognizable syndrome with microcephaly, intellectual disability, speech impairment, and distinct facies. Eur. J. Hum. Genet. 23, 1473–1481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Conrad, B. & Antonarakis, S. E. Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu. Rev. Genomics Hum. Genet. 8, 17–35 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Becker, W., Soppa, U. & Tejedor, F. J. DYRK1A: a potential drug target for multiple Down syndrome neuropathologies. CNS Neurol. Disord. Drug Targets 13, 26–33 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Steinberg, J., Honti, F., Meader, S. & Webber, C. Haploinsufficiency predictions without study bias. Nucleic Acids Res. 43, e101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016). The current reference study for the frequency of genomic exonic variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Olson, L. E., Richtsmeier, J. T., Leszl, J. & Reeves, R. H. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 306, 687–690 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pereira, P. L. et al. A new mouse model for the trisomy of the Abcg1–U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum. Mol. Genet. 18, 4756–4769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brault, V. et al. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13–App region. PLoS Genet. 11, e1005062 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, Z. et al. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum. Mol. Genet. 16, 1359–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Liu, C. et al. Genetic analysis of Down syndrome-associated heart defects in mice. Hum. Genet. 130, 623–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Liu, C. et al. Engineered chromosome-based genetic mapping establishes a 3.7 Mb critical genomic region for Down syndrome-associated heart defects in mice. Hum. Genet. 133, 743–753 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Hernandez, D., Mee, P. J., Martin, J. E., Tybulewicz, V. L. & Fisher, E. M. Transchromosomal mouse embryonic stem cell lines and chimeric mice that contain freely segregating segments of human chromosome 21. Hum. Mol. Genet. 8, 923–933 (1999).

    Article  CAS  PubMed  Google Scholar 

  106. Duchon, A., Besson, V., Pereira, P. L., Magnol, L. & Herault, Y. Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination. Genetics 180, 51–59 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. De la Torre, R. et al. Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in humans. Mol. Nutr. Food Res. 58, 278–288 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007). The mouse study that provided hope for pharmacotherapy in DS.

    Article  CAS  PubMed  Google Scholar 

  109. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Shi, Y. et al. A human stem cell model of early Alzheimer's disease pathology in Down syndrome. Sci. Transl Med. 4, 124ra29 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Mou, X. et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down syndrome. Stem Cell Res. Ther. 3, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu, H. E. et al. Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from trisomy 21 amniotic fluid cells. Exp. Cell Res. 319, 498–505 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Maclean, G. A. et al. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Proc. Natl Acad. Sci. USA 109, 17567–17572 (2012).

    Article  PubMed  Google Scholar 

  114. Chou, S. T. et al. Trisomy 21-associated defects in human primitive hematopoiesis revealed through induced pluripotent stem cells. Proc. Natl Acad. Sci. USA 109, 17573–17578 (2012).

    Article  PubMed  Google Scholar 

  115. Li, L. B. et al. Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11, 615–619 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Weick, J. P. et al. Deficits in human trisomy 21 iPSCs and neurons. Proc. Natl Acad. Sci. USA 110, 9962–9967 (2013).

    Article  PubMed  Google Scholar 

  117. Jiang, J. et al. Translating dosage compensation to trisomy 21. Nature 500, 296–300 (2013). The amazing cis silencing effect of XIST gene insertion in an autosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chen, C. et al. Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat. Commun. 5, 4430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Murray, A. et al. Isogenic induced pluripotent stem cell lines from an adult with mosaic Down syndrome model accelerated neuronal ageing and neurodegeneration. Stem Cells 33, 2077–2084 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao, C., Deng, W. & Gage, F. H. Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Stagni, F., Giacomini, A., Guidi, S., Ciani, E. & Bartesaghi, R. Timing of therapies for Down syndrome: the sooner, the better. Front. Behav. Neurosci. 9, 265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Braudeau, J. et al. Chronic treatment with a promnesiant GABA-A α5-selective inverse agonist increases immediate early genes expression during memory processing in mice and rectifies their expression levels in a Down syndrome mouse model. Adv. Pharmacol. Sci. 2011, 153218 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Martinez-Cue, C. et al. Reducing GABAA α5 receptor-mediated inhibition rescues functional and neuromorphological deficits in a mouse model of down syndrome. J. Neurosci. 33, 3953–3966 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Guedj, F. et al. Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A. PLoS ONE 4, e4606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stagni, F. et al. Treatment with epigallocatechin gallate rescues neurogenesis and neuron maturation in the Ts65Dn mouse model of Down syndrome. (Symposia abstract). Neuropsychol. Trends 16, 120 (2014).

    Google Scholar 

  126. Hibaoui, Y. et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol. Med. 6, 259–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT01394796 (2010).

  128. US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT01699711 (2012).

  129. de la Torre, R. et al. Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 15, 801–810 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Roper, R. J. et al. Defective cerebellar response to mitogenic Hedgehog signaling in Down's syndrome mice. Proc. Natl Acad. Sci. USA 103, 1452–1456 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Das, I. et al. Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model. Sci. Transl Med. 5, 201ra120 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Belichenko, P. V. et al. Synaptic structural abnormalities in the Ts65Dn mouse model of Down syndrome. J. Comp. Neurol. 480, 281–298 (2004).

    Article  PubMed  Google Scholar 

  133. Clark, S., Schwalbe, J., Stasko, M. R., Yarowsky, P. J. & Costa, A. C. Fluoxetine rescues deficient neurogenesis in hippocampus of the Ts65Dn mouse model for Down syndrome. Exp. Neurol. 200, 256–261 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Bianchi, P. et al. Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. J. Neurosci. 30, 8769–8779 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Guidi, S. et al. Early pharmacotherapy with fluoxetine rescues dendritic pathology in the Ts65Dn mouse model of down syndrome. Brain Pathol. 23, 129–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Stagni, F. et al. Pharmacotherapy with fluoxetine restores functional connectivity from the dentate gyrus to field CA3 in the Ts65Dn mouse model of down syndrome. PLoS ONE 8, e61689 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Stagni, F. et al. Long-term effects of neonatal treatment with fluoxetine on cognitive performance in Ts65Dn mice. Neurobiol. Dis. 74, 204–218 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Moon, J. et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of Down syndrome. Behav. Neurosci. 124, 346–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Velazquez, R. et al. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 58, 92–101 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ash, J. A. et al. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol. Dis. 70, 32–42 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. US National Library of Medicine. ClinicalTrials.gov.https://clinicaltrials.gov/ct2/show/NCT02500784 (2015).

  142. Brown, C. J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    Article  CAS  PubMed  Google Scholar 

  143. Chakrabarti, L., Galdzicki, Z. & Haydar, T. F. Defects in embryonic neurogenesis and initial synapse formation in the forebrain of the Ts65Dn mouse model of Down syndrome. J. Neurosci. 27, 11483–11495 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lott, I. T. Neurological phenotypes for Down syndrome across the life span. Prog. Brain Res. 197, 101–121 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hyde, L. A., Frisone, D. F. & Crnic, L. S. Ts65Dn mice, a model for Down syndrome, have deficits in context discrimination learning suggesting impaired hippocampal function. Behav. Brain Res. 118, 53–60 (2001).

    Article  CAS  PubMed  Google Scholar 

  146. Kleschevnikov, A. M. et al. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Galdzicki, Z. & Siarey, R. J. Understanding mental retardation in Down's syndrome using trisomy 16 mouse models. Genes Brain Behav. 2, 167–178 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Hamani, C. et al. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann. Neurol. 63, 119–123 (2008).

    Article  PubMed  Google Scholar 

  149. Shirvalkar, P. R., Rapp, P. R. & Shapiro, M. L. Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes. Proc. Natl Acad. Sci. USA 107, 7054–7059 (2010).

    Article  PubMed  Google Scholar 

  150. Hao, S. et al. Forniceal deep brain stimulation rescues hippocampal memory in Rett syndrome mice. Nature 526, 430–434 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl- CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  152. Belichenko, P. V. et al. An anti-β-amyloid vaccine for treating cognitive deficits in a mouse model of Down syndrome. PLoS ONE 11, e0152471 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Purcell, S., Cherny, S. S. & Sham, P. C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Altshuler, D., Daly, M. J. & Lander, E. S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Harrow, J. et al. GENCODE: the reference human genome annotation for the ENCODE Project. Genome Res. 22, 1760–1774 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473, 43–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Neph, S. et al. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489, 83–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Jurka, J. et al. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110, 462–467 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks A. Fort, Y. Hibaoui, S. Nikolaev, M. Garieri, C. Borel, F. Santoni, Y. Herault, E. Yu, V. Tybulewicz, X. L. d'Ardhuy for information and assistance in the preparation of this manuscript. The author also thanks the GTEx investigators for data access, and the funding agencies SNF, EU, ERC, Lejeune, and ChildCare for the support of research in our laboratory. Furthermore, the author thanks all past and present members of the laboratory, collaborators, and the patients and their families for their inspiration and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos E. Antonarakis.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (figure)

Number of papers in the scientific literature related to the different human autosomes. (PDF 73 kb)

Supplementary information S2 (table)

Numbers of genomic elements on the long arm of chromosome 21; the data are compiled from references1,2,3,4 (PDF 197 kb)

Supplementary information S3 (figure)

The pie chart shows the different gene types with number of genes indicated in parentheses of HSA21. (PDF 159 kb)

Glossary

Expression quantitative trait loci

(eQTLs). Genetic variation that is associated with gene expression variation.

Copy number variants

(CNVs). One form of genetic variation in which sections of the genome are repeated and the number of repeats varies between individuals.

Indels

A short name for insertions and deletions in the genome.

Acrocentric

Mammalian chromosomes in which the centromere is close to one end. Chromosomes 13, 14, 15, 21 and 22 are acrocentric in humans.

Lamina-associated domains

(LADs). Regions of the chromatin that interact with the nuclear lamina.

Replication domains

Regions of the genome that are copied (replicated) at the same time during the S phase of cell division.

Partial T21

A genomic alteration in which a portion of chromosome 21 is triplicated.

Driver mutations

A mutation in a gene or other functional genomic element that provides a selective advantage to a clone of cells.

Variant allele frequency

The frequency of a variant (not reference) allele in each human population.

Megakaryoblasts

Precursor cell to a promegakaryocyte, which in turn becomes a megakaryocyte during haematopoiesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonarakis, S. Down syndrome and the complexity of genome dosage imbalance. Nat Rev Genet 18, 147–163 (2017). https://doi.org/10.1038/nrg.2016.154

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing