Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translational approaches to treatment-induced symptoms in cancer patients

Abstract

Cancer therapy makes patients sick. The therapies that are available to clinicians allow them to successfully control nausea, emesis and pain. However, this is not the case for a number of other symptoms that include fatigue, distractibility, poor memory, and diminished interest in previously pleasurable activities. These symptoms cluster during the course of cancer therapy and impair patient quality of life, limit therapy options and do not always resolve at the cessation of treatment. It is possible to describe the intensity and temporal features of symptoms and assess their relationship with the inflammatory response that is associated with cancer and cancer therapy. At the preclinical level, sophisticated animal models still need to be deployed to study the causal role of inflammation in specific components of cancer-related symptoms. Various approaches can be optimally combined in a translational symptom research pathway to provide a framework for assessing in a systematic manner the neurobehavioral toxicity of existing and newly developed cancer therapies. Ultimately, this knowledge will allow derivation of mechanism-based interventions to prevent or alleviate cancer-related symptoms.

Key Points

  • Overwhelming fatigue, distractibility, poor memory, and lack of interest in activities that used to be pleasurable are among the most distressing symptoms patients experience in response to cancer therapy

  • The trajectory of these symptoms can be studied over time together with their co-occurrence in the form of clusters and their impact on patients' daily functioning

  • There is already evidence that the development of cancer-related symptoms is associated with an increased expression of inflammatory mediators

  • Animal studies have confirmed that cancer therapy induces profound neurobehavioural changes that are associated with inflammation; attempts to model key symptoms in cancer patients are still scarce

  • Individual differences in symptom severity in response to cancer therapy provide a unique perspective on the genomics of symptoms that should be incorporated in animal models of cancer-related symptoms

  • Preclinical and clinical approaches can be combined in a translational research pathway that provides a framework for addressing the neurobehavioural toxicities of cancer therapies

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Symptom severity and symptom clusters in treated cancer patients.
Figure 2: Variation in symptom burden in patients treated for cancer.
Figure 3: Immune-to-brain communication pathways.
Figure 4: Role of proinflammatory cytokines.
Figure 5: Schematic of cancer-related symptoms modelled in animals.
Figure 6: Cancer-related fatigue and effort-related decision making.
Figure 7: Motivational assessment in mice.
Figure 8: Translational strategy of the pathophysiology of inflammation-associated depression.

Similar content being viewed by others

References

  1. Cleeland, C. S. et al. Pain and its treatment in outpatients with metastatic cancer. N. Engl. J. Med. 330, 592–596 (1994).

    CAS  PubMed  Google Scholar 

  2. Fisch, M. J. et al. Prospective observational study of pain and analgesic prescribing in medical oncology outpatients with breast, colorectal, lung, or prostate cancer. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2011.39.2381

  3. Cleeland, C. S. Cancer-related symptoms. Semin. Radiat. Oncol. 10, 175–190 (2000).

    CAS  PubMed  Google Scholar 

  4. Shi, Q. et al. Symptom burden in cancer survivors 1 year after diagnosis: a report from the American Cancer Society's Studies of Cancer Survivors. Cancer 117, 2779–2790 (2011).

    PubMed  Google Scholar 

  5. Cleeland, C. S., O'Mara, A., Zagari, M. & Baas, C. Integrating pain metrics into oncology clinical trials. Clin. Cancer Res. 17, 6646–6650 (2011).

    PubMed  Google Scholar 

  6. Chang, Y. J. et al. Assessment of clinical relevant fatigue level in cancer. Support. Care Cancer 15, 891–896 (2007).

    PubMed  Google Scholar 

  7. Segota, E. & Bukowski, R. M. The promise of targeted therapy: cancer drugs become more specific. Cleve. Clin. J. Med. 71, 551–560 (2004).

    PubMed  Google Scholar 

  8. Shepard, D. R. & Garcia, J. A. Toxicity associated with the long-term use of targeted therapies in patients with advanced renal cell carcinoma. Expert Rev. Anticancer Ther. 9, 795–805 (2009).

    CAS  PubMed  Google Scholar 

  9. Miller, A. H., Ancoli-Israel, S., Bower, J. E., Capuron, L. & Irwin, M. R. Neuroendocrine-immune mechanisms of behavioral comorbidities in patients with cancer. J. Clin. Oncol. 26, 971–982 (2008).

    CAS  PubMed  Google Scholar 

  10. Cleeland C. S. & Sloan, J. A. ASCPRO Organizing Group. Assessing the symptoms of cancer using patient-reported outcomes (ASCPRO): searching for standards. J. Pain Symptom Manage. 39, 1077–1085 (2010).

    PubMed  Google Scholar 

  11. Mendoza, T. R. et al. The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 85, 1186–1196 (1999).

    CAS  PubMed  Google Scholar 

  12. Cleeland, C. S. et al. Assessing symptom distress in cancer patients: the, M.D. Anderson Symptom Inventory. Cancer 89, 1634–1646 (2000).

    CAS  PubMed  Google Scholar 

  13. Wang, X. S. et al. Longitudinal study of the relationship between chemoradiation therapy for non-small-cell lung cancer and patient symptoms. J. Clin. Oncol. 24, 4485–4491 (2006).

    PubMed  Google Scholar 

  14. Cleeland, C. S. Symptom burden: multiple symptoms and their impact as patient-reported outcomes. J. Natl Cancer Inst. Monogr. 37, 16–21 (2007).

    Google Scholar 

  15. Dodd, M. J., Miaskowski, C. & Paul, S. M. Symptom clusters and their effect on the functional status of patients with cancer. Oncol. Nurs. Forum 28, 465–470 (2001).

    CAS  PubMed  Google Scholar 

  16. Kirkova, J., Aktas, A., Walsh, D. & Davis, M. P. Cancer symptom clusters: clinical and research methodology. J. Palliat. Med. 14, 1149–1166 (2011).

    PubMed  Google Scholar 

  17. Nelson, C. J., Nandy, N. & Roth, A. J. Chemotherapy and cognitive deficits: mechanisms, findings, and potential interventions. Palliat. Support. Care 5, 273–280 (2007).

    PubMed  Google Scholar 

  18. Cleeland, C. S. et al. Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine-immunologic model of cancer symptoms. Cancer 97, 2919–2925 (2003).

    PubMed  Google Scholar 

  19. Kim, H. J., Barsevick, A. M., Fang, C. Y. & Miaskowski, C. Common biological pathways underlying the psychoneurological symptom cluster in cancer patients. Cancer Nurs. http://dx.doi.org/10.1097/NCC.0b013e318233a811.

  20. Wang, X. S. et al. Serum sTNF-R1 and IL-6 are associated with severity of symptom burden caused by concurrent chemoradiation therapy for patients with lung and gastrointestinal cancers. Brain Behav. Immun. 32 (Suppl. 2), S61–S62 (2009).

    Google Scholar 

  21. Shi, Q. & Cleeland, C. S. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 192–205 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  22. Pacharinsak, C. & Beitz, A. Animal models of cancer pain. Comp. Med. 58, 220–233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang, V. T. & Portenoy, R. K. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 18–30 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  24. Zhang, H. & Dougherty, P. M. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 41–50 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  25. Dantzer, R. Cytokine-induced sickness behavior: where do we stand? Brain Behav. Immun. 15, 7–24 (2001).

    CAS  PubMed  Google Scholar 

  26. Coussens, L. M. & Werb, Z. Inflammation and cancer. Nature 420, 860–867 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  28. Wortel, C. H. et al. Interleukin-6 mediates host defense responses induced by abdominal surgery. Surgery 114, 564–570 (1993).

    CAS  PubMed  Google Scholar 

  29. Schmidt, A., Bengtsson, A., Tylman, M. & Blomqvist, L. Pro-inflammatory cytokines in elective flap surgery. J. Surg. Res. 137, 117–121 (2007).

    CAS  PubMed  Google Scholar 

  30. Deiner, S. & Silverstein, J. H. Postoperative delirium and cognitive dysfunction. Br. J. Anaesth. 103 (Suppl. 1), i41–i46 (2009).

    PubMed  PubMed Central  Google Scholar 

  31. Cibelli, M. et al. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann. Neurol. 68, 360–368 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brode, S. & Cooke, A. Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit. Rev. Immunol. 28, 109–126 (2008).

    CAS  PubMed  Google Scholar 

  33. Hei, T. K., Zhou, H., Chai, Y., Ponnaiya, B. & Ivanov, V. N. Radiation induced non-targeted response: mechanism and potential clinical implications. Curr. Mol. Pharmacol. 4, 96–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsavaris, N., Kosmas, C., Vadiaka, M., Kanelopoulos, P. & Boulamatsis, D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br. J. Cancer 87, 21–27 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bower, J. E. et al. Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J. Clin. Oncol. 29, 3517–3522 (2011).

    PubMed  PubMed Central  Google Scholar 

  36. Hann, D. M. et al. Measurement of fatigue in cancer patients: development and validation of the Fatigue Symptom Inventory. Qual. Life Res. 7, 301–310 (1998).

    CAS  PubMed  Google Scholar 

  37. Bower, J. E. et al. Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin. Cancer Res. 15, 5534–5540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stamme, C. et al. Temporal sequence of pulmonary and systemic inflammatory responses to graded polymicrobial peritonitis in mice. Infect. Immun. 67, 5642–5650 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Dugernier, T. L. et al. Compartmentalization of the inflammatory response during acute pancreatitis: correlation with local and systemic complications. Am. J. Respir. Crit. Care Med. 168, 148–157 (2003).

    PubMed  Google Scholar 

  40. Lutgendorf, S. K. et al. Interleukin-6, cortisol, and depressive symptoms in ovarian cancer patients. J. Clin. Oncol. 26, 4820–4827 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheehan, T. J., Fifield, J., Reisine, S. & Tennen, H. The measurement structure of the Center for Epidemiologic Studies Depression Scale. J. Pers. Assess. 64, 507–521 (1995).

    CAS  PubMed  Google Scholar 

  42. Korenromp, I. H. et al. Reduced Th2 cytokine production by sarcoidosis patients in clinical remission with chronic fatigue. Brain Behav. Immun. 25, 1498–1502 (2011).

    CAS  PubMed  Google Scholar 

  43. Langhorst, J. et al. Stress-related peripheral neuroendocrine-immune interactions in women with ulcerative colitis. Psychoneuroendocrinology 32, 1086–1096 (2007).

    CAS  PubMed  Google Scholar 

  44. Capuron, L. & Miller, A. H. Cytokines and psychopathology: lessons from interferon-α. Biol. Psychiatry 56, 819–824 (2004).

    CAS  PubMed  Google Scholar 

  45. Seigers, R. & Fardell, J. E. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci. Biobehav. Rev. 35, 729–741 (2011).

    PubMed  Google Scholar 

  46. Pyter, L. M. et al. Mammary tumors induce select cognitive impairments. Brain Behav. Immun. 24, 903–907 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Krishnan, V. & Nestler, E. J. Animal models of depression: molecular perspectives. Curr. Top. Behav. Neurosci. 7, 121–147 (2011).

    PubMed  PubMed Central  Google Scholar 

  48. Pyter, L. M., Pineros, V., Galang, J. A., McClintock, M. K. & Prendergast, B. J. Peripheral tumors induce depressive-like behaviors and cytokine production and alter hypothalamic-pituitary-adrenal axis regulation. Proc. Natl Acad Sci. USA 106, 9069–9074 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lamkin, D. M. et al. Cancer induces inflammation and depressive-like behavior in the mouse: modulation by social housing. Brain Behav. Immun. 25, 555–564 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Ray, M. A., Trammell, R. A., Verhulst, S., Ran, S. & Toth, L. A. Development of a mouse model for assessing fatigue during chemotherapy. Comp. Med. 61, 119–130 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Malik, N. M. et al. Behavioural and hypothalamic molecular effects of the anti-cancer agent cisplatin in the rat: A model of chemotherapy-related malaise? Pharmacol. Biochem. Behav. 83, 9–20 (2006).

    CAS  PubMed  Google Scholar 

  52. Konat, G. W., Kraszpulski, M., James, I., Zhang, H. T. & Abraham, J. Cognitive dysfunction induced by chronic administration of common cancer chemotherapeutics in rats. Metab. Brain Dis. 23, 325–333 (2008).

    CAS  PubMed  Google Scholar 

  53. Wood, L. J. et al. The cancer chemotherapy drug etoposide (VP-16) induces proinflammatory cytokine production and sickness behavior-like symptoms in a mouse model of cancer chemotherapy-related symptoms. Biol. Res. Nurs. 8, 157–169 (2006).

    CAS  PubMed  Google Scholar 

  54. Seigers, R. et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav. Brain Res. 186, 168–175 (2008).

    CAS  PubMed  Google Scholar 

  55. Gandal, M. J., Ehrlichman, R. S., Rudnick, N. D. & Siegel, S. J. A novel electrophysiological model of chemotherapy-induced cognitive impairments in mice. Neuroscience 157, 95–104 (2008).

    CAS  PubMed  Google Scholar 

  56. Fardell, J. E., Vardy, J., Logge, W. & Johnston, I. Single high dose treatment with methotrexate causes long-lasting cognitive dysfunction in laboratory rodents. Pharmacol. Biochem. Behav. 97, 333–339 (2010).

    CAS  PubMed  Google Scholar 

  57. Seigers, R. & Fardell, J. E. Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neurosci. Biobehav. Rev. 35, 729–741 (2010).

    PubMed  Google Scholar 

  58. Malik, N. M., Liu, Y. L., Cole, N., Sanger, G. J. & Andrews, P. L. Differential effects of dexamethasone, ondansetron and a tachykinin NK1 receptor antagonist (GR205171) on cisplatin-induced changes in behaviour, food intake, pica and gastric function in rats. Eur. J. Pharmacol. 555, 164–173 (2007).

    CAS  PubMed  Google Scholar 

  59. Acharya, M. M. et al. Human neural stem cell transplantation ameliorates radiation-induced cognitive dysfunction. Cancer Res. 71, 4834–4845 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Boyette-Davis, J., Xin, W., Zhang, H. & Dougherty, P. M. Intraepidermal nerve fiber loss corresponds to the development of taxol-induced hyperalgesia and can be prevented by treatment with minocycline. Pain 152, 308–313 (2011).

    CAS  PubMed  Google Scholar 

  61. Crawley, J. N. Behavioral phenotyping strategies for mutant mice. Neuron 57, 809–818 (2008).

    CAS  PubMed  Google Scholar 

  62. Dantzer, R., Bluthe, R. M. & LeMoal, M. Experimental assessment of drug-induced changes in cognitive function: vasopressin as a case study. Neurotoxicology 9, 471–477 (1988).

    CAS  PubMed  Google Scholar 

  63. Ward, R. D., Simpson, E. H., Kandel, E. R. & Balsam, P. D. Modeling motivational deficits in mouse models of schizophrenia: behavior analysis as a guide for neuroscience. Behav. Processes 87, 149–156 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Krishnan, V. & Nestler, E. J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Carmichael, M. D. et al. Role of brain IL-1β on fatigue after exercise-induced muscle damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1344–R1348 (2006).

    CAS  PubMed  Google Scholar 

  66. Carmichael, M. D. et al. Role of brain macrophages on IL-1beta and fatigue following eccentric exercise-induced muscle damage. Brain Behav. Immun. 24, 564–568 (2010).

    CAS  PubMed  Google Scholar 

  67. Zemke, D. & Majid, A. The potential of minocycline for neuroprotection in human neurologic disease. Clin. Neuropharmacol. 27, 293–298 (2004).

    CAS  PubMed  Google Scholar 

  68. O'Connor, J. C. et al. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2, 3-dioxygenase activation in mice. Mol. Psychiatry 14, 511–522 (2009).

    CAS  PubMed  Google Scholar 

  69. Boyette-Davis, J. & Dougherty, P. M. Protection against oxaliplatin-induced mechanical hyperalgesia and intraepidermal nerve fiber loss by minocycline. Exp. Neurol. 229, 353–357 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Willemen, H. L. et al. Microglial/macrophage GRK2 determines duration of peripheral IL-1β-induced hyperalgesia: contribution of spinal cord CX3CR1, p38 and IL-1 signaling. Pain 150, 550–560 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zink, M. C. et al. Neuroprotective and anti-human immunodeficiency virus activity of minocycline. JAMA 293, 2003–2011 (2005).

    CAS  PubMed  Google Scholar 

  72. Sacktor, N. et al. Minocycline treatment for HIV-associated cognitive impairment: results from a randomized trial. Neurology 77, 1135–1142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ho, E. L. et al. Minocycline fails to modulate cerebrospinal fluid HIV infection or immune activation in chronic untreated HIV-1 infection: results of a pilot study. AIDS Res. Ther. 8, 17 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Buch, M. H. & Emery, P. New therapies in the management of rheumatoid arthritis. Curr. Opin. Rheumatol. 23, 245–251 (2011).

    CAS  PubMed  Google Scholar 

  75. Numerof, R. P. & Asadullah, K. Cytokine and anti-cytokine therapies for psoriasis and atopic dermatitis. BioDrugs 20, 93–103 (2006).

    CAS  PubMed  Google Scholar 

  76. Monk, J. P. et al. Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J. Clin. Oncol. 24, 1852–1859 (2006).

    CAS  PubMed  Google Scholar 

  77. Penna, F. et al. Anti-cytokine strategies for the treatment of cancer-related anorexia and cachexia. Expert Opin. Biol. Ther. 10, 1241–1250 (2010).

    CAS  PubMed  Google Scholar 

  78. Jatoi, A. et al. A placebo-controlled, double-blind trial of infliximab for cancer-associated weight loss in elderly and/or poor performance non-small cell lung cancer patients (N01C9). Lung Cancer 68, 234–239 (2009).

    PubMed  Google Scholar 

  79. Goedendorp, M. M., Gielissen, M. F., Verhagen, C. A. & Bleijenberg, G. Psychosocial interventions for reducing fatigue during cancer treatment in adults. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD006953. http://dx.doi.org/10.1002/14651858.CD006953.

  80. Payne, C., Wiffen, P. J. & Martin, S. Interventions for fatigue and weight loss in adults with advanced progressive illness. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD008427. http://dx.doi.org/10.1002/14651858.CD008427.pub2.

  81. Brell, J. M. & Minasian, L. M. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 315–324 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  82. Cleeland, C. S., Fisch, M. J. & Dunn, A. J. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 341–348 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  83. Dantzer, R., O'Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Capuron, L. & Miller, A. H. Immune system to brain signaling: neuropsychopharmacological implications. Pharmacol. Ther. 130, 226–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cavaletti, G., Alberti, P. & Marmiroli, P. Chemotherapy-induced peripheral neurotoxicity in the era of pharmacogenomics. Lancet Oncol. 12, 1151–1161 (2011).

    CAS  PubMed  Google Scholar 

  86. Bull, S. J. et al. Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-alpha and ribavirin treatment. Mol. Psychiatry 14, 1095–1104 (2009).

    CAS  PubMed  Google Scholar 

  87. Aouizerat, B. E. et al. Preliminary evidence of a genetic association between tumor necrosis factor alpha and the severity of sleep disturbance and morning fatigue. Biol. Res. Nurs. 11, 27–41 (2009).

    CAS  PubMed  Google Scholar 

  88. Miaskowski, C. et al. Preliminary evidence of an association between a functional interleukin-6 polymorphism and fatigue and sleep disturbance in oncology patients and their family caregivers. J. Pain Symptom Manage. 40, 531–544 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Froklage, F. E., Reijneveld, J. C. & Heimans, J. J. Central neurotoxicity in cancer chemotherapy: pharmacogenetic insights. Pharmacogenomics 12, 379–395 (2011).

    PubMed  Google Scholar 

  90. Ahles, T. A. & Saykin, A. J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 7, 192–201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cole, S. W. Elevating the perspective on human stress genomics. Psychoneuroendocrinology 35, 955–962 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Miller, G. E. et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc. Natl Acad. Sci. USA 106, 14716–14721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Greene, W. C. & Chen, L. F. Regulation of NF-κB action by reversible acetylation. Novartis Found. Symp. 259, 208–217 (2004).

    CAS  PubMed  Google Scholar 

  94. Lee, H. et al. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15, 283–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Capuron, L. et al. Chronic low-grade inflammation in elderly persons is associated with altered tryptophan and tyrosine metabolism: role in neuropsychiatric symptoms. Biol. Psychiatry 70, 175–182 (2011).

    CAS  PubMed  Google Scholar 

  96. Salamone, J. D., Correa, M., Farrar, A. & Mingote, S. M. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191, 461–482 (2007).

    CAS  PubMed  Google Scholar 

  97. Larson, S. J., Romanoff, R. L., Dunn, A. J. & Glowa, J. R. Effects of interleukin-1beta on food-maintained behavior in the mouse. Brain Behav. Immun. 16, 398–410 (2002).

    CAS  PubMed  Google Scholar 

  98. Miaskowski, C., Aouizerat, B. E., Dodd, M. & Cooper, B. Conceptual issues in symptom clusters research and their implications for quality-of-life assessment in patients with cancer. J. Natl Cancer Inst. Monogr. 2007, 39–46 (2007).

    Google Scholar 

  99. Wang, X. S. et al. Impact of cultural and linguistic factors on symptom reporting by patients with cancer. J. Natl Cancer Inst. 102, 732–738 (2010).

    PubMed  PubMed Central  Google Scholar 

  100. Barsevick, A. M. The elusive concept of the symptom cluster. Oncol. Nurs. Forum 34, 971–980 (2007).

    PubMed  Google Scholar 

  101. Kirkova, J., Walsh, D., Aktas, A. & Davis, M. P. Cancer symptom clusters: old concept but new data. Am. J. Hosp. Palliat. Care 27, 282–288 (2010).

    PubMed  Google Scholar 

  102. Aktas, A., Walsh, D. & Rybicki, L. Symptom clusters: myth or reality? Palliat. Med. 24, 373–385 (2010).

    PubMed  Google Scholar 

  103. Fan, G., Filipczak, L. & Chow, E. Symptom clusters in cancer patients: a review of the literature. Curr. Oncol. 14, 173–179 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Imler, J. L. & Hoffmann, J. A. Toll receptors in innate immunity. Trends Cell Biol. 11, 304–311 (2001).

    CAS  PubMed  Google Scholar 

  105. Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R. & Coyle, A. J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 28, 367–388 (2010).

    CAS  PubMed  Google Scholar 

  106. Konsman, J. P., Parnet, P. & Dantzer, R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 25, 154–159 (2002).

    CAS  PubMed  Google Scholar 

  107. Gaykema, R. P. & Goehler, L. E. Ascending caudal medullary catecholamine pathways drive sickness-induced deficits in exploratory behavior: brain substrates for fatigue? Brain Behav. Immun. 25, 443–460 (2011).

    CAS  PubMed  Google Scholar 

  108. Konsman, J. P. et al. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide. Eur. J. Neurosci. 28, 2499–2510 (2008).

    CAS  PubMed  Google Scholar 

  109. Stone, E. A., Lehmann, M. L., Lin, Y. & Quartermain, D. Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biol. Psychiatry 60, 803–811 (2006).

    CAS  PubMed  Google Scholar 

  110. Grossberg, A. J. et al. Inflammation-induced lethargy is mediated by suppression of orexin neuron activity. J. Neurosci. 31, 11376–11386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Huang, A. et al. Serum tryptophan decrease correlates with immune activation and impaired quality of life in colorectal cancer. Br. J. Cancer 86, 1691–1696 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Capuron, L. et al. Interferon-alpha-induced changes in tryptophan metabolism. relationship to depression and paroxetine treatment. Biol. Psychiatry 54, 906–914 (2003).

    CAS  PubMed  Google Scholar 

  113. O'Connor, J. C. et al. Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2, 3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci. 29, 4200–4209 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Meagher, M. W. in Cancer Symptom Science: Measurement and Management (eds Cleeland, C. S., Fisch, M. J. & Dunn, A. J.) 124–141 (Cambridge University Press, Cambridge, 2011).

    Google Scholar 

  115. Berridge, K. C. & Robinson, T. E. Parsing reward. Trends Neurosci. 26, 507–513 (2003).

    CAS  PubMed  Google Scholar 

  116. Bluthe, R. M., Dantzer, R. & Le Moal, M. Peripheral injections of vasopressin control behavior by way of interoceptive signals for hypertension. Behav. Brain Res. 18, 31–39 (1985).

    CAS  PubMed  Google Scholar 

  117. Aubert, A. & Dantzer, R. The taste of sickness: lipopolysaccharide-induced finickiness in rats. Physiol. Behav. 84, 437–444 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research described was supported by Award Numbers R01 MH079829 and R01 NS073939 to R. Dantzer, and P01 CA124787 and R01 CA026582 to C. S. Cleeland, and R01-NS060822 to M. W. Meagher. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to researching data for the article, discussing content, and writing and editing the manuscript prior to submission, and revising the article after peer review.

Corresponding author

Correspondence to Robert Dantzer.

Ethics declarations

Competing interests

R. Dantzer has received recent honoraria from Lundbeck Laboratories and Janssen. He is also a consultant for Lundbeck Laboratories. C. S. Cleeland has been a consultant/advisor for Abbott, Amgen, BMS-Bristol Myers Squibb, Exelixis, Genentech, and Pfizer. C. S. Cleeland has also received research funds from AstraZeneca. M. W. Meagher declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dantzer, R., Meagher, M. & Cleeland, C. Translational approaches to treatment-induced symptoms in cancer patients. Nat Rev Clin Oncol 9, 414–426 (2012). https://doi.org/10.1038/nrclinonc.2012.88

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.88

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer