Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silent cerebral infarcts associated with cardiac disease and procedures

Key Points

  • Silent cerebral infarcts (SCIs) are increasingly observed in patients with cardiac disease and in individuals who have undergone invasive cardiac procedures

  • Cardiac diseases associated with the occurrence of SCIs include atrial fibrillation, cardiomyopathies, and atrial septal abnormalities

  • Postprocedural SCIs have been detected using MRI after left cardiac catheterization, transcatheter aortic valve implantation, CABG surgery, pulmonary vein isolation, and closure of patent foramen ovale

  • SCIs do not always result in acute symptoms, but have been associated with a threefold increase in the risk of stroke, and can be considered a precursor of ischaemic stroke

  • Accumulating evidence suggests that SCIs might have a role in the development of dementia and depression, and in cognitive decline

  • Increased recognition of SCIs could advance our understanding of their links to cardiac and neurological disorders, and facilitate the development of preventative therapeutic approaches

Abstract

The occurrence of clinically silent cerebral infarcts (SCIs) in individuals affected by cardiac disease and after invasive cardiac procedures is frequently reported. Indeed, atrial fibrillation, left ventricular thrombus formation, cardiomyopathy, and patent foramen ovale have all been associated with SCIs. Furthermore, postprocedural SCIs have been observed after left cardiac catheterization, transcatheter aortic valve implantation, CABG surgery, pulmonary vein isolation, and closure of patent foramen ovale. Such SCIs are often described as precursors to symptomatic stroke and are associated with cognitive decline, dementia, and depression. Increased recognition of SCIs might advance our understanding of their relationship with heart disease and invasive cardiac procedures, facilitate further improvement of therapies or techniques aimed at preventing their occurrence and, therefore, decrease the risk of adverse neurological outcomes. In this Review, we provide an overview of the occurrence and clinical significance of, and the available diagnostic modalities for, SCIs related to cardiac disease and associated invasive cardiac procedures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of cardioembolic heart diseases and cardiac procedures that have been associated with silent cerebral infarcts.
Figure 2: Schematic overview of silent to clinically apparent cerebral infarcts.

Similar content being viewed by others

Bruce C. V. Campbell, Deidre A. De Silva, … Geoffrey A. Donnan

References

  1. Hamon, M., Baron, J. C., Viader, F. & Hamon, M. Periprocedural stroke and cardiac catheterization. Circulation 118, 678–683 (2008).

    Article  PubMed  Google Scholar 

  2. Arboix, A & Alió, J. Cardioembolic stroke: clinical features, specific cardiac disorders and prognosis. Curr. Cardiol. Rev. 6, 150–161 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bendszus, M. & Stoll, G. Silent cerebral ischaemia: hidden fingerprints of invasive medical procedures. Lancet Neurol. 5, 364–372 (2006).

    Article  PubMed  Google Scholar 

  4. Sacco, R. L. et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 44, 2064–2089 (2013).

    Article  PubMed  Google Scholar 

  5. Arboix, A. & Martí-Vilalta, J. L. Lacunar stroke. Expert Rev. Neurother. 9, 179–196 (2009).

    Article  PubMed  Google Scholar 

  6. Vermeer, S. E., Koudstaal, P. J., Oudkerk, M., Hofman. A. & Breteler, M. M. Prevalence and risk factors of silent brain infarcts in the population-based Rotterdam Scan Study. Stroke 33, 21–25 (2002).

    Article  PubMed  Google Scholar 

  7. Price, T. R. et al. Silent brain infarction on magnetic resonance imaging and neurological abnormalities in community-dwelling older adults: the Cardiovascular Health Study. Stroke 28, 1158–1164 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Kase, C. S. et al. Prevalence of silent stroke in patients presenting with initial stroke: the Framingham Study. Stroke 20, 850–852 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Ricci, S. et al., Silent brain infarctions in patients with first-ever stroke: a community-based study in Umbria, Italy. Stroke 24, 647–651 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Das, R. R. et al., Prevalence and correlates of silent cerebral infarcts in the Framingham Offspring Study. Stroke 39, 2929–2935 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wardlaw, J. M. et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 12, 822–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kloppenborg, R. P. et al. Cerebral small-vessel disease and progression of brain atrophy: the SMART-MR study. Neurology 79, 2029–2036 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Vermeer, S. E. et al., Silent brain infarcts and the risk of dementia and cognitive decline. N. Engl. J. Med. 348, 1215–1222 (2003).

    Article  PubMed  Google Scholar 

  14. Fujikawa, T., Yamawaki, S. & Touhouda, Y. Incidence of silent cerebral infarction in patients with major depression. Stroke 24, 1631–1634 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Yamashita, H. et al. Long-term prognosis of patients with major depression and silent cerebral infarction. Neuropsychobiology 62, 177–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Debette, S. et al., Association of MRI markers of vascular brain injury with incident stroke, mild cognitive impairment, dementia, and mortality: the Framingham Offspring Study. Stroke 41, 600–606 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Vermeer, S. E. et al. Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam Scan Study. Stroke 34, 1126–1129 (2003).

    Article  PubMed  Google Scholar 

  18. Mullins, M. E. et al. CT and conventional and diffusion-weighted MR imaging in acute stroke: study in 691 patients at presentation to the emergency department. Radiology 224, 353–360 (2002).

    Article  PubMed  Google Scholar 

  19. Zhu, Y. C., Dufouil, C., Tzourio, C. & Chabriat, H. Silent brain infarcts: a review of MRI diagnostic criteria. Stroke 42, 1140–1145 (2011).

    Article  PubMed  Google Scholar 

  20. Marks, M. P. et al. Acute and chronic stroke: navigated spin-echo diffusion-weighted MR imaging. Radiology 199, 403–408 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Kucharczyk, J., Mintorovitch, J., Asgari, H. S. & Moseley, M. Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn. Reson. Med. 19, 311–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Burdette, J. H., Ricci, P. E., Petitti, N. & Elster, A. D. Cerebral infarction: time course of signal intensity changes on diffusion-weighted MR images. AJR Am. J. Roentgenol. 171, 791–795 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kelley, R. E. & Minagar, A. Cardioembolic stroke: an update. South. Med. J. 96, 343–349 (2003).

    Article  PubMed  Google Scholar 

  24. Friberg, L., Hammar, N. & Rosenqvist, M. Stroke in paroxysmal atrial fibrillation: report from the Stockholm Cohort of Atrial Fibrillation. Eur. Heart J. 31, 967–975 (2010).

    Article  PubMed  Google Scholar 

  25. Shinkawa, A. et al. Silent cerebral infarction in a community-based autopsy series in Japan: the Hisayama Study. Stroke 26, 380–385 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Gaita, F. et al. Prevalence of silent cerebral ischemia in paroxysmal and persistent atrial fibrillation and correlation with cognitive function. J. Am. Coll. Cardiol. http://dx.doi.org/10.1016/j.jacc.2013.05.074.

  27. Marfella, R. et al. Brief episodes of silent atrial fibrillation predict clinical vascular brain disease in type 2 diabetic patients. J. Am. Coll. Cardiol. 62, 525–520 (2013).

    Article  PubMed  Google Scholar 

  28. Kobayashi, A., Iguchi, M., Shimizu, S. & Uchiyama, S. Silent cerebral infarcts and cerebral white matter lesions in patients with nonvalvular atrial fibrillation. J. Stroke Cerebrovasc. Dis. 21, 310–317 (2012).

    Article  PubMed  Google Scholar 

  29. Neumann, T. et al. MEDAFI-Trial (Micro-Embolization During Ablation of Atrial Fibrillation): comparison of pulmonary vein isolation using cryoballoon technique vs. radiofrequency energy. Europace 13, 37–44 (2011).

    Article  PubMed  Google Scholar 

  30. Sato, H. et al. Aspirin attenuates the incidence of silent brain lesions in patients with nonvalvular atrial fibrillation. Circ. J. 68, 410–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. EAFT Study Group. Silent brain infarction in nonrheumatic atrial fibrillation: European Atrial Fibrillation Trial. Neurology 46, 159–165 (1996).

  32. Ezekowitz, M. D. et al. Silent cerebral infarction in patients with nonrheumatic atrial fibrillation. Circulation 92, 2178–2182 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Ott, A. et al. Atrial fibrillation and dementia in a population-based study: the Rotterdam Study. Stroke 28, 316–321 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Knecht, S. et al. Atrial fibrillation in stroke-free patients is associated with memory impairment and hippocampal atrophy. Eur. Heart J. 29, 2125–2132 (2008).

    Article  PubMed  Google Scholar 

  35. Mielke, M. M. et al. Vascular factors predict rate of progression in Alzheimer disease. Neurology 69, 1850–1858 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Santangeli, P. et al. Atrial fibrillation and the risk of incident dementia: a meta-analysis. Heart Rhythm 9, 1761–1768 (2012).

    Article  PubMed  Google Scholar 

  37. Miyasaka, Y. et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a community-based cohort. Eur. Heart J. 28, 1962–1967 (2007).

    Article  PubMed  Google Scholar 

  38. Vaitkus, P. T. & Barnathan, E. S. Embolic potential, prevention and management of mural thrombus complicating anterior myocardial infarction: a meta-analysis. J. Am. Coll. Cardiol. 22, 1004–1009 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  40. Dries, D. L., Rosenberg, Y. D., Waclawiw, M. A. & Domanski, M. J. Ejection fraction and risk of thromboembolic events in patients with systolic dysfunction and sinus rhythm: evidence for gender differences in the studies of left ventricular dysfunction trials. J. Am. Coll. Cardiol. 29, 1074–1080 (1997).

    Article  CAS  PubMed  Google Scholar 

  41. Siachos, T. et al. Silent strokes in patients with heart failure. J. Card. Fail. 11, 485–489 (2005).

    Article  PubMed  Google Scholar 

  42. Koniaris, L. S. & Goldhaber, S. Z. Anticoagulation in dilated cardiomyopathy. J. Am. Coll. Cardiol. 31, 745–748 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kozdag, G. et al. Silent cerebral infarction in patients with dilated cardiomyopathy: echocardiographic correlates. Int. J. Cardiol. 107, 376–381 (2006).

    Article  PubMed  Google Scholar 

  44. Kozdag, G. et al. Silent cerebral infarction in chronic heart failure: ischemic and nonischemic dilated cardiomyopathy. Vasc. Health Risk Manag. 4, 463–469 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bal, S. et al. High rate of magnetic resonance imaging stroke recurrence in cryptogenic transient ischemic attack and minor stroke patients. Stroke 43, 3387–3388 (2012).

    Article  PubMed  Google Scholar 

  46. Foulkes, M. A., Wolf, P. A., Price, T. R., Mohr, J. P. & Hier, D. B. The Stroke Data Bank: design, methods, and baseline characteristics. Stroke 19, 547–554 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Overell, J. R., Bone, I. & Lees, K. R. Interatrial septal abnormalities and stroke: a meta-analysis of case–control studies. Neurology 55, 1172–1179 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Cabanes, L. et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age: a study using transesophageal echocardiography. Stroke 24, 1865–1873 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Kitsios, G. D., Lasker, A. Singh, J. & Thaler, D. E. Recurrent stroke on imaging and presumed paradoxical embolism: a cross-sectional analysis. Neurology 78, 993–997 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Clergeau, M. R. et al. Silent cerebral infarcts in patients with pulmonary embolism and a patent foramen ovale: a prospective diffusion-weighted MRI study. Stroke 40, 3758–3762 (2009).

    Article  PubMed  Google Scholar 

  51. Ning, M. et al. The brain's heart—therapeutic opportunities for patent foramen ovale (PFO) and neurovascular disease. Pharmacol. Ther. 139, 111–123 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cabanes, L. et al. Atrial septal aneurysm and patent foramen ovale as risk factors for cryptogenic stroke in patients less than 55 years of age. A study using transesophageal echocardiography. Stroke 24, 1865–1873 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Mas, J. L. et al. Recurrent cerebrovascular events associated with patent foramen ovale, atrial septal aneurysm, or both. N. Engl. J. Med. 345, 1740–1746 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Davis, D. et al. Patent foramen ovale, ischemic stroke and migraine: systematic review and stratified meta-analysis of association studies. Neuroepidemiology 40, 56–67 (2013).

    Article  PubMed  Google Scholar 

  55. Handke, M., Harloff, A., Bode, C. & Geibel, A. Patent foramen ovale and cryptogenic stroke: a matter of age? Semin. Thromb. Hemost. 35, 505–514 (2009).

    Article  PubMed  Google Scholar 

  56. Lethen, H. et al. Frequency of deep vein thrombosis in patients with patent foramen ovale and ischemic stroke or transient ischemic attack. Am. J. Cardiol. 80, 1066–1069 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Di Tullio, M. R. et al. Patent foramen ovale, subclinical cerebrovascular disease, and ischemic stroke in a population-based cohort. J. Am. Coll. Cardiol. 62, 35–41 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Russell, D. & Brucher, R. Online automatic discrimination between solid and gaseous cerebral microemboli with the first multifrequency transcranial Doppler. Stroke 33, 1975–1980 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Fuchs, S. et al. Stroke complicating percutaneous coronary interventions: incidence, predictors, and prognostic implications. Circulation 106, 86–91 (2002).

    Article  PubMed  Google Scholar 

  60. Segal, A. Z., Abernethy, W. B., Palacios, I. F., BeLue, R. & Rordorf, G. Stroke as a complication of cardiac catheterization: risk factors and clinical features. Neurology 56, 975–977 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Büsing, K. A. et al. Cerebral infarction: incidence and risk factors after diagnostic and interventional cardiac catheterization—prospective evaluation at diffusion-weighted MR imaging. Radiology 235, 177–183 (2005).

    Article  PubMed  Google Scholar 

  62. Omran, H. et al. Silent and apparent cerebral embolism after retrograde catheterisation of the aortic valve in valvular stenosis: a prospective, randomised study. Lancet 361, 1241–1246 (2003).

    Article  PubMed  Google Scholar 

  63. Lund, C. et al. Cerebral emboli during left heart catheterization may cause acute brain injury. Eur. Heart J. 26, 1269–1275 (2005).

    Article  PubMed  Google Scholar 

  64. Ohi, Y. et al. Cerebral microembolism following coronary angiography—a prospective comparative study between left cardiac catheterization and multidetector computed tomography. Intern. Med. 52, 1869–1874 (2013).

    Article  PubMed  Google Scholar 

  65. Hamon, M. et al. Silent cerebral infarcts after cardiac catheterization: a randomized comparison of radial and femoral approaches. Am. Heart J. 164, 449–454 (2012).

    Article  PubMed  Google Scholar 

  66. Kim, B. J. et al. Insufficient platelet inhibition is related to silent embolic cerebral infarctions after coronary angiography. Stroke 43, 727–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Kim, I. C. et al. Incidence and predictors of silent embolic cerebral infarction following diagnostic coronary angiography. Int. J. Cardiol. 148, 179–182 (2011).

    Article  PubMed  Google Scholar 

  68. Murai, M. et al. Asymptomatic acute ischemic stroke after primary percutaneous coronary intervention in patients with acute coronary syndrome might be caused mainly by manipulating catheters or devices in the ascending aorta, regardless of the approach to the coronary artery. Circ. J. 72, 51–55 (2008).

    Article  PubMed  Google Scholar 

  69. Hamon, M. et al. Risk of acute brain injury related to cerebral microembolism during cardiac catheterization performed by right upper limb arterial access. Stroke 38, 2176–2179 (2007).

    Article  PubMed  Google Scholar 

  70. Hamon, M. et al., Cerebral microembolism during cardiac catheterization and risk of acute brain injury: a prospective diffusion-weighted magnetic resonance imaging study. Stroke 37, 2035–2038 (2006).

    Article  PubMed  Google Scholar 

  71. Sun, X., Lindsay, J., Monsein, L. H., Hill, P. C. & Corso, P. J. Silent brain injury after cardiac surgery: a review: cognitive dysfunction and magnetic resonance imaging diffusion-weighted imaging findings. J. Am. Coll. Cardiol. 60, 791–797 (2012).

    Article  PubMed  Google Scholar 

  72. Keeley, E. C. & Grines, C. L. Scraping of aortic debris by coronary guiding catheters: a prospective evaluation of 1,000 cases. J. Am. Coll. Cardiol. 32, 1861–1865 (1998).

    Article  CAS  PubMed  Google Scholar 

  73. Karalis, D. G. et al. Risk of catheter-related emboli in patients with atherosclerotic debris in the thoracic aorta. Am. Heart J. 131, 1149–1155 (1996).

    Article  CAS  PubMed  Google Scholar 

  74. Webb, J. G. et al. Transcatheter aortic valve implantation: impact on clinical and valve-related outcomes. Circulation 119, 3009–3016 (2009).

    Article  PubMed  Google Scholar 

  75. Grube, E. et al. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J. Am. Coll. Cardiol. 50, 69–76 (2007).

    Article  PubMed  Google Scholar 

  76. Kahlert, P. et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation 121, 870–878 (2010).

    Article  PubMed  Google Scholar 

  77. Rodés-Cabau, J. et al. Cerebral embolism following transcatheter aortic valve implantation: comparison of transfemoral and transapical approaches. J. Am. Coll. Cardiol. 57, 18–28 (2011).

    Article  PubMed  Google Scholar 

  78. Ghanem, A. et al. Prognostic value of cerebral injury following transfemoral aortic valve implantation. EuroIntervention 8, 1296–1306 (2013).

    Article  PubMed  Google Scholar 

  79. Fairbairn, T. A. et al. Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: assessment of predictive risk factors and the relationship to subsequent health status. Heart 98, 18–23 (2012).

    Article  PubMed  Google Scholar 

  80. Astarci, P. et al. Magnetic resonance imaging evaluation of cerebral embolization during percutaneous aortic valve implantation: comparison of transfemoral and trans-apical approaches using Edwards Sapiens valve. Eur. J. Cardiothorac. Surg. 40, 475–479 (2011).

    PubMed  Google Scholar 

  81. Ghanem, A. et al. Risk and fate of cerebral embolism after transfemoral aortic valve implantation: a prospective pilot study with diffusion-weighted magnetic resonance imaging. J. Am. Coll. Cardiol. 55, 1427–1432 (2010).

    Article  PubMed  Google Scholar 

  82. Arnold, M. et al. Embolic cerebral insults after transapical aortic valve implantation detected by magnetic resonance imaging. JACC Cardiovasc. Interv. 3, 1126–1132 (2010).

    Article  PubMed  Google Scholar 

  83. Erdoes, G. et al. Transcranial Doppler-detected cerebral embolic load during transcatheter aortic valve implantation. Eur. J. Cardiothorac. Surg. 41, 778–783 (2012).

    Article  PubMed  Google Scholar 

  84. Reinsfelt, B. et al. Transcranial Doppler microembolic signals and serum marker evidence of brain injury during transcatheter aortic valve implantation. Acta Anaesthesiol. Scand. 56, 240–247 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Kahlert, P. et al. Cerebral embolization during transcatheter aortic valve implantation: a transcranial Doppler study. Circulation 126, 1245–1255 (2012).

    Article  PubMed  Google Scholar 

  86. Hynes, B. G. & Rodés-Cabau, J. Transcatheter aortic valve implantation and cerebrovascular events: the current state of the art. Ann. NY Acad. Sci. 1254, 151–163 (2012).

    Article  PubMed  Google Scholar 

  87. Knipp, S. C. et al. Cognitive outcomes three years after coronary artery bypass surgery: relation to diffusion-weighted magnetic resonance imaging. Ann. Thorac. Surg. 85, 872–879 (2008).

    Article  PubMed  Google Scholar 

  88. Ito, A. et al. Postoperative neurological complications and risk factors for pre-existing silent brain infarction in elderly patients undergoing coronary artery bypass grafting. J. Anesth. 26, 405–411 (2012).

    Article  PubMed  Google Scholar 

  89. Gerriets, T. et al. Evaluation of methods to predict early long-term neurobehavioral outcome after coronary artery bypass grafting. Am. J. Cardiol. 105, 1095–1101 (2010).

    Article  PubMed  Google Scholar 

  90. Bendszus, M. et al. Brain damage after coronary artery bypass grafting. Arch. Neurol. 59, 1090–1095 (2002).

    Article  PubMed  Google Scholar 

  91. Lund, C. et al. Cerebral ischemic injury and cognitive impairmentafter off-pump and on-pump coronary artery bypass grafting surgery. Ann. Thorac. Surg. 80, 2126–2131 (2005).

    Article  PubMed  Google Scholar 

  92. Wimo, A. et al. The economic impact of dementia in Europe in 2008-cost estimates from the Eurocode project. Int. J. Geriatr. Psychiatry 26, 825–832 (2011).

    Article  CAS  PubMed  Google Scholar 

  93. Blum, S. et al. Memory after silent stroke: hippocampus and infarcts both matter. Neurology 78, 38–46 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arvanitakis, Z., Leurgans, S. E., Barnes, L. L., Bennett, D. A. & Schneider, J. A. Microinfarct pathology, dementia, and cognitive systems. Stroke 42, 722–727 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Gerriets, T. et al. Protecting the brain from gaseous and solid micro-emboli during coronary artery bypass grafting: a randomized controlled trial. Eur. Heart J. 31, 260–268 (2010).

    Article  Google Scholar 

  96. Djaiani, G. et al. Mild to moderate atheromatous disease of the thoracic aorta and new ischemic brain lesions after conventional coronary artery bypass graft surgery. Stroke 35, e356–e358 (2004).

    Article  PubMed  Google Scholar 

  97. Floyd, T. F. et al. Clinically silent cerebral ischemic events after cardiac surgery: their incidence, regional vascular occurrence, and procedural dependence. Ann. Thorac. Surg. 81, 2160–2166 (2006).

    Article  PubMed  Google Scholar 

  98. Selnes, O. A. & McKhann, G. M. Neurocognitive complications after coronary artery bypass surgery. Ann. Neurol. 57, 615–621 (2005).

    Article  PubMed  Google Scholar 

  99. Van Dijk, D. et al. Cognitive outcome after off-pump and on-pump coronary artery bypass graft surgery: a randomized trial. JAMA 287, 1405–1412 (2002).

    Article  PubMed  Google Scholar 

  100. European Heart Rhythm Association. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 31, 2369–2429 (2010).

  101. Haeusler, K. G. et al. 3 Tesla MRI-detected brain lesions after pulmonary vein isolation for atrial fibrillation: results of the MACPAF study. J. Cardiovasc. Electrophysiol. 24, 14–21 (2013).

    Article  PubMed  Google Scholar 

  102. Herrera Siklódy, C. et al. Incidence of asymptomatic intracranial embolic events after pulmonary vein isolation: comparison of different atrial fibrillation ablation technologies in a multicenter study. J. Am. Coll. Cardiol. 58, 681–688 (2011).

    Article  PubMed  Google Scholar 

  103. Schwarz, N. et al. Neuropsychological decline after catheter ablation of atrial fibrillation. Heart Rhythm. 7, 1761–1767 (2010).

    Article  PubMed  Google Scholar 

  104. Gaita, F. et al., Radiofrequency catheter ablation of atrial fibrillation: a cause of silent thromboembolism? Magnetic resonance imaging assessment of cerebral thromboembolism in patients undergoing ablation of atrial fibrillation. Circulation 122, 1667–1673 (2010).

    Article  PubMed  Google Scholar 

  105. Schrickel, J. W. et al. Incidence and predictors of silent cerebral embolism during pulmonary vein catheter ablation for atrial fibrillation. Europace 12, 52–57 (2010).

    Article  PubMed  Google Scholar 

  106. Meier, B. et al. Percutaneous closure of patent foramen ovale in cryptogenic embolism. N. Engl. J. Med. 368, 1083–1091 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Carroll, J. D. et al. Closure of patent foramen ovale versus medical therapy after cryptogenic stroke. N. Engl. J. Med. 368, 1092–1100 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Skowasch, D. et al. Silent and apparent cerebral embolism after interventional closure of symptomatic patent foramen ovale. Int. J. Cardiol. 145, 401–402 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Dorenbeck, U. et al. Cerebral embolism with interventional closure of symptomatic patent foramen ovale: an MRI-based study using diffusion-weighted imaging. Eur. J. Neurol. 14, 451–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Bernick, C. et al. Silent MRI infarcts and the risk of future stroke: the Cardiovascular Health Study. Neurology 57, 1222–1229 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Choi, S. H. et al. Diffusion-weighted MRI in vascular dementia. Neurology 54, 83–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Vermeer, S. E., Longstreth, W. T. Jr & Koudstaal, P. J. Silent brain infarcts: a systematic review. Lancet Neurol. 6, 611–619 (2007).

    Article  PubMed  Google Scholar 

  113. Fujikawa, T., Yanai, I. & Yamawaki, S. Psychosocial stressors in patients with major depression and silent cerebral infarction. Stroke 28, 1123–1125 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Fujikawa, T., Yamawaki, S. & Touhouda, Y. Incidence of silent cerebral infarction in patients with major depression. Stroke 24, 1631–1634 (1993).

    Article  CAS  PubMed  Google Scholar 

  115. Yanai, I., Fujikawa, T., Horiguchi, J., Yamawaki, S. & Touhouda, Y. The 3-year course and outcome of patients with major depression and silent cerebral infarction. J. Affect. Disord. 47, 25–30 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Fujikawa, T., Yamawaki, S. & Touhouda, Y. Background factors and clinical symptoms of major depression with silent cerebral infarction. Stroke 25, 798–801 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Dutch Heart Foundation (2011 T022) and National Health Insurance Board/ZonMw, Netherlands (40-00703-98-11629) to R. Delewi.

Author information

Authors and Affiliations

Authors

Contributions

M. E. C. Hassell researched the data for the article. M. E. C. Hassell, R. Delewi, and R. Nijveldt contributed substantially to discussion of the content. M. E. C. Hassell and R. Delewi contributed substantially to writing the article. All the authors reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Ronak Delewi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassell, M., Nijveldt, R., Roos, Y. et al. Silent cerebral infarcts associated with cardiac disease and procedures. Nat Rev Cardiol 10, 696–706 (2013). https://doi.org/10.1038/nrcardio.2013.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing