Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome

Key Points

  • Fragile X syndrome is a monogenic neurodevelopmental disorder associated with intellectual disability and autism spectrum disorders.

  • Animal models have provided insights into the neurobiological mechanisms and enabled the identification of novel drug targets.

  • Promising targets include metabotropic glutamate receptor 5 (mGluR5), GABA receptors and proteins that are regulated or regulate fragile X mental retardation protein 1 (FMRP).

  • Many compounds have been extensively investigated in preclinical studies and are able to rescue altered levels of protein synthesis, synaptic plasticity and behaviour. Behavioural phenotypes in Fmr1-knockout mice are difficult to measure, and the rescue of these deficits has been inconsistent across these different drugs.

  • Subsequent clinical trials in humans were unable to demonstrate any improvement using behavioural measures as primary end points.

  • Objective measures of core phenotypes such as direct assessments of cognition and language rather than secondary behaviours need to be implemented in future trials.

  • Very young patients have not yet been included in clinical trials, and this may be the only group in which effects of a disease-modifying agent targeting cognition and development can be seen. Efforts may need to be redirected towards the implementation of longer trials in younger children accompanied by learning interventions measuring cognitive and developmental outcomes.

Abstract

Neurodevelopmental disorders such as fragile X syndrome (FXS) result in lifelong cognitive and behavioural deficits and represent a major public health burden. FXS is the most frequent monogenic form of intellectual disability and autism, and the underlying pathophysiology linked to its causal gene, FMR1, has been the focus of intense research. Key alterations in synaptic function thought to underlie this neurodevelopmental disorder have been characterized and rescued in animal models of FXS using genetic and pharmacological approaches. These robust preclinical findings have led to the implementation of the most comprehensive drug development programme undertaken thus far for a genetically defined neurodevelopmental disorder, including phase IIb trials of metabotropic glutamate receptor 5 (mGluR5) antagonists and a phase III trial of a GABAB receptor agonist. However, none of the trials has been able to unambiguously demonstrate efficacy, and they have also highlighted the extent of the knowledge gaps in drug development for FXS and other neurodevelopmental disorders. In this Review, we examine potential issues in the previous studies and future directions for preclinical and clinical trials. FXS is at the forefront of efforts to develop drugs for neurodevelopmental disorders, and lessons learned in the process will also be important for such disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drug targets in fragile X syndrome under investigation.
Figure 2: Clinical trials performed since 2002 in fragile X syndrome.

Similar content being viewed by others

References

  1. Oberle, I. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252, 1097–1102 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Pieretti, M. et al. Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66, 817–822 (1991). References 1 and 2 are seminal papers of the simultaneous discovery of FMR1 by several research groups.

    Article  CAS  PubMed  Google Scholar 

  3. Handt, M. et al. Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening. Mol. Cell Probes 28, 279–283 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Dykens, E. M., Hodapp, R. M. & Leckman, J. F. Strengths and weaknesses in the intellectual functioning of males with fragile X syndrome. Am. J. Ment. Defic. 92, 234–236 (1987).

    CAS  PubMed  Google Scholar 

  5. Fisch, G. S. et al. Longitudinal changes in cognitive-behavioral levels in three children with FRAXE. Am. J. Med. Genet. 84, 291–292 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Klaiman, C. et al. Longitudinal profiles of adaptive behavior in fragile X syndrome. Pediatrics 134, 315–324 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baumgardner, T. L., Reiss, A. L., Freund, L. S. & Abrams, M. T. Specification of the neurobehavioral phenotype in males with fragile X syndrome. Pediatrics 95, 744–752 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Mazzocco, M. M., Pennington, B. F. & Hagerman, R. J. The neurocognitive phenotype of female carriers of fragile X: additional evidence for specificity. J. Dev. Behav. Pediatr. 14, 328–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Kaufmann, W. E., Abrams, M. T., Chen, W. & Reiss, A. L. Genotype, molecular phenotype, and cognitive phenotype: correlations in fragile X syndrome. Am. J. Med. Genet. 83, 286–295 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Sansone, S. M. et al. Improving IQ measurement in intellectual disabilities using true deviation from population norms. J. Neurodev. Disord. 6, 16 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Vries, B. B. et al. Mental status of females with an FMR1 gene full mutation. Am. J. Hum. Genet. 58, 1025–1032 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lewis, P. et al. Cognitive, language and social-cognitive skills of individuals with fragile X syndrome with and without autism. J. Intellect. Disabil. Res. 50, 532–545 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. McDuffie, A. et al. Autism spectrum disorder in children and adolescents with fragile X syndrome: within-syndrome differences and age-related changes. Am. J. Intellect. Dev. Disabil. 115, 307–326 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Darnell, J. C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011). This study identified a stringent set of 842 FMRP target transcripts, many of them associated with neuropsychiatric disorders. This highlights the fact that FMRP has broad regulatory roles at the synapse.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hagerman, R. J., Murphy, M. A. & Wittenberger, M. D. A controlled trial of stimulant medication in children with the fragile X syndrome. Am. J. Med. Genet. 30, 377–392 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Ingrassia, A. & Turk, J. The use of clonidine for severe and intractable sleep problems in children with neurodevelopmental disorders — a case series. Eur. Child Adolesc. Psychiatry 14, 34–40 (2005).

    Article  PubMed  Google Scholar 

  18. Hagerman, R. J. et al. Advances in the treatment of fragile X syndrome. Pediatrics 123, 378–390 (2009).

    Article  PubMed  Google Scholar 

  19. Erickson, C. A., Stigler, K. A., Posey, D. J. & McDougle, C. J. Aripiprazole in autism spectrum disorders and fragile X syndrome. Neurotherapeutics 7, 258–263 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bear, M. F., Huber, K. M. & Warren, S. T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004). This is one of the seminal papers to propose a role for FMRP in the regulation of synaptic function and plasticity through regulation of long-term depression of synaptic strength involving stimulation of mGluR5. Excessive mGluR5 signalling has been targeted in several studies in rodents and humans.

    Article  CAS  PubMed  Google Scholar 

  21. Weiler, I. J. et al. Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc. Natl Acad. Sci. USA 94, 5395–5400 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ashley, C. T. Jr, Wilkinson, K. D., Reines, D. & Warren, S. T. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262, 563–566 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29, 2276–2283 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huber, K. M., Gallagher, S. M., Warren, S. T. & Bear, M. F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl Acad. Sci. USA 99, 7746–7750 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Auerbach, B. D. & Bear, M. F. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis. J. Neurophysiol. 104, 1047–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007). This study demonstrates in the fragile X mouse model the rescue of a range of phenotypes relevant to the human disorder by reducing mGluR5 expression.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Porter, R. H. et al. Fenobam: a clinically validated nonbenzodiazepine anxiolytic is a potent, selective, and noncompetitive mGlu5 receptor antagonist with inverse agonist activity. J. Pharmacol. Exp. Ther. 315, 711–721 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Lindemann, L. et al. CTEP: a novel, potent, long-acting, and orally bioavailable metabotropic glutamate receptor 5 inhibitor. J. Pharmacol. Exp. Ther. 339, 474–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Gantois, I. et al. Chronic administration of AFQ056/Mavoglurant restores social behaviour in Fmr1 knockout mice. Behav. Brain Res. 239, 72–79 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Gross, C. et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 30, 10624–10638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012). This study reported efficacy of a long-acting mGluR5 antagonist in adult Fmr1 -KO mice. The comprehensive phenotype correction after development of the phenotype sparked great interest for testing mGluR5 antagonists in adult and adolescent patients with FXS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Osterweil, E. K., Krueger, D. D., Reinhold, K. & Bear, M. F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pop, A. S. et al. Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology 231, 1227–1235 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Yan, Q. J., Rammal, M., Tranfaglia, M. & Bauchwitz, R. P. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 49, 1053–1066 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Gassmann, M. & Bettler, B. Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat. Rev. Neurosci. 13, 380–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Henderson, C. et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABAB receptors with arbaclofen. Sci. Transl Med. 4, 152ra128 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Silverman, J. L. et al. GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology 40, 2228–2239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qin, M. et al. R-Baclofen reverses a social behavior deficit and elevated protein synthesis in a mouse model of fragile X syndrome. Int. J. Neuropsychopharmacol. 18, pyv034 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mann, K., Kiefer, F., Spanagel, R. & Littleton, J. Acamprosate: recent findings and future research directions. Alcohol. Clin. Exp. Res. 32, 1105–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Schaefer, T. L. et al. Acamprosate in a mouse model of fragile X syndrome: modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J. Neurodev. Disord. 9, 6 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  42. D'Hulst, C. et al. Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res. 1253, 176–183 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Braat, S. et al. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle 14, 2985–2995 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carter, R. B. et al. Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-hydroxy-3β-methyl-5α-pregnan-20-one), a selective, high-affinity, steroid modulator of the γ-aminobutyric acidA receptor. J. Pharmacol. Exp. Ther. 280, 1284–1295 (1997).

    CAS  PubMed  Google Scholar 

  45. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01725152 (2016).

  46. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01911455 (2016).

  47. Mak, I. W., Evaniew, N. & Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl Res. 6, 114–118 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Lee, M. J. et al. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc. Natl Acad. Sci. USA 109, 7859–7864 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bhattacharya, A. et al. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76, 325–337 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bilousova, T. V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Boda, B., Mendez, P., Boury-Jamot, B., Magara, F. & Muller, D. Reversal of activity-mediated spine dynamics and learning impairment in a mouse model of Fragile X syndrome. Eur. J. Neurosci. 39, 1130–1137 (2014).

    Article  PubMed  Google Scholar 

  52. Busquets-Garcia, A. et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat. Med. 19, 603–607 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Dolan, B. M. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl Acad. Sci. USA 110, 5671–5676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gross, C. et al. Increased expression of the PI3K enhancer PIKE mediates deficits in synaptic plasticity and behavior in fragile X syndrome. Cell Rep. 11, 727–736 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hayashi, M. L. et al. Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc. Natl Acad. Sci. USA 104, 11489–11494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hebert, B. et al. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule. Orphanet J. Rare Dis. 9, 124 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Thomas, A. M. et al. Genetic reduction of group 1 metabotropic glutamate receptors alters select behaviors in a mouse model for fragile X syndrome. Behav. Brain Res. 223, 310–321 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tian, M. et al. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 89, 43–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Udagawa, T. et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat. Med. 19, 1473–1477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Laura, J., Stoppel, E. K. O. & Bear, M. F. in Fragile X Syndrome From Genetics to Targeted Treatment (eds Willemsen, R. & Kooy, F. R.) 173–204 (Academic Press, 2017).

    Google Scholar 

  61. Gross, C., Hoffmann, A., Bassell, G. J. & Berry-Kravis, E. M. Therapeutic strategies in fragile X syndrome: from bench to bedside and back. Neurotherapeutics 12, 584–608 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kazdoba, T. M., Leach, P. T., Silverman, J. L. & Crawley, J. N. Modeling fragile X syndrome in the Fmr1 knockout mouse. Intractable Rare Dis. Res. 3, 118–133 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Leach, P. T., Hayes, J., Pride, M., Silverman, J. L. & Crawley, J. N. Normal performance of Fmr1 mice on a touchscreen delayed nonmatching to position working memory task. eNeuro http://dx.doi.org/10.1523/eneuro.0143-15.2016 (2016).

  64. de Esch, C. E. et al. Fragile X mice have robust mGluR5-dependent alterations of social behaviour in the automated tube test. Neurobiol. Dis. 75, 31–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Westmark, C. J. et al. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice. PLoS ONE 6, e26549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lindemann, L. et al. Pharmacology of basimglurant (RO4917523, RG7090), a unique metabotropic glutamate receptor 5 negative allosteric modulator in clinical development for depression. J. Pharmacol. Exp. Ther. 353, 213–233 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Vranesic, I. et al. AFQ056/mavoglurant, a novel clinically effective mGluR5 antagonist: identification, SAR and pharmacological characterization. Bioorg. Med. Chem. 22, 5790–5803 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Berry-Kravis, E. M. et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl Med. 4, 152ra127 (2012).

    Article  PubMed  CAS  Google Scholar 

  69. Berry-Kravis, E. et al. Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl Med. 8, 321ra325 (2016). This article presents the results of two of the largest randomized, placebo-controlled studies undertaken in adolescents and adults with FXS. These studies did not show efficacy of mavoglurant, but they have stimulated further study of mavoglurant in younger children with FXS.

    Article  CAS  Google Scholar 

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01483469 (2016).

  71. Jacquemont, S. et al. Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci. Transl Med. 3, 64ra61 (2011).

    Article  CAS  Google Scholar 

  72. Berry-Kravis, E. et al. Arbaclofen in fragile X syndrome: results of phase 3 trials. J. Neurodev. Disord. 9, 3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Youssef, E. A. et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: fragXis phase 2 results. Neuropsychopharmacology http://dx.doi.org/10.1038/npp.2017.177 (2017). This reference reports the large randomized, double-blind, placebo-controlled phase II trial with the mGluR5 antagonist basimglurant in adult and adolescent patients with FXS.

  74. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01750957 (2016).

  75. Caserta, M. S., Lund, D. A. & Wright, S. D. Exploring the caregiver burden inventory (CBI): further evidence for a multidimensional view of burden. Int. J. Aging Hum. Dev. 43, 21–34 (1996).

    Article  CAS  PubMed  Google Scholar 

  76. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01015430 (2016).

  77. Michalon, A. et al. Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice. Biol. Psychiatry 75, 189–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Silva-Santos, S. et al. Ube3a reinstatement identifies distinct developmental windows in a murine Angelman syndrome model. J. Clin. Invest. 125, 2069–2076 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Barnes, S. A. et al. Convergence of hippocampal pathophysiology in syngap+/− and Fmr1-/y mice. J. Neurosci. 35, 15073–15081 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zu, T. et al. Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J. Neurosci. 24, 8853–8861 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Radwan, B., Dvorak, D. & Fenton, A. A. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice. Neurobiol. Dis. 88, 125–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ethridge, L. E. et al. Reduced habituation of auditory evoked potentials indicate cortical hyper-excitability in fragile X syndrome. Transl Psychiatry 6, e787 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scharf, S. H., Jaeschke, G., Wettstein, J. G. & Lindemann, L. Metabotropic glutamate receptor 5 as drug target for fragile X syndrome. Curr. Opin. Pharmacol. 20, 124–134 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Scott, S. et al. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral Scler. 9, 4–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Dove, D. et al. Medications for adolescents and young adults with autism spectrum disorders: a systematic review. Pediatrics 130, 717–726 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  87. McCracken, J. T. et al. Risperidone in children with autism and serious behavioral problems. N. Engl. J. Med. 347, 314–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Aman, M. G. et al. Cognitive effects of risperidone in children with autism and irritable behavior. J. Child Adolesc. Psychopharmacol. 18, 227–236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Dawson, G. et al. Randomized, controlled trial of an intervention for toddlers with autism: the early start denver model. Pediatrics 125, e17–e23 (2010).

    Article  PubMed  Google Scholar 

  90. Estes, A. et al. Long-term outcomes of early intervention in 6-year-old children with autism spectrum disorder. J. Am. Acad. Child Adolesc. Psychiatry 54, 580–587 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gillberg, C. et al. Long-term stimulant treatment of children with attention-deficit hyperactivity disorder symptoms. A randomized, double-blind, placebo-controlled trial. Arch. Gen. Psychiatry 54, 857–864 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Hessl, D. et al. A solution to limitations of cognitive testing in children with intellectual disabilities: the case of fragile X syndrome. J. Neurodev. Disord. 1, 33–45 (2009).

    Article  PubMed  Google Scholar 

  93. Berry-Kravis, E. et al. Development of an expressive language sampling procedure in fragile X syndrome: a pilot study. J. Dev. Behav. Pediatr. 34, 245–251 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  94. McDuffie, A. et al. A spoken-language intervention for school-aged boys with fragile X syndrome. Am. J. Intellect. Dev. Disabil. 121, 236–265 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Knox, A. et al. Feasibility, reliability, and clinical validity of the test of attentional performance for children (KiTAP) in fragile X syndrome (FXS). J. Neurodev. Disord. 4, 2 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Curie, A. et al. A novel analog reasoning paradigm: new insights in intellectually disabled patients. PLoS ONE 11, e0149717 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Hessl, D. et al. The NIH toolbox cognitive battery for intellectual disabilities: three preliminary studies and future directions. J. Neurodev. Disord. 8, 35 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Wang, L. W., Berry-Kravis, E. & Hagerman, R. J. Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics 7, 264–274 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Giles, L. L. & Martini, D. R. Challenges and promises of pediatric psychopharmacology. Acad. Pediatr. 16, 508–518 (2016).

    Article  PubMed  Google Scholar 

  100. Greiss Hess, L. et al. A randomized, double-blind, placebo-controlled trial of low-dose sertraline in young children with fragile X syndrome. J. Dev. Behav. Pediatr. 37, 619–628 (2016).

    Article  PubMed  Google Scholar 

  101. Brigman, J. L., Bussey, T. J., Saksida, L. M. & Rothblat, L. A. Discrimination of multidimensional visual stimuli by mice: intra- and extradimensional shifts. Behav. Neurosci. 119, 839–842 (2005).

    Article  PubMed  Google Scholar 

  102. Brigman, J. L., Graybeal, C. & Holmes, A. Predictably irrational: assaying cognitive inflexibility in mouse models of schizophrenia. Front. Neurosci. http://dx.doi.org/10.3389/neuro.01.013.2010 (2010).

  103. Bussey, T. J. et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology 62, 1191–1203 (2012).

    Article  CAS  PubMed  Google Scholar 

  104. Bussey, T. J. et al. The touchscreen cognitive testing method for rodents: how to get the best out of your rat. Learn. Mem. 15, 516–523 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  105. van der Vaart, T., Overwater, I. E., Oostenbrink, R., Moll, H. A. & Elgersma, Y. Treatment of cognitive deficits in genetic disorders: a systematic review of clinical trials of diet and drug treatments. JAMA Neurol. 72, 1052–1060 (2015).

    Article  PubMed  Google Scholar 

  106. Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Pammolli, F., Magazzini, L. & Riccaboni, M. The productivity crisis in pharmaceutical R&D. Nat. Rev. Drug Discov. 10, 428–438 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Curie, A. et al. Placebo responses in genetically determined intellectual disability: a meta-analysis. PLoS ONE 10, e0133316 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jensen, K. B. et al. Certainty of genuine treatment increases drug responses among intellectually disabled patients. Neurology 88, 1912–1918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Punja, S. et al. N-Of-1 trials are a tapestry of heterogeneity. J. Clin. Epidemiol. 76, 47–56 (2016).

    Article  PubMed  Google Scholar 

  111. Gabler, N. B., Duan, N., Vohra, S. & Kravitz, R. L. N-Of-1 trials in the medical literature: a systematic review. Med. Care 49, 761–768 (2011).

    Article  PubMed  Google Scholar 

  112. US Food and Drug Administration. Specific requirements on content and format of labelling for human prescription drugs: revision of 'pediatric' use' subsection in the labelling: final rule. FDA https://www.fda.gov/ohrms/dockets/ac/01/briefing/3778b1_Tab6_7-21CFR%20Part%20201.pdf (1994).]

  113. European Medicines Agency. ICH topic E 11 clinical investigation of medicinal products in the paediatric population. European Medicines Agency http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002926.pdf (2001).

  114. European Medicines Agency. Extrapolation of efficacy and safety in paediatric medicine development. European Medicines Agency http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_001367.jsp&mid=WC0b01ac0580029572 (2016).

  115. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02920892 (2017).

  116. European Medicines Agency. Guideline on the clinical development of medicinal products for the treatment of autism spectrum disorder (ASD). European Medicines Agency http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/03/WC500202650.pdf (2013).

  117. US Food and Drug Administration. Pharmacology/toxicology. FDA http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm065014.htm (2017).

  118. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. Safety guidelines. ICH http://www.ich.org/products/guidelines/safety/article/safety-guidelines.html (2017).

  119. US Food and Drug Administration. Guidance for industry: nonclinical safety evaluation of pediatric drug products. FDA http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm079247.pdf (2006).

  120. National Academies of Sciences, Engineering and Medicine. Neuroscience Trials of the Future: Proceedings of a Workshop (The National Academies Press, 2016).

  121. Innovative Medicines Initiative. IMI2 10 th call for proprosals. Innovative Medicines Initiative http://www.imi.europa.eu/sites/default/files/uploads/documents/IMI2Call10/IMI2_Call10_TopicsText.pdf (2016).

  122. Osterweil, E. K. et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model. Neuron 77, 234–250 (2013).

    Article  CAS  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02642653 (2016).

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02680379 (2016).

  125. Gantois, I. et al. Metformin ameliorates core deficits in a mouse model of fragile X syndrome. Nat. Med. 23, 674–677 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Sidhu, H., Dansie, L. E., Hickmott, P. W., Ethell, D. W. & Ethell, I. M. Genetic removal of matrix metalloproteinase 9 rescues the symptoms of fragile X syndrome in a mouse model. J. Neurosci. 34, 9867–9879 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Chiu, C. T. & Chuang, D. M. Molecular actions and therapeutic potential of lithium in preclinical and clinical studies of CNS disorders. Pharmacol. Ther. 128, 281–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Liu, Z. H. et al. Lithium reverses increased rates of cerebral protein synthesis in a mouse model of fragile x syndrome. Neurobiol. Dis. 45, 1145–1152 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Yuskaitis, C. J. et al. Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem. Pharmacol. 79, 632–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Berry-Kravis, E. et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J. Dev. Behav. Pediatr. 29, 293–302 (2008).

    Article  PubMed  Google Scholar 

  131. Braithwaite, S. P. et al. Synaptic plasticity: one STEP at a time. Trends Neurosci. 29, 452–458 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Goebel-Goody, S. M. et al. Taking STEPs forward to understand fragile x syndrome. Results Probl. Cell Differ. 54, 223–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Goebel-Goody, S. M. et al. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav. 11, 586–600 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Klann, E. & Dever, T. E. Biochemical mechanisms for translation regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Narayanan, U. et al. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 283, 18478–18482 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bhattacharya, A. et al. Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile X syndrome mice. Neuropsychopharmacology 41, 1991–2000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kano, M. et al. Endocannabinoid-mediated control of synaptic transmission. Physiol. Rev. 89, 309–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Gomis-Gonzalez, M., Matute, C., Maldonado, R., Mato, S. & Ozaita, A. Possible therapeutic doses of cannabinoid type 1 receptor antagonist reverses key alterations in fragile X syndrome mouse model. Genes 7, E56 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Xie, S. et al. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism — or inverse agonism — as potential obesity treatment and other therapeutic use. J. Clin. Pharm. Ther. 32, 209–231 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Christensen, R. et al. Efficacy and safety of the weight-loss drug rimonabrant: a meta analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. [No authors listed.] Rimonabant: suicide and depression. Depression and suicidal tendencies are about twice as frequent with rimonabant as with placebo. Prescrire Int. 16, 250 (2007).

  142. Chen, L. Y. et al. Physiological activation of synsptic Rac>PAK (p-21activated kinase) signalling is defective in a mouse model of fragile X syndrome. J. Neurosci. 30, 10977–10984 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Henley, J. M. & Wilkinson, K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17, 337–350 (2016).

    Article  CAS  PubMed  Google Scholar 

  144. Lee, K. et al. AMPA receptors as therapeutic targets for neurological disorders. Adv. Protein Chem. Struct. Biol. 103, 203–261 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Arai, A. C. & Kessler, M. Pharmacology of ampakine modulators: from AMPA receptors to synapses and behavior. Curr. Drug Targets. 8, 583–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Li, J. et al. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell. Neurosci. 19, 138–151 (2002).

    Article  PubMed  CAS  Google Scholar 

  147. Berry-Kravis, E. et al. Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: a controlled trial. J. Child Adolesc. Psychopharmacol. 16, 525–540 (2006).

    Article  PubMed  Google Scholar 

  148. Davenport, M. H., Schaefer, T. L., Friedmann, K. J., Fitzpatrick, S. E. & Erickson, C. A. Pharmacotherapy for fragile X syndrome: progress to date. Drugs 76, 431–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Ligsay, A. & Hagerman, R. J. Review of targeted treatments in fragile X syndrome. Intractable Rare Dis. Res. 5, 158–167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Berry-Kravis, E. et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J. Med. Genet. 46, 266–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01348087 (2016).

  152. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01433354 (2016).

  153. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01894958 (2017).

  154. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02126995 (2016).

  155. Paribello, C. et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 10, 91 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Leigh, M. J. et al. A randomized double-blind, placebo-controlled trial of minocycline in children and adolescents with fragile x syndrome. J. Dev. Behav. Pediatr. 34, 147–155 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  157. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01013480 (2012).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01555333 (2013).

  159. Erickson, C. A. et al. Impact of acamprosate on behavior and brain-derived neurotrophic factor: an open-label study in youth with fragile X syndrome. Psychopharmacology 228, 75–84 (2013).

    Article  CAS  PubMed  Google Scholar 

  160. Kesler,S. R., Lightbody, A. A. & Reiss, A. L. et al. Cholinergic dysfunction in fragile X syndrome and potenial intervention. Am. J. Med. Genet. A 149A, 403–407 (2012).

    Article  CAS  Google Scholar 

  161. Ligsay, A. et al. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J. Neurodev. Disord. 9, 26 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01120626 (2016).

  163. Sahu, J. K. et al. Effectiveness and safety of donepezil in boys with fragile x syndrome: a double-blind, randomized, controlled pilot study. J. Child Neurol. 28, 570–575 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the patients, caregivers and global fragile X syndrome community of scientists and investigators who contribute to the body of knowledge that continues to inform the treatment and care of this special patient population. The authors thank Spectrum and artist N. Rapp for Fig. 2. Selected research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under grant agreement number 115300, resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA companies' in kind contribution. V.D.P. and A.C. thank the Clinical Center of Investigation (CIC), 1407 INSERM, Hospices Civils de Lyon, 69002, Lyon, France. Some work presented here has been facilitated by the Fragile X Clinical and Research Consortium (FXCRC) in the USA. E.B.K. is supported by U01NS096767. A.E.J. is the recipient of grants from Odense University Hospital Free Research Fund (grant number 15-A857) and of the Region of Zealand and Region of Southern of Denmark joint research fund (journal no. 14-001308) as well as a PhD scholarship from the Region of Southern of Denmark and the Faculty of Health Sciences, University of Southern of Denmark. M.F.B. acknowledges past and ongoing support and encouragement from FRAXA and NIH grant number R01-MH106469. J.N.C. is the recipient of NIH grant numbers R01NS085709 and U54HD079125-04 and Autism Speaks PACT targeted grant number 8603. E.L. is supported by EU-AIMS (European Autism Interventions), which receives support from the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115300, the resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (grant FP7/2007-2013), from the European Federation of Pharmaceutical Industries and Associations. R.H. is funded by The MIND Institute IDDRC U54 HD079125, HRSA grants R40MC22641 and R40MC27701 and DOD PR101054. S.J. is the recipient of a Bursary Professor fellowship of the Swiss National Science Foundation (SNSF), the Jeanne et Jean Louis Levesque Research Chair and the Canadian Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Jacquemont.

Ethics declarations

Competing interests

E.B.K. has received funding from Novartis, Roche, Alcobra, Neuren, Cydan, Fulcrum, GW, Marinus, Edison and Neurotrope Pharmaceuticals to consult on trial design and development strategies and/or conduct clinical trials in fragile X syndrome (FXS), Vtesse to run clinical trials in Niemann–Pick type C, and from Asuragen Inc. to develop testing standards for FMR1 testing. L.L. is a full-time employee of F. Hoffmann-La Roche AG, he owns stock and stock options in F. Hoffmann-La Roche AG, and he is a co-inventor on patents originating in his work at F. Hoffmann-La Roche AG. A.E.J. participated in clinical trials led by Novartis Pharmaceuticals and has no further competing interests to declare. G.A. was a former full-time employee of Novartis Pharma and is currently an employee of Shire Pharmaceuticals. M.F.B. declares no competing interests. R.L.C. was a former full-time employee of Seaside Therapeutics and declares no further competing interests. J.N.C. declares no competing interests. A.C. participated in clinical trials led by Novartis Pharma and has no further competing interests to declare. V.D.P. participated in clinical trials led by Novartis Pharma and has no further competing interests to declare. F.H. is a former employee of Novartis Pharmaceutical Corporation and is currently employed by Celgene. F.G. is an employee and a shareholder of Novartis. B.G.M. is an employee of Novartis Institutes for Biomedical Research. D.H. has provided paid consultation regarding clinical trials in FXS to Novartis, Roche and Seaside Therapeutics. E.L. declares no competing interests. S.H.S. is a full-time employee of F. Hoffmann-La Roche AG. P.W. declares no competing interests. F.V.R. is a full-time employee and shareholder of Novartis Pharma. R.H. has received funding from Novartis, Roche/Genentech, Alcobra, Marinus and Neuren for clinical trials in FXS and has consulted with Roche/Genentech, Zynerba and Novartis regarding fragile X treatment and clinical trial design. W.S. is an employee of F. Hoffman-La Roche. S.J. has served on the Novartis Fragile X Advisory Board and has consulted for Novartis and WG Pharma.

PowerPoint slides

Glossary

Mosaicism

The presence of cell populations with a full mutation or premutation expansions. Methylation mosaicism is defined as some cells carrying fully methylated alleles and others carrying unmethylated alleles. Approximately 40% of male patients with fragile X syndrome present with size-mosaicism.

Rotarod

A performance test in which the rodent is placed on a rotating rod to examine motor skills and coordination.

Aberrant Behaviour Checklist

(ABC). A caregiver-rated symptom checklist that assesses problem behaviours via a 58-item and 5-subscale questionnaire. Each item is attributed a score from 0 (“not at all a problem”) to 3 (“problem is severe in degree”), resulting in total score ranks from 0 to 174.

Endophenotypes

Phenotypes that bear a closer relationship to the biological processes underlying the clinical manifestation.

ABC-CFX Social Avoidance subscale

The ABC-CFX is a modified version of the ABC-C, with 55 items and 6 subscales (irritability, lethargy/withdrawal, stereotypic behaviour, hyperactivity, inappropriate speech and social avoidance). The total score ranks from 0 to165, and a negative change from baseline indicates improvement.

Vineland Adaptive Behavior Scale

(VABS). A test that measures adaptive behaviour across lifespan and contains five domains (communication, daily living skills, socialization, motor skills and maladaptive behaviour) each with 2–3 subdomains, such as expressive language.

Audiogenic seizures

Convulsions caused by prolonged exposure to high frequency sound in, for example, rodents.

National Institutes of Health Toolbox

A battery of extensively validated computer-administered cognitive, emotional, motor and sensory tests with utility across the lifespan.

Cancellation task

A test of attention span in which the participants cancel the target figure and leave all other figures uncancelled (in other words, it is a test of the number of correct detections).

Wechsler Intelligence Scale for Children

(WISC). An intelligence test for children between 6 and 16 years of age.

Stanford–Binet

A cognitive ability and intelligence test used for individuals aged 2 to 85+ years.

Jadad score

A score that ranks the quality of clinical trials with respect to randomization, blinding and placebo control on a score from 0–5, with 5 being the maximum score.

Open label

A type of clinical trial in which the treatment being administered is known to both the researchers and participants.

Bayesian Design trials

A theory of statistical inference in clinical trials.

Sequential studies

Studies that combine longitudinal and cross-sectional designs by following several different age cohorts over time.

Test–retest validation

A measure of reliability obtained by administering the same test twice over a period of time to a group of individuals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berry-Kravis, E., Lindemann, L., Jønch, A. et al. Drug development for neurodevelopmental disorders: lessons learned from fragile X syndrome. Nat Rev Drug Discov 17, 280–299 (2018). https://doi.org/10.1038/nrd.2017.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.221

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research