Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical function and exercise training in older patients with heart failure

Key Points

  • Older patients (aged ≥70 years) with heart failure (HF) have substantially impaired physical function and poor clinical outcomes

  • A comprehensive assessment of physical function is strongly recommended in this cohort, and should ideally include assessment of aerobic performance as well as peripheral and respiratory muscle strength and endurance

  • Physical activity and exercise training are important for improving outcomes in patients with HF, especially elderly patients, but uptake remains poor

  • To improve long-term compliance with exercise training, there is a need to improve two-way communication between clinicians and patients, including comprehension of health information such as exercise training

  • Improving health literacy, defined as 'the motivation, confidence, physical competence, knowledge, and understanding to maintain physical activity throughout the life course', is essential for improving exercise adherence in elderly patients with HF

Abstract

Heart failure (HF) is a common end point for numerous cardiovascular conditions, including coronary artery disease, valvular disease, and hypertension. HF predominantly affects older individuals (aged ≥70 years), particularly those living in developed countries. The pathophysiological sequelae of HF progression have a substantial negative effect on physical function. Diminished physical function in older patients with HF, which is the result of combined disease-related and age-related effects, has important implications on health. A large body of research spanning several decades has demonstrated the safety and efficacy of regular physical activity in improving outcomes among the HF population, regardless of age, sex, or ethnicity. However, patients with HF, especially those who are older, are less likely to engage in regular exercise training compared with the general population. To improve initiation of regular exercise training and subsequent long-term compliance, there is a need to rethink the dialogue between clinicians and patients. This Review discusses the need to improve physical function and exercise habits in patients with HF, focusing on the older population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decision tree integrating the assessment, discussion, and prescription of physical activity and exercise in clinical practice.

Similar content being viewed by others

References

  1. Ponikowski, P. et al. 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18, 891–975 (2016).

    Article  PubMed  Google Scholar 

  2. Coats, A. J. & Shewan, L. The management of heart failure with preserved ejection fraction (HFpEF). Int. Cardiovasc. Forum J. 1, 108–112 (2014).

    Article  Google Scholar 

  3. Forman, D. E. et al. Prioritizing functional capacity as a principal end-point for therapies oriented to older adults with cardiovascular disease. A scientific statement for healthcare professionals from the American Heart Association. Circulation 135, e894–e918 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Coats, A. J. Heart failure: support for exercise training in CHF. Nat. Rev. Cardiol. 6, 447–448 (2009).

    Article  PubMed  Google Scholar 

  5. Dieberg, G., Ismail, H., Giallauria, F. & Smart, N. A. Clinical outcomes and cardiovascular responses to exercise training in heart failure patients with preserved ejection fraction: a systematic review and meta-analysis. J. Appl. Physiol. (1985) 119, 726–733 (2015).

    Article  CAS  Google Scholar 

  6. Hsu, C. Y., Hsieh, P. L., Hsiao, S. F. & Chien, M. Y. Effects of exercise training on autonomic function in chronic heart failure: systematic review. Biomed Res. Int. 2015, 591708 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Pozehl, B., McGuire, R. & Norman, J. Team-based care for cardiac rehabilitation and exercise training in heart failure. Heart Fail. Clin. 11, 431–449 (2015).

    Article  PubMed  Google Scholar 

  8. Xiang, L. & Hester, R. L. Cardiovascular responses to exercise. Colloquium series on integrated systems physiology: from molecule to function. Vol.3 No.7 1–124 (Morgan & Claypool Life Sciences, 2011).

  9. Wilson, J. R., Rayos, G., Yeoh, T. K., Gothard, P. & Bak, K. Dissociation between exertional symptoms and circulatory function in patients with heart failure. Circulation 92, 47–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Xu, B. & Daimon, M. Cardiac aging phenomenon and its clinical features by echocardiography. J. Echocardiogr. 14, 139–145 (2016).

    Article  PubMed  Google Scholar 

  11. Vancheri, F., Vancheri, S. & Henein, M. Y. Effect of age on left ventricular global dyssynchrony in asymptomatic individuals: a population study. Echocardiography 33, 977–983 (2016).

    Article  PubMed  Google Scholar 

  12. Kaminsky, L. A., Arena, R. & Myers, J. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin. Proc. 90, 1515–1523 (2015).

    Article  PubMed  Google Scholar 

  13. Kaminsky, L. A. et al. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation 127, 652–662 (2013).

    Article  PubMed  Google Scholar 

  14. Goodpaster, B. H. et al. The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1059–1064 (2006).

    Article  PubMed  Google Scholar 

  15. Williams, S. G. et al. Peak exercise cardiac power output; a direct indicator of cardiac function strongly predictive of prognosis in chronic heart failure. Eur. Heart J. 22, 1496–1503 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Moraes, D. L., Colucci, W. S. & Givertz, M. M. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation 102, 1718–1723 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Josiak, K., Jankowska, E. A., Piepoli, M. F., Banasiak, W. & Ponikowski, P. Skeletal myopathy in patients with chronic heart failure: significance of anabolic-androgenic hormones. J. Cachexia Sarcopenia Muscle 5, 287–296 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sente, T., Van Berendoncks, A. M., Hoymans, V. Y. & Vrints, C. J. Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J. Cachexia Sarcopenia Muscle 7, 261–274 (2016).

    Article  PubMed  Google Scholar 

  19. Nobre, T. S. et al. Post-exercise neurovascular control in chronic heart failure patients. Int. J. Sports Med. 37, 1073–1079 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Sandri, M. et al. Chronic heart failure and aging — effects of exercise training on endothelial function and mechanisms of endothelial regeneration: results from the Leipzig Exercise Intervention in Chronic heart failure and Aging (LEICA) study. Eur. J. Prev. Cardiol. 23, 349–358 (2016).

    Article  PubMed  Google Scholar 

  21. Haykowsky, M. J., Tomczak, C. R., Scott, J. M., Paterson, D. I. & Kitzman, D. W. Determinants of exercise intolerance in patients with heart failure and reduced or preserved ejection fraction. J. Appl. Physiol. (1985) 119, 739–744 (2015).

    Article  CAS  Google Scholar 

  22. Kitzman, D. W. et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA 288, 2144–2150 (2002).

    Article  PubMed  Google Scholar 

  23. Bhella, P. S. et al. Abnormal haemodynamic response to exercise in heart failure with preserved ejection fraction. Eur. J. Heart Fail. 13, 1296–1304 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Savage, P. A. et al. Effect of resistance training on physical disability in chronic heart failure. Med. Sci. Sports Exerc. 43, 1379–1386 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Keteyian, S. J. et al. Variables measured during cardiopulmonary exercise testing as predictors of mortality in chronic systolic heart failure. J. Am. Coll. Cardiol. 67, 780–789 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shafiq, A. et al. Prognostic value of cardiopulmonary exercise testing in heart failure with preserved ejection fraction. The Henry Ford HospITal CardioPulmonary EXercise Testing (FIT-CPX) project. Am. Heart J. 174, 167–172 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Marburger, C. T., Brubaker, P. H., Pollock, W. E., Morgan, T. M. & Kitzman, D. W. Reproducibility of cardiopulmonary exercise testing in elderly patients with congestive heart failure. Am. J. Cardiol. 82, 905–909 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Scott, J. M. et al. Reliability of peak exercise testing in patients with heart failure with preserved ejection fraction. Am. J. Cardiol. 110, 1809–1813 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Olsson, L. G., Swedberg, K., Clark, A. L., Witte, K. K. & Cleland, J. G. Six minute corridor walk test as an outcome measure for the assessment of treatment in randomized, blinded intervention trials of chronic heart failure: a systematic review. Eur. Heart J. 26, 778–793 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Izawa, K. P. et al. The relation between Geriatric Nutritional Risk Index and muscle mass, muscle strength, and exercise capacity in chronic heart failure patients. Int. J. Cardiol. 177, 1140–1141 (2014).

    Article  PubMed  Google Scholar 

  31. Cuthbert, S. C. & Goodheart, G. J. Jr. On the reliability and validity of manual muscle testing: a literature review. Chiropr. Osteopat. 15, 4 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guazzi, M. et al. EACPR/AHA scientific statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126, 2261–2274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carubelli, V. et al. Exercise performance is a prognostic indicator in elderly patients with chronic heart failure — application of metabolic exercise cardiac kidney indexes score. Circ. J. 79, 2608–2615 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Malfatto, G. et al. Diastolic dysfunction and abnormal exercise ventilation predict adverse outcome in elderly patients with chronic systolic heart failure. Eur. J. Prev. Cardiol. 19, 396–403 (2012).

    Article  PubMed  Google Scholar 

  35. Boxer, R. et al. The 6-minute walk is associated with frailty and predicts mortality in older adults with heart failure. Congest. Heart Fail. 16, 208–213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chamberlain, A. M. et al. Physical health status measures predict all-cause mortality in patients with heart failure. Circ. Heart Fail. 6, 669–675 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chiarantini, D. et al. Lower extremity performance measures predict long-term prognosis in older patients hospitalized for heart failure. J. Card. Fail. 16, 390–395 (2010).

    Article  PubMed  Google Scholar 

  38. Reeves, G. R. et al. Comparison of frequency of frailty and severely impaired physical function in patients ≥60 years hospitalized with acute decompensated heart failure versus chronic stable heart failure with reduced and preserved left ventricular ejection fraction. Am. J. Cardiol. 117, 1953–1958 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. World Health Organization. Physical activity and adults. Global Strategy on Diet, Physical Activity and Health http://www.who.int/dietphysicalactivity/factsheet_adults/en/ (2017).

  40. Warburton, D. E., Nicol, C. W. & Bredin, S. S. Health benefits of physical activity: the evidence. CMAJ 174, 801–809 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pate, R. R. et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273, 402–407 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Landi, F. et al. Walking one hour or more per day prevented mortality among older persons: results from ilSIRENTE study. Prev. Med. 47, 422–426 (2008).

    Article  PubMed  Google Scholar 

  43. Swank, A. M., Funk, D. C., Manire, J. T., Allard, A. L. & Denny, D. M. Effect of resistance training and aerobic conditioning on muscular strength and submaximal fitness for individuals with chronic heart failure: influence of age and gender. J. Strength Cond. Res. 24, 1298–1305 (2010).

    Article  PubMed  Google Scholar 

  44. Fletcher, G. F. et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128, 873–934 (2013).

    Article  PubMed  Google Scholar 

  45. Hambrecht, R. et al. Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: a randomized trial. JAMA 283, 3095–3101 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Hambrecht, R. et al. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J. Am. Coll. Cardiol. 25, 1239–1249 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Coats, A. J. et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomic function. Circulation 85, 2119–2131 (1992).

    Article  CAS  PubMed  Google Scholar 

  48. Dubach, P. et al. Effect of high intensity exercise training on central hemodynamic responses to exercise in men with reduced left ventricular function. J. Am. Coll. Cardiol. 29, 1591–1598 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Linke, A. et al. Endothelial dysfunction in patients with chronic heart failure: systemic effects of lower-limb exercise training. J. Am. Coll. Cardiol. 37, 392–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Hambrecht, R. et al. Effects of endurance training on mitochondrial ultrastructure and fiber type distribution in skeletal muscle of patients with stable chronic heart failure. J. Am. Coll. Cardiol. 29, 1067–1073 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gielen, S. et al. Exercise training attenuates MuRF-1 expression in the skeletal muscle of patients with chronic heart failure independent of age: the randomized Leipzig Exercise Intervention in Chronic Heart Failure and Aging catabolism study. Circulation 125, 2716–2727 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Sullivan, M. J., Higginbotham, M. B. & Cobb, F. R. Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects. Circulation 78, 506–515 (1988).

    Article  CAS  PubMed  Google Scholar 

  53. Sandri, M. et al. Age-related effects of exercise training on diastolic function in heart failure with reduced ejection fraction: the Leipzig Exercise Intervention in Chronic Heart Failure and Aging (LEICA) Diastolic Dysfunction Study. Eur. Heart J. 33, 1758–1768 (2012).

    Article  PubMed  Google Scholar 

  54. Kitzman, D. W. et al. Effect of endurance exercise training on endothelial function and arterial stiffness in older patients with heart failure and preserved ejection fraction: a randomized, controlled, single-blind trial. J. Am. Coll. Cardiol. 62, 584–592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kitzman, D. W. et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 315, 36–46 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Angadi, S. S. et al. High-intensity interval training versus moderate-intensity continuous exercise training in heart failure with preserved ejection fraction: a pilot study. J. Appl. Physiol. (1985) 119, 753–758 (2015).

    Article  CAS  Google Scholar 

  57. Smart, N. A., Haluska, B., Jeffriess, L. & Leung, D. Exercise training in heart failure with preserved systolic function: a randomized controlled trial of the effects on cardiac function and functional capacity. Congest. Heart Fail. 18, 295–301 (2012).

    Article  PubMed  Google Scholar 

  58. Haykowsky, M. J. et al. Effect of endurance training on the determinants of peak exercise oxygen consumption in elderly patients with stable compensated heart failure and preserved ejection fraction. J. Am. Coll. Cardiol. 60, 120–128 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wisloff, U. et al. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115, 3086–3094 (2007).

    Article  PubMed  Google Scholar 

  60. Cider, A., Schaufelberger, M., Sunnerhagen, K. S. & Andersson, B. Hydrotherapy — a new approach to improve function in the older patient with chronic heart failure. Eur. J. Heart Fail. 5, 527–535 (2003).

    Article  PubMed  Google Scholar 

  61. Owen, A. & Croucher, L. Effect of an exercise programme for elderly patients with heart failure. Eur. J. Heart Fail. 2, 65–70 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Austin, J., Williams, R., Ross, L., Moseley, L. & Hutchison, S. Randomised controlled trial of cardiac rehabilitation in elderly patients with heart failure. Eur. J. Heart Fail. 7, 411–417 (2005).

    Article  PubMed  Google Scholar 

  63. Ellingsen, O. et al. High intensity interval training in heart failure patients with reduced ejection fraction. Circulation 135, 839–849 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pu, C. T. et al. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J. Appl. Physiol. (1985) 90, 2341–2350 (2001).

    Article  CAS  Google Scholar 

  65. Esposito, F., Reese, V., Shabetai, R., Wagner, P. D. & Richardson, R. S. Isolated quadriceps training increases maximal exercise capacity in chronic heart failure: the role of skeletal muscle convective and diffusive oxygen transport. J. Am. Coll. Cardiol. 58, 1353–1362 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hirai, D. M., Musch, T. I. & Poole, D. C. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization. Am. J. Physiol. Heart Circ. Physiol. 309, H1419–H1439 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fleg, J. L. et al. Exercise training as therapy for heart failure: current status and future directions. Circ. Heart Fail. 8, 209–220 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haykowsky, M. J. et al. Impaired aerobic capacity and physical functional performance in older heart failure patients with preserved ejection fraction: role of lean body mass. J. Gerontol. A Biol. Sci. Med. Sci. 68, 968–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Haykowsky, M. J. et al. Skeletal muscle composition and its relation to exercise intolerance in older patients with heart failure and preserved ejection fraction. Am. J. Cardiol. 113, 1211–1216 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zafrir, B. et al. Body surface area as a prognostic marker in chronic heart failure patients: results from the Heart Failure Registry of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 18, 859–868 (2016).

    Article  PubMed  Google Scholar 

  71. Piepoli, M. F. et al. Exercise tolerance can explain the obesity paradox in patients with systolic heart failure: data from the MECKI Score Research Group. Eur. J. Heart Fail. 18, 545–553 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Centers for Disease Control. What is health literacy? CDC https://www.cdc.gov/healthliteracy/learn/ (updated 13 Dec 2017).

  73. Friel, C. J. Improving health outcomes for low health literacy heart failure patients. Home Healthc. Now 34, 434–439 (2016).

    Article  PubMed  Google Scholar 

  74. McNaughton, C. D. et al. Health literacy and mortality: a cohort study of patients hospitalized for acute heart failure. J. Am. Heart Assoc. 4, e001799 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Omachi, T. A., Sarkar, U., Yelin, E. H., Blanc, P. D. & Katz, P. P. Lower health literacy is associated with poorer health status and outcomes in chronic obstructive pulmonary disease. J. Gen. Intern. Med. 28, 74–81 (2013).

    Article  PubMed  Google Scholar 

  76. Rubin, D. J., Donnell-Jackson, K., Jhingan, R., Golden, S. H. & Paranjape, A. Early readmission among patients with diabetes: a qualitative assessment of contributing factors. J. Diabetes Complicat. 28, 869–873 (2014).

    Article  Google Scholar 

  77. Matsuoka, S. et al. Health literacy is independently associated with self-care behavior in patients with heart failure. Patient Educ. Couns. 99, 1026–1032 (2016).

    Article  PubMed  Google Scholar 

  78. Smith, S. G. et al. Low health literacy predicts decline in physical function among older adults: findings from the LitCog cohort study. J. Epidemiol. Community Health 69, 474–480 (2015).

    Article  PubMed  Google Scholar 

  79. Whitehead, M. Physical Literacy: Throughout the Lifecourse (Routledge, 2010).

    Book  Google Scholar 

  80. McNeil, A. & Arena, R. The evolution of health literacy and communication: introducing health harmonics. Prog. Cardiovasc. Dis. 59, 463–470 (2017).

    Article  PubMed  Google Scholar 

  81. Buck, H. G. “Determinants of self-care behaviors in community-dwelling patients with heart failure”. J. Cardiovasc. Nurs. 24, 425 (2009).

    Article  PubMed  Google Scholar 

  82. van der Wal, M. H. et al. Compliance in heart failure patients: the importance of knowledge and beliefs. Eur. Heart J. 27, 434–440 (2006).

    Article  PubMed  Google Scholar 

  83. Dickson, V. V. & Riegel, B. Are we teaching what patients need to know? Building skills in heart failure self-care. Heart Lung 38, 253–261 (2009).

    Article  PubMed  Google Scholar 

  84. Evangelista, L. S. & Shinnick, M. A. What do we know about adherence and self-care? J. Cardiovasc. Nurs. 23, 250–257 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Moser, D. K. & Watkins, J. F. Conceptualizing self-care in heart failure: a life course model of patient characteristics. J. Cardiovasc. Nurs. 23, 205–218 (2008).

    Article  PubMed  Google Scholar 

  86. Riegel, B., Vaughan Dickson, V., Goldberg, L. R. & Deatrick, J. A. Factors associated with the development of expertise in heart failure self-care. Nurs. Res. 56, 235–243 (2007).

    Article  PubMed  Google Scholar 

  87. Lawlor, D. A. & Hanratty, B. The effect of physical activity advice given in routine primary care consultations: a systematic review. J. Public Health Med. 23, 219–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Rubak, S., Sandbaek, A., Lauritzen, T. & Christensen, B. Motivational interviewing: a systematic review and meta-analysis. Br. J. Gen. Pract. 55, 305–312 (2005).

    PubMed  PubMed Central  Google Scholar 

  89. Lundahl, B. W., Kunz, C., Brownell, C., Tollefson, D. & Burke, B. L. A. Meta-analysis of motivational interviewing: twenty-five years of empirical studies. Res. Soc. Work Pract. 20, 137–160 (2010).

    Article  Google Scholar 

  90. McGrane, N., Galvin, R., Cusack, T. & Stokes, E. Addition of motivational interventions to exercise and traditional physiotherapy: a review and meta-analysis. Physiotherapy 101, 1–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Beck, J. S. Cognitive Behavior Therapy: Basics and Beyond (Guilford Press, 2011).

    Google Scholar 

  92. Artinian, N. T. et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation 122, 406–441 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Deci, E. L. & Ryan, R. M. Intrinsic Motivation and Self-Determination in Human Behavior (Plenum, 1985).

    Book  Google Scholar 

  94. Bandura, A. Self-efficacy: toward a unifying theory of behavioral change. Psychol. Rev. 84, 191–215 (1977).

    Article  CAS  PubMed  Google Scholar 

  95. Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).

    Article  Google Scholar 

  96. Prochaska, J. O. & Velicer, W. F. The transtheoretical model of health behavior change. Am. J. Health Promot. 12, 38–48 (1997).

    Article  CAS  PubMed  Google Scholar 

  97. O'Halloran, P. D. et al. Motivational interviewing to increase physical activity in people with chronic health conditions: a systematic review and meta-analysis. Clin. Rehabil. 28, 1159–1171 (2014).

    Article  PubMed  Google Scholar 

  98. Hunt, S. A. et al. 2009 focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation 119, e391–e479 (2009).

    PubMed  Google Scholar 

  99. Rouleau, C. R. et al. Training healthcare providers in motivational communication for promoting physical activity and exercise in cardiometabolic health settings: do we know what we are doing? Curr. Cardiovasc. Risk Rep. 9, 29 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.J.S.C. researched data and wrote the article. A.J.S.C. and D.E.F. contributed to discussion of content. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Andrew J. Stewart Coats.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coats, A., Forman, D., Haykowsky, M. et al. Physical function and exercise training in older patients with heart failure. Nat Rev Cardiol 14, 550–559 (2017). https://doi.org/10.1038/nrcardio.2017.70

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing