Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of refractory cardiogenic shock

Key Points

  • Cardiogenic shock is characterized by acute hypoperfusion and end-organ dysfunction owing to reduced cardiac output, and is commonly caused by acute myocardial infarction (AMI) with left ventricular dysfunction

  • Emergent revascularization is the only therapy that has been shown to reduce mortality in patients with cardiogenic shock complicating AMI

  • Refractory cardiogenic shock can be defined as ongoing evidence of tissue hypoperfusion despite administration of adequate doses of two vasoactive medications and treatment of the underlying aetiology

  • Refractory cardiogenic shock carries a poor prognosis, with an inhospital mortality of 50% despite pharmacological and mechanical circulatory support

  • The use of mechanical circulatory support devices for cardiogenic shock is increasing, but there is currently no evidence showing that they improve clinical outcomes

  • Novel therapeutics and robust randomized trial data are needed to address the persistently high mortality in patients with refractory cardiogenic shock

Abstract

Cardiogenic shock is a life-threatening condition that occurs in response to reduced cardiac output in the presence of adequate intravascular volume and results in tissue hypoxia. Cardiogenic shock has several underlying aetiologies, with the most common being acute myocardial infarction (AMI). Refractory cardiogenic shock presents as persistent tissue hypoperfusion despite administration of adequate doses of two vasoactive medications and treatment of the underlying aetiology. Investigators of the SHOCK trial reported a long-term mortality benefit of emergency revascularization for shock complicating AMI. Since the publication of the SHOCK trial and subsequent guideline recommendations, the increase in community-based use of percutaneous coronary intervention for this condition has resulted in a significant decline in mortality. Despite these successes in the past 15 years, mortality still remains exceptionally high, particularly in patients with refractory cardiogenic shock. In this Review, we discuss the aetiology and pathophysiology of cardiogenic shock and summarize the data on the available therapeutics and their limitations. Although new mechanical circulatory support devices have been shown to improve haemodynamic variables in patients with shock complicating AMI, they did not improve clinical outcomes and are associated with high costs and complications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The downward spiral of refractory cardiogenic shock.
Figure 2: An analysis of potential incremental cost of shifting from using intra-aortic balloon pumps (IABP) to percutaneous left ventricular assist devices (pVAD).
Figure 3: Rapid reversal of systemic hypoperfusion with an intra-aortic balloon pump (IABP) is associated with improved prognosis.
Figure 4: Meta-analysis of randomized trials comparing the effect of percutaneous left ventricular assist devices (LVAD) versus the intra-aortic balloon pump (IABP) on 30-day mortality and haemodynamics.

Similar content being viewed by others

References

  1. Hasdai, D. Cardiogenic shock: diagnosis and treatment (Humana Press, 2002).

    Book  Google Scholar 

  2. De Luca, L. et al. Temporal trends in the epidemiology, management, and outcome of patients with cardiogenic shock complicating acute coronary syndromes. Eur. J. Heart Fail. 17, 1124–1132 (2015).

    Article  PubMed  Google Scholar 

  3. Dzavik, V. et al. Effects of nitric oxide synthase inhibition on hemodynamics and outcome of patients with persistent cardiogenic shock complicating acute myocardial infarction: a phase II dose-ranging study. Eur. Heart J. 28, 1109–1116 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kohsaka, S. et al. Systemic inflammatory response syndrome after acute myocardial infarction complicated by cardiogenic shock. Arch. Intern. Med. 165, 1643–1650 (2005).

    Article  PubMed  Google Scholar 

  5. Hochman, J. S. et al. Cardiogenic shock complicating acute myocardial infarction — etiologies, management, and outcome: a report from the SHOCK trial registry. J. Am. Coll. Cardiol. 36, 1063–1070 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Hochman, J. S. et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. N. Engl. J. Med. 341, 625–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Holmes, D. R. et al. GUSTO-I Investigators. Contemporary reperfusion therapy for cardiogenic shock: the Gusto-I trial experience. J. Am. Coll. Cardiol. 26, 668–674 (1995).

    Article  PubMed  Google Scholar 

  8. Thiele, H. et al. Intra-aortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 367, 1287–1296 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Kar, B., Gregoric, I. D., Basra, S. S., Idelchik, G. M. & Loyalka, P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J. Am. Coll. Cardiol. 57, 688–696 (2011).

    Article  PubMed  Google Scholar 

  10. Laslett, L. J. et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy and policy issues. J. Am. Coll. Cardiol. 60, S1–S49 (2012).

    Article  PubMed  Google Scholar 

  11. Babaev, A. et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA 294, 448–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Webb, J. G. et al. Implications of the timing of onset of cardiogenic shock after acute myocardial infarction: a report from the SHOCK trial registry. J. Am. Coll. Cardiol. 36, 1084–1090 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Magnani, J. W. & Dec, G. W. Myocarditis: current trends in diagnosis and treatment. Circulation 116, 876–890 (2006).

    Article  Google Scholar 

  14. Dec, G. W. et al. Viral myocarditis mimicking acute myocardial infarction. J. Am. Coll. Cardiol. 20, 85–89 (1992).

    Article  PubMed  Google Scholar 

  15. Felker, G. M. et al. Echocardiographic findings in fulminant and acute myocarditis. J. Am. Coll. Cardiol. 36, 227–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Angelini, A. et al. Myocarditis mimicking acute myocardial infarction: role of endomyocardial biopsy in the differential diagnosis. Heart 84, 245–250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hasumann, H. et al. Prognosis after implantation of an intra-aortic balloon pump in cardiac surgery calculated with a new score. Circulation 106, 203–206 (2002).

    Google Scholar 

  18. Torchiana, D. F. et al. Intra-aortic balloon pumping for cardiac support: trends in practice and outcome, 1968 to 1995. J. Thorac. Cardiovasc. Surg. 113, 758–764 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Goldstein, D. J. & Oz, M. C. Mechanical support for postcardiotomy cardiogenic shock. Semin. Thorac. Cardiovasc. Surg. 12, 220–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Rao, V. et al. Surgery for acquired heart disease: predictors of low cardiac output syndrome after coronary artery bypass. J. Thorac. Cardiovasc. Surg. 112, 38–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Alsoufi, B., Rao, V., Tang, A., Maganti, M. & Cusimano, R. Risk modeling for ventricular assist device support in post-cardiotomy shock. J. Saudi Heart Assoc. 24, 69–72 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mohite, P. N. et al. Short-term ventricular assist device in post-cardiotomy cardiogenic shock: factors influencing survival. J. Artif. Organs. 17, 228–235 (2014).

    Article  PubMed  Google Scholar 

  23. Jacobs, A. K. et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J. Am. Coll. Cardiol. 41, 1273–1279 (2003).

    Article  PubMed  Google Scholar 

  24. Zehender, M. et al. Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N. Engl. J. Med. 328, 981–988 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Bowers, T. R. et al. Effect of reperfusion on biventricular function and survival after right ventricular infarction. N. Engl. J. Med. 338, 933–940 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Bowers, T. R. et al. Patterns of coronary compromise resulting in acute right ventricular ischemic dysfunction. Circulation 106, 1104–1109 (2002).

    Article  PubMed  Google Scholar 

  27. Dell'Italia, L. J. et al. Hemodynamically important right ventricular infarction: follow up evaluation of right ventricular systolic function at rest and during exercise with radionuclide ventriculography and respiratory gas exchange. Circulation 75, 996–1003 (1987).

    Article  CAS  PubMed  Google Scholar 

  28. Page, D. L., Caulifield, J. B., Kaster, J. A., DeSanctis, R. W. & Sanders, C. A. Myocardial changes associated with cardiogenic shock. N. Engl. J. Med. 285, 133–137 (1971).

    Article  CAS  PubMed  Google Scholar 

  29. Hollenberg, S. M., Kavinsky, C. J. & Parrillo, J. E. Cardiogenic shock. Ann. Intern. Med. 131, 47–59 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Neumann, F. J. et al. Cardiac release of cytokines and inflammatory response in acute myocardial infarction. Circulation 92, 748–755 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Nicholls, S. J. et al. Metabolic profiling of arginine and nitric oxide pathways predicts hemodynamic abnormalities and mortality in patients with cardiogenic shock after acute myocardial infarction. Circulation 116, 2315–2324 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Ratshin, R. A., Rackley, C. E. & Russel, R. O. Hemodynamic evaluation of left ventricular function in shock complicating myocardial infarction. Circulation 45, 127–139 (1972).

    Article  CAS  PubMed  Google Scholar 

  33. Hochman, J. S. & Ohman, E. M. Cardiogenic shock (AHA Clinical Series, 2009).

    Book  Google Scholar 

  34. Reynolds, H. R. et al. Restrictive physiology in cardiogenic shock: observations from echocardiography. Am. Heart J. 151, 890.e9–890.e15 (2006).

    Article  Google Scholar 

  35. Menon, V. et al. The clinical profile of patients with suspected cardiogenic shock due to predominant left ventricular failure: a report form the SHOCK trial registry. J. Am. Coll. Cardiol. 36, 1071–1076 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. O'Gara, P. T. et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 127, 362–425 (2013).

    Google Scholar 

  37. Jeger, R. V. et al. Causes of death and re-hospitalization in cardiogenic shock. Acute Card. Care 9, 25–33 (2007).

    Article  PubMed  Google Scholar 

  38. Sleeper, L. A. et al. A severity scoring system for risk assessment of patients with cardiogenic shock: a report form the SHOCK trial and registry. Am. Heart J. 160, 443–450 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. The TRIUMPH Investigators et al. Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA 297, 1657–1666 (2007).

    Article  Google Scholar 

  40. Katz, J. N. et al. Predictors of 30-day mortality in patients with refractory cardiogenic shock following acute myocardial infarction despite a patent infarct artery. Am. Heart J. 158, 680–687 (2009).

    Article  PubMed  Google Scholar 

  41. Harjola, V. et al. Clinical picture and risk prediction of short-term mortality in cardiogenic shock. Eur. J. Heart Fail. 17, 501–509 (2015).

    Article  PubMed  Google Scholar 

  42. Kapur, N. K. et al. TCT-196 The recover right trial criteria for right ventricular failure: an analysis of the SHould we emergently revascularize Occluded coronaries for Cardiogenic shock (SHOCK) trial and registry. J. Am. Coll. Cardiol. 66 (15_S), 66 (2015).

    Google Scholar 

  43. Picard, M. H. et al. Echocardiographic predictors of survival and response to early revascularization in cardiogenic shock. Circulation 107, 279–284 (2003).

    Article  PubMed  Google Scholar 

  44. Menon, V. et al. Outcome and profile of ventricular septal rupture with cardiogenic shock after myocardial infarction: a report from the shock trial registry. J. Am. Coll. Cardiol. 36, 1110–1116 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Goldberg, R. J., Spencer, F. A., Gore, J. M., Lessard, D. & Yarzebski, Y. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation 119, 1211–1219 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Killip, T. & Kimball, J. T. Treatment of myocardial infarction in a coronary care unit. A two year experience with 250 patients. Am. J. Cardiol. 20, 457–464 (1967).

    Article  PubMed  Google Scholar 

  47. Wayangankar, S. A. et al. Temporal trends and outcomes of patients undergoing percutaneous coronary interventions for cardiogenic shock in the setting of acute myocardial infarction: a report from the CathPCI Registry. JACC Cardiovasc. Interv. 9, 341–351 (2016).

    Article  PubMed  Google Scholar 

  48. Roffi, M. et al. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur. Heart J. 37, 267–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Sanborn, T. A. et al. Correlates of one-year survival in patients with cardiogenic shock complicating acute myocardial infarction: angiographic findings from the SHOCK trial. J. Am. Coll. Cardiol. 42, 1373–1379 (2003).

    Article  PubMed  Google Scholar 

  50. Hochman, J. S. et al. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 295, 2511–2515 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mylotte, D. et al. Primary percutaneous coronary intervention in patients with acute myocardial infarction, resuscitated cardiac arrest, and cardiogenic shock: the role of primary multivessel revascularization. JACC Cardiovasc. Interv. 6, 115–125 (2013).

    Article  PubMed  Google Scholar 

  52. US National Library of Medicine. Clinical-Trials.gov, https://clinicaltrials.gov/show/NCT01927549 (2015).

  53. De Backer, D. et al. Comparison of dopamine and norepinephrine in the treatment of shock. N. Engl. J. Med. 362, 779–789 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Rihal, C. S. et al. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; affirmation of value by the Canadian Association of Interventional Cardiology-Association Canadienne de Cardiologie d'intervention). J. Cardiac Fail. 21, 499–518 (2015).

    Article  Google Scholar 

  55. Scheidt, S. et al. Intra-aortic balloon counterpulsation in cardiogenic shock. Report of a co-operative clinical trial. N. Engl. J. Med. 288, 979–984 (1973).

    Article  CAS  PubMed  Google Scholar 

  56. Agarwal, S., Sud, K., Martin, J. M. & Menon, V. Trends in the use of mechanical circulatory support devices in patients presenting with ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 8, 1772–1774 (2015).

    Article  PubMed  Google Scholar 

  57. Chatterjee, S. & Rosensweig, J. Evaluation of intra-aortic balloon counterpulsation. J. Thorac Cardiovasc. Surg. 61, 405–410 (1971).

    Article  CAS  PubMed  Google Scholar 

  58. Kantrowitz, A. et al. Current status of intraaortic balloon pump and initial clinical experience with aortic patch mechanical auxiliary ventricle. Transplant. Proc. 3, 1459–1471 (1971).

    Google Scholar 

  59. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E. & Flameng, W. Left ventricular support by catheter-mountedaxial flow pump reduces infarct size. J. Am. Coll. Cardiol. 41, 1087–1095 (2003).

    Article  PubMed  Google Scholar 

  60. Prondzinsky, R. et al. Hemodynamic effects of intra-aortic balloon counterpulsation in patients with acute myocardial infarction complicated by cardiogenic shock: the prospective randomized IABP Shock Trial. Shock 37, 378–384 (2012).

    Article  PubMed  Google Scholar 

  61. Sjauw, K. D. et al. A systematic review and meta-analysis of intra-aortic balloon pumpo therapy in ST-elevation myocardial infarction: should we change the guidelines? Eur. Heart J. 30, 459–468 (2009).

    Article  PubMed  Google Scholar 

  62. Ohman, E. M. et al. Thrombolysis and counterpulsation to improve survival in myocardial infarction complicated by hypotension and suspected cardiogenic shock or heart failure: results of the TACTICS trial. J. Thromb. Thrombolysis 19, 33–39 (2005).

    Article  PubMed  Google Scholar 

  63. Sanborn, T. A. et al. Impact of thrombolysis, intraaortic balloon pump counterpulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK Trial Registry. SHould we emergently revascularize Occluded Coronaries for cardiogenic shocK? J. Am. Coll. Cardiol. 36, 1123–1129 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Romeo, A. et al. The outcome of intra-aortic balloon pump support in acute myocardial infarction complicated by cardiogenic shock according to the type of revascularization: a comprehensive meta-analysis. Am. Heart J. 165, 679 (2013).

    Article  PubMed  Google Scholar 

  65. Steg, G. P. et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 33, 2569–2619 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Ramanathan, K. et al. Rapid complete reversal of systemic hypoperfusion after intra-aortic balloon pump counterpulsation and survival in cardiogenic shock complicating an acute myocardial infarction. Am. Heart J. 162, 268–275 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ostadal, P. et al. Direct comparison of percutaneous circulatory support systems in specific hemodynamic conditions in a porcine model. Circ. Arrhythm. Electrophysiol. 5, 1202–1206 (2012).

    Article  PubMed  Google Scholar 

  68. Kapur, N. K. et al. Mechanical circulatory support for right ventricular failure. JACC Heart Fail. 1, 127–134 (2013).

    Article  PubMed  Google Scholar 

  69. Seyfarth, M. et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J. Am. Coll. Cardiol. 52, 1584–1588 (2008).

    Article  PubMed  Google Scholar 

  70. Burkhoff, D., Cohen, H., Brunckhorst, C. & O'Neill, W. W. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am. Heart J. 152, 469.e1–469.e8 (2006).

    Article  Google Scholar 

  71. Thiele, H. et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur. Heart J. 26, 1276–1283 (2005).

    Article  PubMed  Google Scholar 

  72. Stretch, R., Sauer, C. M., Yuh, D. D. & Bonde, P. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J. Am. Coll. Cardiol. 64, 1407–1415 (2014).

    Article  PubMed  Google Scholar 

  73. Cheng, J. M. et al. Percutaneous left ventricular assist devices versus intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur. Heart J. 30, 2102–2108 (2009).

    Article  PubMed  Google Scholar 

  74. Shah, A. P. et al. Clinical and economic effectiveness of percutaneous ventricular assist devices for high-risk patients undergoing coronary intervention. J. Invasive Cardiol. 27, 148–154 (2015).

    PubMed  Google Scholar 

  75. Cheng, R. et al. Lack of survival benefit found with use of intraaoartic balloon pump in extracorporeal membrane oxygenation: a pooled experience of 1517 patients. J. Invasive Cardiol. 27, 453–458 (2015).

    PubMed  Google Scholar 

  76. Paden, M. L., Conrad, S. A., Rycus, P. T. & Thiagarajan, R. R. Extracorporeal life support organization registry report 2012. ASAIO J. 59, 202–210 (2013).

    Article  PubMed  Google Scholar 

  77. Mohite, P. N. et al. Distal limb perfusion: Achilles' heel in peripheral venoarterial extracorporeal membrane oxygenation. Artif. Organs 38, 940–944 (2014).

    Article  PubMed  Google Scholar 

  78. Takayama, H. et al. Bridge-to-decision therapy with a continuous-flow external ventricular assist device in refractory cardiogenic shock of various causes. Circulation 7, 799–806 (2014).

    PubMed  Google Scholar 

  79. Takayama, H., Chen, J. M., Jorde, U. P. & Naka, Y. Implantation technique of the CentriMag biventricular assist device allowing ambulatory rehabilitation. Interact. Cardiovasc. Thorac. Surg. 12, 110–111 (2011).

    Article  PubMed  Google Scholar 

  80. Diez-Villanueva, P. et al. Early treatment of refractory cardiogenic shock with percutaneous veno-arterial ECMO implanted in the cardiac catheterization laboratory. Rev. Esp. Cardiol. (Engl. Ed.) 67, 1059–1061 (2014).

    Article  Google Scholar 

  81. Hsu, P. S. et al. Extracorporeal membrane oxygenation for refractory cardiogenic shock after cardiac surgery: predictors of early mortality and outcome from 51 adult patients. Eur. J. Cardiothorac. Surg. 37, 328–333 (2010).

    PubMed  Google Scholar 

  82. Takayama, H. et al. Clinical outcome of mechanical circulatory support for refractory cardiogenic shock in the current era. J. Heart Lung Transplant. 32, 106–111 (2013).

    Article  PubMed  Google Scholar 

  83. Cheung, A., Freed, D., Hunziker, P. & Leprince, P. TCT-371 first clinical evaluation of a novel percutaneous right ventricular assist device: the Impella RP. J. Am. Coll. Cardiol. 59 (Suppl. 1), E872 (2012).

    Article  Google Scholar 

  84. Atiemo, A. D., Conte, J. V. & Heldman, A. W. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter. Cardiovasc. Interv. 66, 78–82 (2006).

    Article  Google Scholar 

  85. Cheung, A. W., White, C. W., Davis, M. K. & Freed, D. H. Short-term mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J. Heart Lung Transplant. 33, 794–799 (2014).

    Article  PubMed  Google Scholar 

  86. Acharya, D. et al. Ventricular assist device in acute myocardial infarction-findings from INTERMACS. J. Heart Lung Transplant. 34, 4S (2015).

    Article  Google Scholar 

  87. Chen, J. M. et al. Improved survival rates support left ventricular assist device implantation early after myocardial infarction. J. Am. Coll. Cardiol. 33, 1903–1908 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Slaughter, M. S. et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361, 2241–2251 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Kirklin, J. K. et al. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34, 1495–1504 (2015).

    Article  PubMed  Google Scholar 

  91. Cotts, W. G. et al. Predictors of hospital length of stay after implantation of a left ventricular assist device: an analysis of the INTERMACS registry. J. Heart Lung Transplant. 33, 682–688 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contribution to discussion of the content, and wrote, reviewed, and edited the manuscript before submission.

Corresponding author

Correspondence to Alex Reyentovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyentovich, A., Barghash, M. & Hochman, J. Management of refractory cardiogenic shock. Nat Rev Cardiol 13, 481–492 (2016). https://doi.org/10.1038/nrcardio.2016.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2016.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing