Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of cardiovascular diseases in patients with obesity

Key Points

  • People who are overweight or obese have more risk factors for cardiovascular disease (CVD), and are at increased risk of developing hypertension, coronary heart disease, heart failure, and atrial fibrillation

  • Patients with established CVD who are overweight or obese have a better prognosis than leaner patients with CVD, a phenomenon known as the 'obesity paradox'

  • The treatment of CVD among patients who are overweight or obese is associated with particular challenges and considerations

  • Despite the presence of the obesity paradox, substantial evidence still supports weight loss among patients with CVD who are obese, especially when associated with increases in physical activity and cardiorespiratory fitness levels

Abstract

The management of cardiovascular diseases (CVD) in patients with obesity presents numerous challenges. Obesity has a negative effect on almost all of the major CVD risk factors, and adversely influences cardiovascular structure and function. Patients who are overweight or obese have a higher incidence of almost all CVDs compared with patients who are of normal weight. However, those who are overweight or obese seem to have a better short-term and medium-term prognosis after major CVD events and interventional procedures or cardiac surgeries than leaner patients, a phenomenon termed the 'obesity paradox'. In considering the mechanisms underlying this paradox, we review evidence of the deleterious consequences of obesity in patients with coronary heart disease, and the limited data on the benefits of weight loss in patients with CVD. Additional studies are needed on the efficacy of purposeful weight loss on cardiovascular outcomes to determine the ideal body composition for patients with CVD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mortality in patients undergoing percutaneous coronary intervention.
Figure 2: Three-year survival rates on the basis of body composition.
Figure 3: Combined effects of cardiorespiratory fitness and body composition.
Figure 4: BMI and mortality in patients with heart failure.
Figure 5: BMI and cardiorespiratory fitness levels.

Similar content being viewed by others

References

  1. Flegal, K. M., Kruszon-Moran, D., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA 315, 2284–2291 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Lavie, C. J. et al. Obesity and prevalence of cardiovascular diseases and prognosis: the obesity paradox updated. Prog. Cardiovasc. Dis. 58, 537–547 (2016).

    Article  PubMed  Google Scholar 

  3. Lavie, C. J. et al. Update on obesity and obesity paradox in heart failure. Prog. Cardiovasc. Dis. 58, 393–400 (2016).

    Article  PubMed  Google Scholar 

  4. Bastien, M., Poirier, P., Lemieux, I. & Després, J. P. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog. Cardiovasc. Dis. 56, 369–381 (2014).

    Article  PubMed  Google Scholar 

  5. Lavie, C. J. et al. Healthy obese versus unhealthy lean: the obesity paradox. Nat. Rev. Endocrinol. 11, 55–62 (2015).

    Article  PubMed  Google Scholar 

  6. Wilson, P. W. F. et al. Overweight and obesity as determinants of cardiovascular risk: the Framingham Experience. Arch. Intern. Med. 162, 1867–1872 (2002).

    Article  PubMed  Google Scholar 

  7. Gelber, R. P. et al. A prospective study of body mass index and the risk of developing hypertension in men. Am. J. Hypertens. 20, 370–377 (2007).

    Article  PubMed  Google Scholar 

  8. Lavie, C. J., De Schutter, A. & Milani, R. V. in Chronic Coronary Artery Disease: A Companion to Braunwald's Heart Disease (eds de Lemos, J. & Omland, T.) 270–279 (2017).

    Google Scholar 

  9. Mokdad, A. H. et al. Diabetes trends in the US: 1990–1998. Diabetes Care. 23, 1278–1283 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Lavie, C. J., Milani, R. V., O'Keefe, J. H. Dyslipidemia intervention in metabolic syndrome: emphasis on improving lipids and clinical event reduction. Am. J. Med. Sci. 341, 388–393 (2011).

    Article  PubMed  Google Scholar 

  11. Miller, M. T., Lavie, C. J. & White, C. J. Impact of obesity on the pathogenesis and prognosis of coronary heart disease. J. Cardiometab Syndr. 3, 162–167 (2008).

    Article  Google Scholar 

  12. Alexander, C. M. et al. NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52, 1210–1214 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Cawthorn, W. P., Scheller, E. L. & MacDougald, O. A. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J. Lipid Res. 53, 227–246 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lavie, C. J., Oktay, A. A. & Pandey, A. Pericardial fat and CVD: is all fat created equally? JACC Cardiovasc. Imaging http://dx.doi.org/10.1016/j.jcmg.2016.11.018 (2017).

  15. Alpert, M. A., Lavie, C. J., Agrawal, H., Aggarwal, K. & Kumar, S. A. Obesity and heart failure. Epidemiology, pathophysiology, clinical manifestations, and management. Transl. Res. 164, 345–356 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Alpert, M. A., Omran, J., Mehra, A. & Ardhanari, S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog. Cardiovasc. Dis. 56, 391–400 (2014).

    Article  PubMed  Google Scholar 

  17. Lavie, C. J. et al. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. JACC Heart Fail. 1, 93–1021 (2013).

    Article  PubMed  Google Scholar 

  18. Alexander, J. K. & Alpert, M. A. (eds) in The Heart and Lung in Obesity. 45–56 (Wiley-Blackwell, 1998).

    Google Scholar 

  19. Poirier, P. et al. Obesity and cardiovascular disease: pathophysiology evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 113, 898–918 (2006).

    Article  PubMed  Google Scholar 

  20. Kasper, E. K., Hruban, R. H. & Baughman, K. L. Cardiomyopathy of obesity: A clinical pathological evaluation of 43 obese patients with heart failure. Am. J. Cardiol. 70, 921–924 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Bella, N. J. et al. Relations of left ventricular mass to fat-free and adipose body mass: The Strong Heart Study. Circulation 98, 2538–2544 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. McGavock, J. M., Victor, R., Unger, R. H. & Szczepaniak, L. S. Adiposity of the heart revisited. Ann. Intern. Med. 144, 515–524 (2006).

    Article  Google Scholar 

  23. Woodwiss, A. J. et al. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am. J. Hypertension. 21, 1149–1153 (2008).

    Google Scholar 

  24. Aurigemma, G. P., de Simone, G. & Fitzgibbons, T. P. Cardiac remodeling in obesity. Circ. Cardiovasc. Imag. 6, 442–452 (2013).

    Google Scholar 

  25. Peterson, L. R. et al. Alterations in left ventricular structure and function in young health obese women. J. Am. Coll. Cardiol. 43, 1399–1404 (2004).

    Article  PubMed  Google Scholar 

  26. Okpura, I. C. et al. Left ventricular geometric patterns in obese Nigerian adults: An echocardiographic study. Internet J. Intern. Med. 9, 1–7 (2010).

    Google Scholar 

  27. De Simone, G. et al. Relative fat-free mass deficiency and left ventricular adaptation to obesity: the Strong Heart Study. Int. J. Cardiol. 168, 729–733 (2013).

    Article  PubMed  Google Scholar 

  28. Pascual, M. et al. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart 89, 1152–1156 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Chakko, S. et al. Abnormal left ventricular diastolic filling in eccentric left ventricular hypertrophy of obesity. Am. J. Cardiol. 68, 95–98 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Kossaify, A. & Nicolais, N. Impact of overweight and obesity on left ventricular diastolic function and value of tissue Doppler echocardiography. Clin. Med. Insights Cardiol. 7, 43–50 (2013).

    PubMed  PubMed Central  Google Scholar 

  31. Barbosa, M. M. et al. Strain imaging and morbid obesity: insight into subclinical ventricular dysfunction. Clin. Cardiol. 34, 288–293 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patel, D. A. et al. Association of left ventricular geometry with left atrial enlargement in patients with preserved ejection fraction. Congest. Heart Fail. 18, 4–8 (2012).

    Article  PubMed  Google Scholar 

  33. Chahai, H. et al. Obesity and right ventricular structure and function: the MESA-Right Ventricular Study. Chest 141, 388–395 (2012).

    Article  Google Scholar 

  34. Abdullah, S. et al. The impact of obesity on right ventricular function in young adults. Am. J. Cardiol. 101, 160–168 (2013).

    Google Scholar 

  35. Iacobellis, G. Relation of epicardial fat thickness to right ventricular cavity size in obese subjects. Am. J. Cardiol. 104, 1601–1602 (2009).

    Article  PubMed  Google Scholar 

  36. Arena, A. et al. The combination of obesity and hypertension: a highly unfavorable phenotype requiring attention. Curr. Opin. Cardiol. 31, 394–401 (2016).

    Article  PubMed  Google Scholar 

  37. Lavie, C. J. et al. Impact of echocardiographic left ventricular geometry on clinical prognosis. Prog. Cardiovasc. Dis. 57, 3–9 (2014).

    Article  PubMed  Google Scholar 

  38. Oktay, A. A. et al. Current perspectives on left ventricular geometry in systemic hypertension. Prog. Cardiovasc. Dis. 59, 235–246 (2016).

    Article  PubMed  Google Scholar 

  39. Uretsky, S. et al. Obesity paradox in patients with hypertension and coronary artery disease. Am. J. Med. 120, 863–870 (2007).

    Article  PubMed  Google Scholar 

  40. Lavie, C. J. et al. Disparate effects of left ventricular geometry and obesity on mortality in patients with preserved left ventricular ejection fraction. Am. J. Cardiol. 100, 1460–1464 (2007).

    Article  PubMed  Google Scholar 

  41. Patel, D. A. et al. Effects of left ventricular geometry and obesity on mortality in women with normal ejection fraction. Am. J. CardioI. 113, 877–880 (2014).

    Article  Google Scholar 

  42. Arena, R. et al. Assessment of functional capacity in clinical and research settings: a scientific statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention of the Council on Clinical Cardiology and the Council on Cardiovascular Nursing. Circulation 116, 329–343 (2007).

    Article  PubMed  Google Scholar 

  43. Lavie, C. J. et al. Exercise and the cardiovascular system: clinical science and outcome. Circ. Res. 117, 207–219 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Balady, G. J. et al. Clinician's guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 122, 191–225 (2010).

    Article  PubMed  Google Scholar 

  45. Fletcher, G. F. et al. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 128, 873–934 (2013).

    Article  PubMed  Google Scholar 

  46. Arena, R., Myers, J. & Guazzi, M. The future of aerobic exercise testing in clinical practice: is it the ultimate vital sign? Future Cardiol. 6, 325–342 (2010).

    Article  PubMed  Google Scholar 

  47. Guazzi, M. et al. EACPR/AHA Scientific Statement. Clinical recommendations for cardiopulmonary exercise testing data assessment in specific patient populations. Circulation 126, 2261–2274 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Myers, J. et al. Recommendations for clinical exercise laboratories: a scientific statement from the American Heart Association. Circulation 119, 3144–3161 (2009).

    Article  PubMed  Google Scholar 

  49. Waldburger, R. et al. Comprehensive assessment of physical functioning in bariatric surgery candidates compared with subjects without obesity. Surg. Obes. Relat. Dis. 13, 642–650 (2016).

    Article  Google Scholar 

  50. Lerner, Z. F., Board, W. J. & Browning, R. C. Effects of obesity on lower extremity muscle function during walking at two speeds. Gait Posture 39, 978–984 (2014).

    Article  PubMed  Google Scholar 

  51. Lavie, C. J., McAuley, P. A., Church, T. S., Milani, R. V. & Blair, S. N. Obesity and cardiovascular diseases: implications regarding fitness, fatness, and severity in the obesity paradox. J. Am. Coll. Cardiol. 63, 1345–1354 (2014).

    Article  PubMed  Google Scholar 

  52. Sui, X. et al. Cardiorespiratory fitness and adiposity as mortality predictors in older adults. JAMA 298, 2507–2516 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Barry, V. W. et al. Fitness versus fatness on all-cause mortality: a meta-analysis. Prog. Cardiovasc. Dis. 56, 382–390 (2014).

    Article  PubMed  Google Scholar 

  54. Lavie, C. J. et al. Impact of cardiorespiratory fitness on the obesity paradox in patients with heart failure. Mayo Clin. Proc. 88, 251–258 (2013).

    Article  PubMed  Google Scholar 

  55. McAuley, P. A. & Beavers, K. M. Contribution of cardiorespiratory fitness to the obesity paradox. Prog. Cardiovasc. Dis. 56, 434–440 (2014).

    Article  PubMed  Google Scholar 

  56. Chase, P. et al. Relation of the prognostic value of ventilatory efficiency to body mass index in patients with heart failure. Am. J. Cardiol. 101, 348–352 (2008).

    Article  PubMed  Google Scholar 

  57. McCullough, P. A. et al. Cardiorespiratory fitness and short-term complications after bariatric surgery. Chest 130, 517–525 (2006).

    Article  PubMed  Google Scholar 

  58. Hennis, P. J. et al. Cardiopulmonary exercise testing predicts postoperative outcome in patients undergoing gastric bypass surgery. Br. J. Anaesth. 109, 566–571 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Wilms, B., Ernst, B., Thurnheer, M., Weisser, B. & Schultes, B. Differential changes in exercise performance after massive weight loss induced by bariatric surgery. Obes. Surg. 23, 365–371 (2013).

    Article  PubMed  Google Scholar 

  60. de Souza, S. A., Faintuch J. & Sant'anna A. F. Effect of weight loss on aerobic capacity in patients with severe obesity before and after bariatric surgery. Obes. Surg. 20, 871–875 (2010).

    Article  PubMed  Google Scholar 

  61. Di Thommazo-Luporini, L. et al. Are cardiovascular and metabolic responses to field walking tests interchangeable and obesity-dependent? Disabil. Rehabil. 38, 1820–1829 (2016).

    Article  PubMed  Google Scholar 

  62. Di Thommazo-Luporini, L. et al. The six-minute step test as a predictor of cardiorespiratory fitness in obese women. Eur. J. Phys. Rehabil. Med. 51, 793–802 (2015).

    CAS  PubMed  Google Scholar 

  63. Carvalho, L. P. et al. Prediction of cardiorespiratory fitness by the six-minute step test and its association with muscle strength and power in sedentary obese and lean young women: a cross-sectional study. PLoS ONE 10, e0145960 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Silveira, M. G. et al. Assessment of myocardial ischemia in obese individuals undergoing physical stress echocardiography (PSE). Arq. Bras. Cardiol. 104, 394–400 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Shah, B. N. et al. The clinical impact of contemporary stress echocardiography in morbid obesity for the assessment of coronary artery disease. Heart 102, 370–375 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Supariwala, A. et al. Feasibility and prognostic value of stress echocardiography in obese, morbidly obese, and super obese patients referred for bariatric surgery. Echocardiography 31, 879–885 (2014).

    PubMed  Google Scholar 

  67. Minutello, R. M. et al. Impact of body mass index on in-hospital outcomes following percutaneous coronary intervention (report from the New York State Angioplasty Registry). Am. J. Cardiol. 93, 1229–1232 (2004).

    Article  PubMed  Google Scholar 

  68. Lavie, C. J., Milani, R. V. & Ventura, H. O. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J. Am. Coll. Cardiol. 53, 1925–1932 (2009).

    Article  PubMed  Google Scholar 

  69. Sharma, A. et al. Relationship of body mass index with total mortality, cardiovascular mortality, and myocardial infarction after coronary revascularization: evidence from a meta-analysis. Mayo Clin. Proc. 89, 1080–1100 (2014).

    Article  PubMed  Google Scholar 

  70. Powell, B. D. et al. Association of body mass index with outcome after percutaneous coronary intervention. Am. J. Cardiol. 91, 472–476 (2003).

    Article  PubMed  Google Scholar 

  71. Habib, R. H. et al. Effects of obesity and small body size on operative and long-term outcomes of coronary artery bypass surgery: a propensity-matched analysis. Ann. Thorac Surg. 79, 1976–1986 (2005).

    Article  PubMed  Google Scholar 

  72. Pan, W. et al. Obesity in diabetic patients undergoing coronary artery bypass graft surgery is associated with increased postoperative morbidity. Anesthesiology 104, 441–447 (2006).

    Article  PubMed  Google Scholar 

  73. Romero-Corral, A. et al. Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368, 666–678 (2006).

    Article  PubMed  Google Scholar 

  74. Wang, Z. J. et al. Association of body mass index with mortality and cardiovascular events for patients with coronary artery disease: a systematic review and meta-analysis. Heart 101, 1631–1638 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Flegal, K. M., Kit, B. K., Orpana, H. & Graubard, B. L. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309, 71–82 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. De Schutter, A., Lavie, C. J., Patel, D. A., Artham, S. M. & Milani, R. V. Relation of body fat categories by Gallagher classification and by continuous variables to mortality in patients with coronary heart disease. Am. J. Cardiol. 111, 657–660 (2013).

    Article  PubMed  Google Scholar 

  77. De Schutter, A., Lavie, C. J., Arce, K., Menedez, S. G. & Milani, R. V. Correlation and discrepancies between obesity by body mass index and body fat in patients with coronary heart disease. J. Cardiopulm Rehabil. Prev. 33, 77–83 (2013).

    Article  PubMed  Google Scholar 

  78. De Schutter, A., Lavie, C. J., Patel, D. A. & Milani, R. V. Obesity paradox and the heart: which indicator of obesity best describes this complex relationship? Curr. Opin. Clin. Nutr. Metab. Care. 16, 517–524 (2013).

    Article  PubMed  Google Scholar 

  79. Ortega, F. B., Sui, X., Lavie, C. J. & Blair, S. N. Body mass index, the most widely used but also widely criticized index: would a criterion standard measure of total body fat be a better predictor of cardiovascular disease mortality. Mayo Clin. Proc. 91, 443–455 (2016).

    Article  PubMed  Google Scholar 

  80. Ortega, F. B., Lavie, C. J. & Blair, S. N. Obesity and cardiovascular disease. Circ. Res. 118, 1752–1770 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. De Schutter, A., Lavie, C. J. & Milani, R. V. The impact of obesity on risk factors and prevalence and prognosis of coronary heart disease: the obesity paradox. Prog. Cardiovasc. Dis. 56, 401–408 (2014).

    Article  PubMed  Google Scholar 

  82. Lavie, C. J., De Schutter, A., Patel, D., Artham, S. M. & Milani, R. V. Body composition and coronary heart disease mortality: an obesity or a lean paradox? Mayo Clin. Proc. 86, 857–864 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Lavie, C. J., Milani, R. V., Artham, S. M., Patel, D. A. & Ventura, H. O. The obesity paradox, weight loss, and coronary disease. Am. J. Med. 122, 1106–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Lavie, C. J. et al. Body composition and survival in stable coronary heart disease: impact of lean mass index and body fat in the “obesity paradox”. J. Am. Coll. Cardiol. 60, 1374–1380 (2012).

    Article  PubMed  Google Scholar 

  85. McAuley, P. A. et al. The obesity paradox, cardiorespiratory fitness, and coronary heart disease. Mayo Clin. Proc. 87, 443–451 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Azimi, A. et al. Moderate overweight is beneficial and severe obesity detrimental for patients with documented atherosclerotic heart disease. Heart 99, 655–660 (2013).

    Article  PubMed  Google Scholar 

  87. Lavie, C. J., De Schutter, A. & Milani, R. V. Is there an obesity, overweight or lean paradox in coronary heart disease? Getting to the 'fat' of the matter. Heart 99, 596–598 (2013).

    Article  PubMed  Google Scholar 

  88. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Article  PubMed  Google Scholar 

  89. Mehra, M. R. et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J. Am. Coll. Cardiol. 43, 1590–1595 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Alpert, M. A., Lavie, C. J., Agrawal, H., Kumar, A. & Kumar, S. A. Cardiac effects of obesity: pathophysiologic, clinical, and prognostic consequences-a review. J. Cardiopulm. Rehabil. Prev. 36, 1–11 (2016).

    Article  PubMed  Google Scholar 

  91. Sharma, A. et al. Meta-analysis of the relation of body mass index to all-cause and cardiovascular mortality and hospitalization in patients with chronic heart failure. Am. J. Cardiol. 115, 1428–1434 (2015).

    Article  PubMed  Google Scholar 

  92. Shah, R. et al. Body mass index and mortality in acutely decompensated heart failure across the world: a global obesity paradox. J. Am. Coll. Cardiol. 63, 778–785 (2014).

    Article  PubMed  Google Scholar 

  93. Lavie, C. J. & Ventura, H. O. The obesity paradox in heart failure: is it all about fitness, fat, or sex? JACC Heart Fail. 3, 927–930 (2015).

    Article  PubMed  Google Scholar 

  94. Vest, A. R., Wu, Y., Hachamovitch, R., Young, J. B. & Cho, L. S. The heart failure overweight/obesity survival paradox: the missing sex link. JACC Heart Fail. 3, 917–926 (2015).

    Article  PubMed  Google Scholar 

  95. Morin, D. P. The state of the art: atrial fibrillation epidemiology, prevention, and treatment. Mayo Clin. Proc. 91, 1778–1810 (2016).

    Article  PubMed  Google Scholar 

  96. Menezes, A. R. et al. Lifestyle modification in the prevention and treatment of atrial fibrillation. Prog. Cardiovasc. Dis. 58, 117–125 (2015).

    Article  PubMed  Google Scholar 

  97. Sheikh, A. et al. Trends in hospitalization in atrial fibrillation: epidemiology, cost, and implications for the future. Prog. Cardiovasc. Dis. 58, 105–116 (2015).

    Article  PubMed  Google Scholar 

  98. Morin, D. P. & Estes, N. A. Advances in the prevention and treatment of atrial fibrillation. Prog. Cardiovasc. Dis. 58, 103–104 (2015).

    Article  PubMed  Google Scholar 

  99. Wanahita, N. et al. Atrial fibrillation and obesity: results of a meta-analysis. Am. Heart J. 155, 310–315 (2008).

    Article  PubMed  Google Scholar 

  100. Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Tsang, T. S. et al. Obesity as a risk factor for the progression of paroxysmal to permanent atrial fibrillation: a longitudinal cohort study of 21 years. Eur. Heart J. 29, 2227–2233 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Badheka, A. O. et al. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. Am. J. Med. 123, 646–651 (2010).

    Article  PubMed  Google Scholar 

  103. Pathak, R. K. et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J. Am. Coll. Cardiol. 66, 985–996 (2015).

    Article  PubMed  Google Scholar 

  104. Allison, D. B. et al. Weight loss increases and fat loss decreases all-cause mortality rates: results from two independent cohort studies. Int. J. Obes. Relat. Metab. Disord. 23, 603–611 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Pathak, R. K. et al. Long-term effect of goal directed weight management in an atrial fibrillation cohort: a long-term follow-up study (LEGACY Study). J. Am. Coll. Cardiol. 65, 2159–2169 (2015).

    Article  PubMed  Google Scholar 

  106. Sengenes, C. et al. Increased lipolysis in adipose tissue and lipid mobilization to natriuretic peptides during low-calorie diet in obese women. Int. J. Obes. Relat. Metab. Disord. 26, 24–32 (2002).

    Article  CAS  PubMed  Google Scholar 

  107. Kistorp, C. et al. Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation 112, 1756–1762 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Qi, Y. et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Swift, D. L., Johannsen, N. M., Lavie, C. J., Earnest, C. P. & Church, T. S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 56, 441–447 (2014).

    Article  PubMed  Google Scholar 

  110. Ades, P. A. & Savage, P. D. Potential benefits of weight loss in coronary heart disease. Prog. Cardiovasc. Dis. 56, 448–456 (2014).

    Article  PubMed  Google Scholar 

  111. Look AHEAD Research Group et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

  112. Alpert, M. A. et al. Factors influencing left ventricular systolic function in non-hypertensive morbidly obese patients and effect of weight loss induced by gastroplasty. Am. J. Cardiol. 75, 773–777 (1993).

    Google Scholar 

  113. Alexander, J. K. & Petersen, K. L. Cardiovascular effects of weight reduction. Circulation 45, 310–318 (1972).

    Article  CAS  PubMed  Google Scholar 

  114. Alpert, M. A. et al. Cardiac morphology and left ventricular function in morbidly obese patients with and without congestive heart failure. Am. J. Cardiol. 80, 736–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Backman, L. et al. Reversibility of cardiopulmonary changes in extreme obesity. Act Med. Scand. 205, 367–373 (1979).

    Article  CAS  Google Scholar 

  116. Ashrafian, H. et al. Effects of bariatric surgery on cardiovascular function. Circulation 118, 2091–2102 (2008).

    Article  PubMed  Google Scholar 

  117. McCloskey, C. D. et al. Bariatric surgery improves cardiac function in morbidly obese patients with serve cardiomyopathy. Surg. Obes. Relat. Dis. 3, 503–507 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Rider, O. J. et al. Beneficial cardiovascular effects of bariatric surgical and dietary weight loss in obesity. J. Am. Coll. Cardiol. 54, 718–726 (2009).

    Article  PubMed  Google Scholar 

  119. Grapsa, J. et al. The effect of bariatric surgery on echocardiographic indices: a review of the literature. Eur. J. Clin. Invest. 42, 1224–1230 (2013).

    Google Scholar 

  120. Luaces, M. et al. Anatomical and functional alterations of the heart in morbid obesity. Changes after bariatric surgery. Rev. Esp. Cardiol. (Engl. Ed). 65, 14–21 (2012).

    Article  PubMed  Google Scholar 

  121. Alpert, M. A. et al. Effect of weight loss on left ventricular diastolic filling in morbid obesity. Am. J. Cardiol. 80, 736–740 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Vest, A. R. et al. Clinical and echocardiographic outcomes after bariatric surgery in obese patients with left ventricular systolic dysfunction. Circ. Heart Fail. 9, e002260 (2016).

    PubMed  Google Scholar 

  123. Sokmen, A. et al. The impact of isolated obesity on right ventricular function in young adults. Arq. Bras. Cardiol. 101, 160–168 (2013).

    PubMed  PubMed Central  Google Scholar 

  124. Writing Committee Members et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128, e240–e327 (2013).

  125. Pack, Q. R. et al. The prognostic importance of weight loss in coronary artery disease: a systematic review and meta-analysis. Mayo Clin. Proc. 89, 1368–1377 (2014).

    Article  PubMed  Google Scholar 

  126. Kushner, R. F. Weight loss strategies for treatment of obesity. Prog. Cardiovasc. Dis. 5, 465–472 (2014).

    Article  Google Scholar 

  127. Vest, A. R. et al. Surgical management of obesity and the relationship to cardiovascular disease. Circulation 127, 945–959 (2013).

    Article  PubMed  Google Scholar 

  128. Buchwald, H. et al. Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Sjostrom, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Patricia Taylor (The John Ochsner Heart & Vascular Institute, New Orleans, USA) for preparing and submitting the manuscript and revisions.

Author information

Authors and Affiliations

Authors

Contributions

C.J.L. and R.A. wrote the article. All authors contributed equally to researching data for the article, discussions of content, and to reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Carl J. Lavie.

Ethics declarations

Competing interests

C.J.L. is the author of the book 'The Obesity Paradox'. The other authors declare no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavie, C., Arena, R., Alpert, M. et al. Management of cardiovascular diseases in patients with obesity. Nat Rev Cardiol 15, 45–56 (2018). https://doi.org/10.1038/nrcardio.2017.108

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2017.108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing