Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach

Abstract

Allogeneic haematopoietic stem-cell transplantation (HSCT) is frequently applied as part of the treatment in patients with acute myeloid leukaemia (AML) in their first or subsequent remission. Allogeneic HSCT reduces relapse, but nonrelapse mortality and morbidity might counterbalance this beneficial effect. Here, we review recent studies reporting new disease-specific prognostic markers, in addition to allogeneic-HSCT-related risk factors, which can be assessed at specific time points during treatment. We propose risk assessment as a dynamic process during treatment, incorporating both disease-related and transplant-related factors for the decision to proceed either to allogeneic HSCT or to apply a nontransplant strategy. We suggest that allogeneic HSCT might be favoured if the projected disease-free survival is expected to improve by at least 10% based on an individual's risk assessment. The approach requires initial disease risk assessment, identifying a sibling or unrelated donor soon after diagnosis and the incorporation of time-dependent risk factors, all within the context of an integrated therapeutic management approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Parameters for decision making prior to allogeneic HSCT in patients with AML in their first complete remission.
Figure 2: Cumulative incidence of nonrelapse mortality, with relapse as a competing risk, in patients with AML in their first complete remission.

Similar content being viewed by others

References

  1. Slovak, M. L. et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96, 4075–4083 (2000).

    CAS  PubMed  Google Scholar 

  2. Burnett, A. K. et al. The value of allogeneic bone marrow transplant in patients with acute myeloid leukaemia at differing risk of relapse: results of the UK MRC AML10 Trial. Br. J. Haematol. 118, 385–400 (2002).

    Article  PubMed  Google Scholar 

  3. Suciu, S. et al. Allogeneic compared to autologous stem cell transplantation in the treatment of patients younger than 46 years old with acute myeloid leukemia (AML) in first complete remission (CR1): an intention to treat analysis of the EORTC/GIMEMA AML-10 trial. Blood 102, 1232–1240 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Yanada, M., Matsuo, K., Emi, N. & Naoe, T. Efficacy of allogeneic hematopoietic stem cell transplantation depends on cytogenetic risk for acute myeloid leukemia in first disease remission: a metaanalysis. Cancer 103, 1652–1658 (2005).

    Article  PubMed  Google Scholar 

  5. Cornelissen, J. J. et al. Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood 109, 3658–3666 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Koreth, J. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission. Systematic review and meta-analysis of prospective clinical trials. JAMA 301, 2349–2361 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta, V., Tallman, M. S. & Weisdorf, D. J. Allogeneic hematopoietic cell transplantation for adults with acute myeloid leukemia: myths, controversies, and unknowns. Blood 117, 2307–2318 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Juliusson, G. et al. Hematopoietic stem cell transplantation rates and long-term survival in acute myeloid and lymphoblastic leukemia. Cancer 117, 4238–4246 (2011).

    Article  PubMed  Google Scholar 

  9. Schlenk, R. F. et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N. Engl. J. Med. 358, 1909–1918 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Smith, M. L., Hills, R. K. & Grimwade, D. Independent prognostic variables in acute myeloid leukemia. Blood Rev. 25, 39–51 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Breems, D. A. et al. Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J. Clin. Oncol. 26, 4791–4797 (2008).

    Article  PubMed  Google Scholar 

  12. Döhner, H. et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115, 453–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Kayser, S. et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 117, 2137–2145 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Feldman, E. J. Does therapy-related AML have a poor prognosis, independent of the cytogenetic/molecular determinants? Best Pract. Res. Clin. Hematol. 24, 523–526 (2011).

    Article  Google Scholar 

  15. Vellenga, E. et al. Autologous perpheral blood stem cell transplantation for acute myeloid leukemia. Blood 118, 6037–6042 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Pfirrmann, M. et al. Prediction of post-remission survival in acute myeloid leukaemia: a post-hoc analysis of the AML96 trial. Lancet Oncol. 13, 207–214 (2012).

    Article  PubMed  Google Scholar 

  17. Burnett, A. K. et al. Attempts to optimize induction and consolidation treatment in acute myeloid leukemia: results of the MRC AML12 trial. J. Clin. Oncol. 28, 586–595 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Burnett, A. K. et al. Identification of patients with acute myeloblastic leukemia who benefit from the addition of gemtuzumab ozogamcin: results of the MRC AML15 trial. J. Clin. Oncol. 29, 369–377 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Fang, M. et al. Outcome of AML patients with monosomal karyotype who undergo hematopoietic cell transplantation. Blood 118, 1490–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cornelissen, J. J. et al. A comparative analysis of the value of allogeneic hematopoietic stem cell transplantation in acute myeloid leukemia with monosomal karyotype versus other cytogenetic risk categories. J. Clin. Oncol. 30, 2140–2146 (2012).

    Article  PubMed  Google Scholar 

  21. Kayser, S. Monosomal karyotype in adult acute myeloid leukemia: prognostic impact and outcome after different treatment strategies. Blood 119, 551–558 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Stelljes, M. et al. Allogeneic transplantation as post-remission therapy for cytogenetically high-risk acute myeloid leukemia: landmark analysis from a single prospective multicenter trial. Haematologica 96, 972–979 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. de Lima, M. et al. Maintenance therapy with low-dose azacitidine after allogeneic hematopoietic stem cell transplantation for recurrent acute myelogenous leukemia or myelodysplastic syndrome. A dose and schedule finding study. Cancer 116, 5420–5431 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Mantel, N. & Byar, D. P. Evaluation of response-time data involving transient states: an illustration using heart-transplant data. J. Am. Stat. Assoc. 69, 81–86 (1974).

    Article  Google Scholar 

  25. Hermans, J. et al. Treatment of acute myelogous leukemia. An EBMT–EORTC retrospective analysis of chemotherapy versus allogeneic or autologous bone marrow transplantation. Eur. J. Cancer Clin. Oncol. 25, 545–550 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Schrauder, A. et al. Superiority of allogeneic hematopoietic stem-cell transplantation compared with chemotherapy alone in high-risk childhood T-cell acute lymphoblastic leukemia: results from ALL-BFM 90 and 95. J. Clin. Oncol. 24, 5742–5749 (2006).

    Article  PubMed  Google Scholar 

  27. Andersen, P. & Gill, R. D. Cox's regression model for counting processes: a large sample study. Ann. Stat. 10, 1100–1120 (1982).

    Article  Google Scholar 

  28. Anderson, J. R., Cain, K. C. & Gelber, R. D. Analysis of survival by tumor response. J. Clin. Oncol. 1, 710–719 (1983).

    Article  CAS  PubMed  Google Scholar 

  29. Schlenk, R. F. et al. Prospective evaluation of allogeneic hematopoietic stem-cell transplantation from matched related and matched unrelated donors in younger adults with high-risk acute myeloid leukemia: German–Austrian trial AMLHD98A. J. Clin. Oncol. 28, 4642–4648 (2010).

    Article  PubMed  Google Scholar 

  30. Marcucci, G., Haferlach, T. & Döhner, H. Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J. Clin. Oncol. 29, 475–486 (2009).

    Article  CAS  Google Scholar 

  31. Mrózek, K., Radmacher, M. D., Bloomfield, C. D. & Marcucci, G. Molecular signatures in acute myeloid leukemia. Curr. Opin. Hematol. 16, 64–69 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Döhner, K. et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: interaction with other gene mutations. Blood 106, 3740–3746 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. Schnittger, S. et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood 106, 3733–3739 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Thiede, C. et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107, 4011–4020 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Verhaak, R. G. et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106, 3747–3754 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Gale, R. E. et al. No evidence that FLT3 status should be considered as an indicator for transplantation in acute myeloid leukemia (AML): an analysis of 1135 patients, excluding acute myeloid leukemia, from the UK MRC AML10 and 12 trials. Blood 106, 3658–3665 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Brunet, S. et al. Impact of FLT3 internal tandem duplication on the outcome of related and unrelated hematopoietic transplantation for adult acute myeloid leukemia in first remission: a retrospective analysis. J. Clin. Oncol. 30, 735–741 (2012).

    Article  PubMed  Google Scholar 

  39. Fröhling S. et al. CEBPA mutations in younger adults with acute myeloid leukemia and normal cytogenetics: prognostic relevance and analysis of cooperating mutations. J. Clin. Oncol. 22, 624–633 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. Wouters, B. J. et al. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood 113, 3088–3091 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dufour, A. et al. AML with biallelic CEBPA gene mutations and normal karyotype represent a distinct genetic entity associated with a favorable clinical outcome. J. Clin. Oncol. 28, 570–577 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Green, C. L. et al. Prognostic significance of CEBPA mutrations in a large cohort of younger adult patients with AML. J. Clin. Oncol. 28, 2739–2747 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Taskesen, E. et al. Prognostic impact, concurrent genetic mutations, and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML patients: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117, 2469–2475 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Patel, J. P. et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079–1089 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ley, T. J. et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363, 2424–2433 (2012).

    Article  Google Scholar 

  46. Paschka, P. et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 28, 3636–3643 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Marcucci, G. et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J. Clin. Oncol. 28, 2348–2355 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rockova, V. et al. Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers. Blood 118, 1069–1076 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Barjesteh van Waalwijk van Doorn-Khosrovani, S. et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 101, 837–845 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. Lugthart, S. et al. High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated. Blood 111, 4329–4337 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Gröschel, S. et al. High Evi-1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities. J. Clin. Oncol. 28, 2101–2107 (2010).

    Article  PubMed  CAS  Google Scholar 

  52. Kern, W., Schoch, C., Haferlach, T. & Schnittger, S. Monitoring of minimal residual disease in acute myeloid leukemia. Crit. Rev. Oncol. Hematol. 56, 283–309 (2005).

    Article  PubMed  Google Scholar 

  53. Maurillo, L. et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J. Clin. Oncol. 26, 4944–4951 (2008).

    Article  PubMed  Google Scholar 

  54. Walter, R. B. et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 29, 1190–1197 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Corbacioglu, A. et al. Prognostic impact of minimal residual disease in CBF-MYH11 positive AML. J. Clin. Oncol. 28, 3742–3749 (2010).

    Article  CAS  Google Scholar 

  56. Schnittger, S. et al. Minimal residual disease levels assessed by NPM1 mutation specific RQ-PCR provide important prognostic information in AML. Blood 114, 2220–2231 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Krönke, J. et al. Monitoring of minimal residual disease in NPM1 mutated acute myeloid leukemia: a study of the German–Austrian AML Study Group (AMLSG). J. Clin. Oncol. 29, 2709–2716 (2011).

    Article  PubMed  Google Scholar 

  58. Anasetti, C. What are the most important donor and recipient factors affecting the outcome of related and unrelated allogeneic transplantation? Best Pract. Res. Clin. Haematol. 21, 691–697 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gratwohl, A. et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 352, 1087–1092 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Gratwohl, A. et al. Risk score for outcome after allogeneic hematopoietic stem cell transplantation: a retrospective analysis. Cancer 115, 4715–4726 (2009).

    Article  PubMed  Google Scholar 

  61. Gratwohl, A. The EBMT risk score. Bone Marrow Transplant. 47, 749–756 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Passweg, J. R. et al. Donor characteristics affecting graft failure, graft-versus-host disease, and survival after unrelated donor transplantation with reduced-intensity conditioning for hematologic malignancies. Biol. Blood Marrow Transplant. 17, 1869–1873 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Körbling, M. & Freireich, E. J. Twenty-five years of peripheral blood stem cell transplantation. Blood 117, 6411–6416 (2011).

    Article  PubMed  CAS  Google Scholar 

  64. Flowers, M. E. et al. Comparative analysis of risk factors for acute graft-versus-host disease and for chronic graft-versus-host disease according to National Institutes of Health consensus criteria. Blood 117, 3214–3219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sorror, M. L. et al. Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 112, 1992–2001 (2008).

    Article  PubMed  Google Scholar 

  66. Martín-Antonio, B., Granell, M. & Urbano-Ispizua, A. Genomic polymorphisms of the innate immune system and allogeneic stem cell transplantation. Expert Rev. Hematol. 3, 411–427 (2010).

    Article  PubMed  Google Scholar 

  67. Diaconescu, R. et al. Morbidity and mortality with nonmyeloablative compared to myeloablative conditioning before hematopoietic cell transplantation from HLA matched related donors. Blood 104, 1550–1558 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Sorror, M. L. et al. Comparing morbidity and mortality of HLA-matched unrelated donor hematopoietic cell transplantation after nonmyeloablative and myeloablative conditioning: influence of pretransplantation comorbidities. Blood 104, 961–968 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Sorror, M. L. et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106, 2912–2919 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sorror, M. L. et al. Hematopoietic cell transplantation-specific comorbidity index as an outcome predictor for patients with acute myeloid leukemia in first remission: combined FHCRC and MDACC experiences. Blood 110, 4606–4613 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sorror, M. L. et al. Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 25, 4246–4254 (2007).

    Article  PubMed  Google Scholar 

  72. Sorror, M. L., Storer, B. & Storb, R. F. Validation of the hematopoietic cell transplantation-specific comorbidity index (HCT-CI) in single and multiple institutions: limitations and inferences. Biol. Blood Marrow Transplant. 15, 757–758 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mohty, M. et al. Association between the hematopoietic cell transplantation-specific comorbidity index (CI) and non-relapse mortality (NRM) after reduced intensity conditioning (RIC) allogeneic stem cell transplantation (allo-SCT) for acute myeloid leukemia (AML) in first complete remission (CR1). Blood 114, 650 (2009).

    Google Scholar 

  74. Bokhari, S. W. et al. Role of HCT-comorbidity index, age and disease status at transplantation in predicting survival and non-relapse mortality in patients with myelodysplasia and leukemia undergoing reduced-intensity-conditioning hemopoietic progenitor cell transplantation. Bone Marrow Transplant. 47, 528–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Eissa, H. et al. Allogeneic hematopoietic cell transplantation for chronic myelomonocytic leukemia: relapse-free survival is determined by karyotype and comorbidities. Biol. Blood Marrow Transplant. 17, 908–915 (2011).

    Article  PubMed  Google Scholar 

  76. Barba, P. et al. Comparison of two pretransplant predictive models and a flexible HCT-CI using different cut off points to determine low-, intermediate-, and high-risk groups: the flexible HCT-CI is the best predictor of NRM and OS in a population of patients undergoing allo-RIC. Biol. Blood Marrow Transplant. 16, 413–420 (2010).

    Article  PubMed  Google Scholar 

  77. Gooley, T. A. et al. Reduced mortality after allogeneic hematopoietic-cell transplantation. N. Engl. J. Med. 363, 2091–2101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gratwohl, A. et al. Introduction of a quality management system and outcome after hematopoietic stem-cell transplantation. J. Clin. Oncol. 29, 1980–1986 (2011).

    Article  PubMed  Google Scholar 

  79. Appelbaum, F. R. Hematopoietic cell transplantation from unrelated donors for treatment of patients with acute myeloid leukemia in first complete remission. Best Pract. Res. Clin. Haematol. 20, 67–75 (2007).

    Article  PubMed  Google Scholar 

  80. Petersdorf, E. W. HLA matching in allogeneic stem cell transplantation. Curr. Opin. Hematol. 11, 386–391 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Horan, J. T. et al. Reducing the risk for transplantation-related mortality after allogeneic hematopoietic cell transplantation: how much progress has been made? J. Clin. Oncol. 29, 805–813 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Aschan, J. Risk assessment in haematopoietic stem cell transplantation: conditioning. Best Pract. Res. Clin. Haematol. 20, 295–310 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Ciurea, S. O. & Andersson, B. S. Busulfan in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 15, 523–536 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Storb, R. Reduced-intensity conditioning transplantation in myeloid malignancies. Curr. Opin. Oncol. 21 (Suppl. 1), S3–5 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Blaise, D. et al. Reduced-intensity conditioning with fludarabin, oral busulfan, and thymoglobulin allows long-term disease control and low transplant-related mortality in patients with hematological malignancies. Exp. Hematol. 38, 1241–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Lee, S. J. et al. High resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 110, 4576–4583 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Lodewyck, T. et al. Predictive impact of allele-matching and EBMT risk score for outcome after T-cell depleted unrelated donor transplantation in poor-risk acute leukemia and myelodysplasia. Leukemia 25, 1548–1554 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Moore, J. et al. Equivalent survival for sibling and unrelated donor allogeneic stem cell transplantation for acute myelogenous leukemia. Biol. Blood Marrow Transplant. 13, 601–607 (2007).

    Article  PubMed  Google Scholar 

  89. Yakoub-Agha, I. et al. Allogeneic marrow stem-cell transplantation from human leukocyte antigen-identical siblings versus human leukocyte antigen-allelic-matched unrelated donors (10/10) in patients with standard-risk hematologic malignancy: a prospective study from the French Society of Bone Marrow Transplantation and Cell Therapy. J. Clin. Oncol. 24, 5695–5702 (2006).

    Article  PubMed  Google Scholar 

  90. Cutler, C. et al. Extended follow-up of methotrexate-free immunosuppression using sirolimus and tacrolimus in related and unrelated donor peripheral blood stem cell transplantation. Blood 109, 3108–3114 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Schetelig, J. et al. Matched unrelated or matched sibling donors result in comparable survival after allogeneic stem-cell transplantation in elderly patients with acute myeloid leukemia: a report from the cooperative German Transplant Study Group. J. Clin. Oncol. 26, 5183–5191 (2009).

    Article  Google Scholar 

  92. Basara, N. et al. Early related or unrelated haematopoietic cell transplantation results in higher overall survival and leukaemia-free survival compared with conventional chemotherapy in high-risk acute myeloid leukaemia patients in first complete remission. Leukemia 23, 635–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Gupta, V. et al. Comparable disease-free and overall survival after well-matched unrelated donor and matched sibling donor transplantation in acute myeloid leukemia with adverse risk karyotype in first complete remission. Blood 116, 1839–1848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Federmann, B. et al. Allogeneic hematopoietic cell transplantation in AML: comparable results after matched or mismatched unrelated versus matched related transplantation [abstract]. Blood 114, a1199 (2009).

    Google Scholar 

  95. Rocha, V. et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adult with acute leukemia. N. Engl. J. Med. 351, 2276–2285 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Laughlin, M. J. et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N. Engl. J. Med. 351, 2265–2275 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Brunstein, C. G., Aker, K. S. & Wagner, J. E. Umbilical cord blood transplantation for myeloid malignancies. Curr. Opin. Hematol. 14, 162–169 (2007).

    Article  PubMed  Google Scholar 

  98. Brunstein, C. G. et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood 110, 3064–3070 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chen, Y. B. & Spitzer, T. R. Current status of reduced-intensity allogeneic stem cell transplantation using alternative donors. Leukemia 22, 31–41 (2008).

    Article  PubMed  Google Scholar 

  100. Aversa, F. et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J. Clin. Oncol. 23, 1–8 (2005).

    Article  Google Scholar 

  101. Baron, F. & Storb, R. Hematopoietic cell transplantation after reduced-intensity conditioning for older adults with acute myeloid leukemia in complete remission. Curr. Opin. Hematol. 14, 145–151 (2007).

    Article  PubMed  Google Scholar 

  102. Blaise, D., Vey, N., Faucher, C. & Mohty, M. Current status of reduced-intensity-conditioning allogeneic stem cell transplantation for acute myeloid leukemia. Haematologica 92, 533–541 (2007).

    Article  PubMed  Google Scholar 

  103. Horwitz, M. E. Reduced intensity versus myeloablative allogeneic stem cell transplantation for the treatment of acute myeloid leukemia, myelodysplastic syndrome and acute lymphoid leukemia. Curr. Opin. Oncol. 23, 197–202 (2011).

    Article  PubMed  Google Scholar 

  104. Martino, R. et al. Evidence for a graft-versus-leukemia effect after allogeneic peripheral blood stem cell transplantation with reduced-intensity conditioning in acute myelogenous leukemia and myelodysplastic syndromes. Blood 100, 2243–2245 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Aoudjhane, M. et al. Comparative outcome of reduced intensity and myeloablative conditioning regimen in HLA identical sibling allogeneic haematopoietic stem cell transplantation for patients older than 50 years of age with acute myeloblastic leukaemia: a retrospective survey from the Acute Keukemia Working Party (ALWP) of the European group for Blood and Marrow Transplantation (EBMT). Leukemia 19, 2304–2312 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Scott, B. L. et al. Myeloablative vs nonmyeloablative allogeneic transplantation for patients with myelodysplastic syndrome or acute myelogenous leukemia with multilineage dysplasia: a retrospective analysis. Leukemia 20, 128–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Shimoni, A. et al. Allogeneic hematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: the role of dose intensity. Leukemia 20, 322–328 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Flynn, C. M. et al. Reduced intensity compared with high dose conditioning for allotransplantation in acute myeloid leukemia and myelodysplastic syndrome: a comparative clinical analysis. Am. J. Hematol. 82, 867–872 (2007).

    Article  PubMed  Google Scholar 

  109. Martino, R. et al. Retrospective comparison of reduced-intensity conditioning and conventional high-dose conditioning for allogeneic hematopoietic stem cell transplantation using HLA-identical sibling donors in myelodysplastic syndromes. Blood 108, 836–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Alyea, E. P. et al. Impact of conditioning regimen intensity on outcome of allogeneic hematopoietic cell transplantation for advanced acute myelogenous leukemia and myelodysplastic syndrome. Biol. Blood Marrow Transplant. 12, 1047–1055 (2006).

    Article  PubMed  Google Scholar 

  111. Martino, R., Valcárcel, D., Brunet, S., Sureda, A. & Sierra, J. Comparable non-relapse mortality and survival after HLA-identical sibling blood stem cell transplantation with reduced or conventional-intensity preparative regimens for high-risk myelodysplasia or acute myeloid leukemia in first remission. Bone Marrow Transplant. 41, 33–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Luger, S. M. et al. Similar outcomes using myeloablative vs reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transplant. 47, 203–211 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Ringdén, O. et al. Reduced intensity conditioning compared with myeloablative conditioning using unrelated donor transplants in patients with acute myeloid leukemia. J. Clin. Oncol. 27, 4570–4577 (2009).

    Article  PubMed  Google Scholar 

  114. Valcárcel, D. et al. Sustained remissions of high-risk acute myeloid leukemia and myelodysplastic syndrome after reduced-intensity conditioning allogeneic hematopoietic transplantation: chronic graft-versus-host disease is the strongest factor improving survival. J. Clin. Oncol. 26, 577–584 (2008).

    Article  PubMed  CAS  Google Scholar 

  115. Hegenbart, U. et al. Treatment for acute myelogenous leukemia by low-dose, total-body, irradiation-based conditioning and hematopoietic cell transplantation from related and unrelated donors. J. Clin. Oncol. 24, 444–453 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Mohty, M. et al. The role of reduced intensity conditioning allogeneic stem cell transplantation in patients with acute myeloid leukemia: a donor vs no donor comparison. Leukemia 19, 916–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Mohty, M. et al. Reduced intensity conditioning allogeneic stem cell transplantation for patients with acute myeloid leukemia: long term results of a donor versus no donor comparison. Leukemia 23, 194–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  118. Estey, E. et al. Prospective feasibility analysis of reduced-intensity conditioning (RIC) regimens for hematopoietic stem cell transplantation (HSCT) in elderly patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS). Blood 109, 1395–1400 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Farag, S. S. et al. Comparison of reduced-intensity hematopoietic cell transplantation with chemotherapy in patients age 60–70 years with acute myelogenous leukemia in first remission. Biol. Blood Marrow Transplant. 17, 1796–1803 (2011).

    Article  PubMed  Google Scholar 

  120. Kurosawa, S. et al. Comparison of allogeneic hematopoietic cell transplantation and chemotherapy in elderly patients with non-M3 acute myelogenous leukemia in first complete remission. Biol. Blood Marrow Transplant. 17, 401–411 (2011).

    Article  PubMed  Google Scholar 

  121. US National Library of Medicine. ClinicalTrials.gov [online] (2011).

  122. Socié, G. et al. Long-term survival and late deaths after allogeneic bone marrow transplantation. N. Engl. J. Med. 341, 14–21 (1999).

    Article  PubMed  Google Scholar 

  123. Bhatia, S. et al. Late mortality after allogeneic hematopoietic cell transplantation and functional status of long-term survivors: report from the Bone Marrow Transplant Survivor Study. Blood 110, 3784–3792 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wingard, J. R. et al. Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J. Clin. Oncol. 29, 2230–2239 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shimoni, A., Rand, A., Shem-Tov, N., Yerushalmi, R. & Nagler, A. Allogeneic haematopoietic stem-cell transplantation in AML and MDS using myeloablative versus reduced-intensity conditioning: long-term follow up. Leukemia 24, 1050–1052 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Baker, K. S. et al. Late effects in survivors of acute leukemia treated with hematopoietic cell transplantation: a report from the bone marrow transplant survivor study. Leukemia 24, 2039–2047 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robin, M. et al. Risk factors for late infections after allogeneic hematopoietic stem cell transplantation from a matched related donor. Biol. Blood Marrow Transplant. 13, 1304–1312 (2007).

    Article  PubMed  Google Scholar 

  128. Socié, G. et al. Nonmalignant late effects after allogeneic stem cell transplantation. Blood 101, 3373–3385 (2003).

    Article  PubMed  CAS  Google Scholar 

  129. Curtis, R. E. et al. Solid cancers after bone marrow transplantation. N. Engl. J. Med. 336, 897–904 (1997).

    Article  CAS  PubMed  Google Scholar 

  130. Rizzo, J. D. et al. Recommended screening and preventive practices for long-term survivors after hematopoietic cell transplantation: joint recommendations of the European Group for Blood and Marrow Transplantation, the center for International Blood and Marrow Transplant Research, and the American Society of Blood and Marrow Transplantation. Biol. Blood Marrow Transplant. 12, 138–151 (2006).

    Article  PubMed  Google Scholar 

  131. Messerer, D. et al. Impact of different post-remission strategies on quality of life in patients with acute myeloid leukemia. Haematologica 93, 826–833 (2008).

    Article  PubMed  Google Scholar 

  132. Inamoto, Y. & Flowers, M. E. Treatment of chronic graft-versus-host disease in 2011. Curr. Opin. Hematol. 18, 414–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Finke, J. et al. Standard graft-versus-host disease prophylaxis with or without anti-T-cell globulin in haematopoietic cell transplantation form matched unrelated donors: a randomised, open-label, multicentre phase 3 trial. Lancet Oncol. 10, 855–864 (2009).

    Article  CAS  PubMed  Google Scholar 

  134. Cornelissen, J. J. & Löwenberg, B. Developments in T-cell depletion of allogeneic stem cell grafts. Curr. Opin. Hematol. 7, 348–352 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Blaise, D., Gravis G. & Maraninchi, D. Long-term follow-up of T-cell depletion for bone marrow transplantation. Lancet 341, 51–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Hansen, J. A., Chien, J. W., Warren, E. H., Zhao, L. P. & Martin, P. J. Defining genetic risk for graft-versus-host disease and mortality following allogeneic hematopoietic stem cell transplantation. Curr. Opin. Hematol. 17, 483–492 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Flowers, M. E. D. et al. Risk factors for the development of acute and National Institute of Health (NIH) chronic Graft-Versus-Host Disease (GVHD) [abstract]. Blood 114, a345 (2009).

    Google Scholar 

  138. Kurosawa, S. et al. A Markov decision analysis of allogeneic hematopoietic cell transplantation versus chemotherapy in patients with acute myeloid leukemia in first remission. Blood. 117, 2113–2120 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Breems, D. A. et al. Prognostic index for adult patients with acute myeloid leukemia in first relapse. J. Clin. Oncol. 23, 1969–1978 (2005).

    Article  PubMed  Google Scholar 

  140. Kurosawa, S. et al. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica 95, 1857–1864 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Armistead, P. M. et al. Quantifying the survival benefit for allogeneic hematopoietic stem cell transplantation in relapsed acute myelogenous leukemia. Biol. Blood Marrow Transplant. 15, 1431–1438 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Duval, M. et al. Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J. Clin. Oncol. 28, 3730–3738 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Schmid, C. et al. Long-term survival in refractory acute myeloid leukemia after sequential treatment with chemotherapy and reduced-intensity conditioning for allogeneic stem cell transplantation. Blood 108, 1092–1099 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Dutch–Belgian Cooperative Trial Group for Hemathology Oncology (HOVON) [online], (2012).

  145. Swerdlow, S. H. et al. (Eds) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues: International Agency for Research on Cancer 4th edn (IARC Press, Lyon, 2008).

    Google Scholar 

Download references

Acknowledgements

Myriam Labopin, statistician from the EBMT Acute Leukemia Working Party, is gratefully acknowledged for her analysis outlined in Figure 2.

Author information

Authors and Affiliations

Authors

Contributions

J. J. Cornelissen, A. Gratwohl, R. Schlenk and G. Ossenkoppele wrote first draft of the article. Thereafter, the manuscript was developed via several rounds of discussion and contributions of the various authors. All authors made a substantial contribution to researching the data for the article, discussing the content, and writing and editing the manuscript prior to submission, and revising the article after peer review.

Corresponding author

Correspondence to Jan J. Cornelissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornelissen, J., Gratwohl, A., Schlenk, R. et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: an integrated-risk adapted approach. Nat Rev Clin Oncol 9, 579–590 (2012). https://doi.org/10.1038/nrclinonc.2012.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2012.150

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer