Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dilated cardiomyopathy: the complexity of a diverse genetic architecture

Abstract

Remarkable progress has been made in understanding the genetic basis of dilated cardiomyopathy (DCM). Rare variants in >30 genes, some also involved in other cardiomyopathies, muscular dystrophy, or syndromic disease, perturb a diverse set of important myocardial proteins to produce a final DCM phenotype. Large, publicly available datasets have provided the opportunity to evaluate previously identified DCM-causing mutations, and to examine the population frequency of sequence variants similar to those that have been observed to cause DCM. The frequency of these variants, whether associated with dilated or hypertrophic cardiomyopathy, is greater than estimates of disease prevalence. This mismatch might be explained by one or more of the following possibilities: that the penetrance of DCM-causing mutations is lower than previously thought, that some variants are noncausal, that DCM prevalence is higher than previously estimated, or that other more-complex genomics underlie DCM. Reassessment of our assumptions about the complexity of the genomic and phenomic architecture of DCM is warranted. Much about the genomic basis of DCM remains to be investigated, which will require comprehensive genomic studies in much larger cohorts of rigorously phenotyped probands and family members than previously examined.

Key Points

  • Point mutations in >30 genes of diverse ontologies, acting via various pathways, are implicated in causing dilated cardiomyopathy (DCM)

  • The prevalence of DCM is likely to have been substantially underestimated, and the condition is likely to be more common than hypertrophic cardiomyopathy

  • The molecular genetics of DCM are characterized by locus and allelic heterogeneity, reduced penetrance, and variable and age-dependent expressivity, with most mutations being rare or even unique ('private')

  • Surveys of large, publicly available exome-sequencing databases suggest an excess of rare variants in known cardiomyopathy-associated genes compared with estimates of disease prevalence

  • The traditional Mendelian paradigm for understanding the genomics of DCM is likely to be incomplete

  • Current sequencing strategies, accumulating clinical evidence, and a molecular genetic-testing sensitivity of 30–40% for DCM provide foundations for the entry of this condition into genomic medicine

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Relationships between genes associated with cardiomyopathies and related phenotypes.
Figure 2: A remarkably heterogeneous set of rare genetic variants yields a single DCM phenotype.
Figure 3: Network of DCM-associated gene–gene interactions from the STRING database.
Figure 4: Morphology of the cardiomyopathies.
Figure 5: Pedigree analysis.
Figure 6: Penetrance and variable expressivity of LMNA-associated DCM.
Figure 7: Allelic heterogeneity shown by DCM and HCM mutations in TNNT2, which encodes cardiac troponin T.130
Figure 8: Variations on the Mendelian disease paradigm relevant to DCM genetics.
Figure 9: Future areas of research in dilated cardiomyopathy.

Similar content being viewed by others

References

  1. Burkett, E. L. & Hershberger, R. E. Clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 45, 969–981 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hershberger, R. E., Morales, A. & Siegfried, J. D. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet. Med. 12, 655–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fatkin, D., Otway, R. & Richmond, Z. Genetics of dilated cardiomyopathy. Heart Fail. Clin. 6, 129–140 (2010).

    Article  PubMed  Google Scholar 

  4. Jefferies, J. L. & Towbin, J. A. Dilated cardiomyopathy. Lancet 375, 752–762 (2010).

    Article  PubMed  Google Scholar 

  5. Dellefave, L. & McNally, E. M. The genetics of dilated cardiomyopathy. Curr. Opin. Cardiol. 25, 198–204 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jacoby, D. & McKenna, W. J. Genetics of inherited cardiomyopathy. Eur. Heart J. 33, 296–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Piran, S., Liu, P., Morales, A. & Hershberger, R. E. Where genome meets phenome: rationale for integrating genetic and protein biomarkers in the diagnosis and management of dilated cardiomyopathy and heart failure. J. Am. Coll. Cardiol. 60, 283–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Posafalvi, A. et al. Clinical utility gene card for: dilated cardiomyopathy (CMD). Eur. J. Hum. Genet. http://dx.doi.org/10.1038/ejhg.2012.276.

  9. Houle, D., Govindaraju, D. R. & Omholt, S. Phenomics: the next challenge. Nat. Rev. Genet. 11, 855–866 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Evans, J. P. & Berg, J. S. Next-generation DNA sequencing, regulation, and the limits of paternalism: the next challenge. JAMA 306, 2376–2377 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Bagnall, R. D., Ingles, J. & Semsarian, C. Molecular diagnostics of cardiomyopathies: the future is here. Circ. Cardiovasc. Genet. 4, 103–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Sturm, A. C. & Hershberger, R. E. Genetic testing in cardiovascular medicine: current landscape and future horizons. Curr. Opin. Cardiol. 28, 317–325 (2013).

    PubMed  Google Scholar 

  13. Lakdawala, N. K. et al. Genetic testing for dilated cardiomyopathy in clinical practice. J. Card. Fail. 18, 296–303 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Teekakirikul, P., Kelly, M. A., Rehm, H. L., Lakdawala, N. K. & Funke, B. H. Inherited cardiomyopathies: molecular genetics and clinical genetic testing in the postgenomic era. J. Mol. Diagn. 15, 158–170 (2012).

    Article  PubMed  Google Scholar 

  15. MacRae, C. A. Action and the actionability in exome variation. Circ. Cardiovasc. Genet. 5, 597–598 (2012).

    Article  PubMed  Google Scholar 

  16. Elliott, P. et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 29, 270–276 (2008).

    Article  PubMed  Google Scholar 

  17. Maron, B. J. et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113, 1807–1816 (2006).

    Article  PubMed  Google Scholar 

  18. Yancy, C. W. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation http://dx.doi.org/10.1161/CIR.0b013e31829e8776.

  19. Marcus, F. I. et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the Task Force Criteria. Eur. Heart J. 31, 806–814 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Codd, M. B., Sugrue, D. D., Gersh, B. J. & Melton, L. J. 3rd Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy: a population-based study in Olmsted County, Minnesota, 1975–1984. Circulation 80, 564–572 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary Artery Risk Development in (Young) Adults. Circulation 92, 785–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Maron, B. J. et al. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA 281, 650–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Go, A. S. et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127, e6–e245 (2013).

    PubMed  Google Scholar 

  24. Redfield, M. M. et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA 289, 194–202 (2003).

    Article  PubMed  Google Scholar 

  25. The Beta-Blocker Evaluation of Survival Trial Investigators. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N. Engl. J. Med. 344, 1659–1667 (2001).

  26. Whellan, D. J. et al. Heart failure and a controlled trial investigating outcomes of exercise training (HF-ACTION): design and rationale. Am. Heart J. 153, 201–211 (2007).

    Article  PubMed  Google Scholar 

  27. Hudson, L. et al. Family history of dilated cardiomyopathy among patients with heart failure from the HF-ACTION genetic ancillary study. Clin. Trans. Sci. 6, 179–183 (2013).

    Article  Google Scholar 

  28. Dargie, H. J. Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. Lancet 357, 1385–1390 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. McDonagh, T. A. et al. Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. Lancet 350, 829–833 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Davies, M. et al. Prevalence of left-ventricular systolic dysfunction and heart failure in the Echocardiographic Heart of England Screening study: a population based study. Lancet 358, 439–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, T. J. et al. Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108, 977–982 (2003).

    Article  PubMed  Google Scholar 

  32. Yeboah, J. et al. Prognosis of individuals with asymptomatic left ventricular systolic dysfunction in the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 126, 2713–2719 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ruiter, J. S. et al. The importance of the family history in caring for families with long QT syndrome and dilated cardiomyopathy. Am. J. Med. Genet. A 152A, 607–612 (2010).

    Article  PubMed  Google Scholar 

  34. Michels, V. V. et al. The frequency of familial dilated cardiomyopathy in a series of patients with idiopathic dilated cardiomyopathy. N. Engl. J. Med. 326, 77–82 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Brodt, C. et al. Temporal relationship of conduction system disease and ventricular dysfunction in LMNA cardiomyopathy. J. Card. Fail. 19, 233–239 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gerull, B. et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 14, 201–204 (2002).

    Article  CAS  Google Scholar 

  37. Herman, D. S. et al. Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Norton, N. et al. Exome sequencing and genome-wide linkage analysis in 17 families illustrates the complex contribution of TTN truncating variants to dilated cardiomyopathy. Circ. Cardiovasc. Genet. 6, 144–153 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Pan, S. et al. Cardiac structural and sarcomere genes associated with cardiomyopathy exhibit marked intolerance of genetic variation. Circ. Cardiovasc. Genet. 5, 602–610 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Norton, N. et al. Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era. Circ. Cardiovasc. Genet. 5, 167–174 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Golbus, J. R. et al. Population-based variation in cardiomyopathy genes. Circ. Cardiovasc. Genet. 5, 391–399 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu, J. T., Muchir, A., Nagy, P. L. & Worman, H. J. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine. Dis. Model. Mech. 4, 562–568 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Parks, S. B. et al. Lamin A/C mutation analysis in a cohort of 324 unrelated patients with idiopathic or familial dilated cardiomyopathy. Am. Heart J. 156, 161–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hershberger, R. E. et al. Genetic evaluation of cardiomyopathy—a Heart Failure Society of America practice guideline. J. Card. Fail. 15, 83–97 (2009).

    Article  PubMed  Google Scholar 

  45. Bick, A. G. et al. Burden of rare sarcomere gene variants in the Framingham and Jackson Heart Study cohorts. Am. J. Hum. Genet. 91, 513–519 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kontorovich, T., Cohen, Y., Nir, U. & Friedman, E. Promoter methylation patterns of ATM, ATR, BRCA1, BRCA2 and p53 as putative cancer risk modifiers in Jewish BRCA1/BRCA2 mutation carriers. Breast Cancer Res. Treat. 116, 195–200 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Beutler, E., Felitti, V. J., Koziol, J. A., Ho, N. J. & Gelbart, T. Penetrance of 845G A (C282Y) HFE hereditary haemochromatosis mutation in the USA. Lancet 359, 211–218 (2002).

    Article  PubMed  Google Scholar 

  48. Adams, P. C. et al. Hemochromatosis and iron-overload screening in a racially diverse population. N. Engl. J. Med. 352, 1769–1778 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Norton, N., Li, D. & Hershberger, R. E. Next-generation sequencing to identify genetic causes of cardiomyopathies. Curr. Opin. Cardiol. 27, 214–220 (2012).

    Article  PubMed  Google Scholar 

  50. Coughlin, S. et al. Black-white differences in mortality in idiopathic dilated cardiomyopathy: the Washington, DC, dilated cardiomyopathy study. J. Natl Med. Assoc. 86, 583–591 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bahrami, H. et al. Differences in the incidence of congestive heart failure by ethnicity: the Multi-Ethnic Study of Atherosclerosis. Arch. Intern. Med. 168, 2138–2145 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bibbins-Domingo, K. et al. Racial differences in incident heart failure among young adults. N. Engl. J. Med. 360, 1179–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hershberger, R. E., Cowan, J., Morales, A. & Siegfried, J. D. Progress with genetic cardiomyopathies: screening, counseling, and testing in dilated, hypertrophic, and arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ. Heart Fail. 2, 253–261 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ackerman, M. J. et al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8, 1308–1339 (2011).

    Article  PubMed  Google Scholar 

  55. Sikkema-Raddatz, B. et al. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Hum. Mutat. 34, 1035–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Hershberger, R. E. & Siegfried, J. D. State of the art review. Update 2011: clinical and genetic issues in familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 57, 1641–1649 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tennessen, J. A. et al. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337, 64–69 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cooper, G. M. et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat. Methods 7, 250–251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng, P. C. & Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 31, 3812–3814 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. Chapter 7, unit 7.20 (2013).

  62. Olson, T. M., Michels, V. V., Thibodeau, S. N., Tai, Y. S. & Keating, M. T. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280, 750–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Taylor, M. R. et al. Prevalence of desmin mutations in dilated cardiomyopathy. Circulation 115, 1244–1251 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Mohapatra, B. et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 80, 207–215 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Duboscq-Bidot, L. et al. Mutations in the ANKRD1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur. Heart J. 30, 2128–2136 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Hershberger, R. E. et al. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin. Transl. Sci. 1, 21–26 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Daehmlow, S. et al. Novel mutations in sarcomeric protein genes in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 298, 116–120 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Hershberger, R. E. A glimpse into multigene rare variant genetics: triple mutations in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 55, 1454–1455 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carniel, E. et al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 112, 54–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Kamisago, M. et al. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343, 1688–1696 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Villard, E. et al. Mutation screening in dilated cardiomyopathy: prominent role of the beta myosin heavy chain gene. Eur. Heart J. 26, 794–803 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Duboscq-Bidot, L. et al. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 77, 118–125 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Hayashi, T. et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2192–2201 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Hershberger, R. E. et al. Coding sequence rare variants identified in MYBPC3, MYH6, TPM1, TNNC1, and TNNI3 from 312 patients with familial or idiopathic dilated cardiomyopathy. Circ. Cardiovasc. Genet. 3, 155–161 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mogensen, J. et al. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44, 2033–2040 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Murphy, R. T. et al. Novel mutation in cardiac troponin I in recessive idiopathic dilated cardiomyopathy. Lancet 363, 371–372 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Carballo, S. et al. Identification and functional characterization of cardiac troponin I as a novel disease gene in autosomal dominant dilated cardiomyopathy. Circ. Res. 105, 375–382 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Li, D. et al. Novel cardiac troponin T mutation as a cause of familial dilated cardiomyopathy. Circulation 104, 2188–2193 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Moller, D. V. et al. The role of sarcomere gene mutations in patients with idiopathic dilated cardiomyopathy. Eur. J. Hum. Genet. 17, 1241–1249 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Olson, T. M., Kishimoto, N. Y., Whitby, F. G. & Michels, V. V. Mutations that alter the surface charge of alpha-tropomyosin are associated with dilated cardiomyopathy. J. Mol. Cell. Cardiol. 33, 723–732 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Lakdawala, N. K. et al. Familial dilated cardiomyopathy caused by an alpha-tropomyosin mutation: the distinctive natural history of sarcomeric dilated cardiomyopathy. J. Am. Coll. Cardiol. 55, 320–329 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gerull, B. et al. Identification of a novel frameshift mutation in the giant muscle filament titin in a large Australian family with dilated cardiomyopathy. J. Mol. Med. 84, 478–483 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Tesson, F. et al. Epidemiology of desmin and cardiac actin gene mutations in a European population of dilated cardiomyopathy. Eur. Heart J. 21, 1872–1876 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Li, D. et al. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation 100, 461–464 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Towbin, J. A. et al. X-linked dilated cardiomyopathy: molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation 87, 1854–1865 (1993).

    Article  CAS  PubMed  Google Scholar 

  87. Muntoni, F. et al. Deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329, 921–925 (1993).

    Article  CAS  PubMed  Google Scholar 

  88. Knoll, R. et al. Laminin-alpha4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116, 515–525 (2007).

    Article  PubMed  CAS  Google Scholar 

  89. Vatta, M. et al. Mutations in cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 42, 2014–2027 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Arola, A. M. et al. Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol. Genet. Metab. 90, 435–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Karkkainen, S. et al. A novel mutation, Arg71Thr, in the delta-sarcoglycan gene is associated with dilated cardiomyopathy. J. Mol. Med. (Berl.) 81, 795–800 (2003).

    Article  CAS  Google Scholar 

  92. Tsubata, S. et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106, 655–662 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sylvius, N. et al. Mutational analysis of the beta- and delta-sarcoglycan genes in a large number of patients with familial and sporadic dilated cardiomyopathy. Am. J. Med. Genet. A 120A, 8–12 (2003).

    Article  PubMed  Google Scholar 

  94. Olson, T. M. et al. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation 105, 431–437 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Brodsky, G. L. et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101, 473–476 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Becane, H. M. et al. High incidence of sudden death with conduction system and myocardial disease due to lamins A and C gene mutation. Pacing Clin. Electrophysiol. 23, 1661–1666 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Jakobs, P. M. et al. Novel lamin A/C mutations in two families with dilated cardiomyopathy and conduction system disease. J. Card. Fail. 7, 249–256 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Arbustini, E. et al. Autosomal dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J. Am. Coll. Cardiol. 39, 981–990 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Hershberger, R. E. et al. A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. Am. Heart J. 144, 1081–1086 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Taylor, M. R. et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J. Am. Coll. Cardiol. 41, 771–780 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Sebillon, P. et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J. Med. Genet. 40, 560–567 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. MacLeod, H. M., Culley, M. R., Huber, J. M. & McNally, E. M. Lamin A/C truncation in dilated cardiomyopathy with conduction disease. BMC Med. Genet. 4, 4 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sylvius, N. et al. A new locus for autosomal dominant dilated cardiomyopathy identified on chromosome 6q12-q16. Am. J. Hum. Genet. 68, 241–246 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Pethig, K. et al. LMNA mutations in cardiac transplant recipients. Cardiology 103, 57–62 (2005).

    Article  CAS  PubMed  Google Scholar 

  106. Karkkainen, S. et al. Novel mutations in the lamin A/C gene in heart transplant recipients with end stage dilated cardiomyopathy. Heart 92, 524–526 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Taylor, M. R. et al. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy. Hum. Mutat. 26, 566–574 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Li, D. et al. Mutations of presenilin genes in dilated cardiomyopathy and heart failure. Am. J. Hum. Genet. 79, 1030–1039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McNair, W. P. et al. SCN5A mutation associated with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation 110, 2163–2167 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Olson, T. M. et al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293, 447–454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. D'Adamo, P. et al. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am. J. Hum. Genet. 61, 862–867 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bione, S. et al. A novel X-linked gene, G4.5., is responsible for Barth syndrome. Nat. Genet. 12, 385–389 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Brauch, K. M. et al. Mutations in ribonucleic acid binding protein gene cause familial dilated cardiomyopathy. J. Am. Coll. Cardiol. 54, 930–941 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li, D. et al. Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl. Sci. 3, 90–97 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science 299, 1410–1413 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Haghighi, K. et al. A mutation in the human phospholamban gene, deleting arginine 14, results in lethal, hereditary cardiomyopathy. Proc. Natl Acad. Sci. USA 103, 1388–1393 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. DeWitt, M. M., MacLeod, H. M., Soliven, B. & McNally, E. M. Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J. Am. Coll. Cardiol. 48, 1396–1398 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Medin, M. et al. Mutational screening of phospholamban gene in hypertrophic and idiopathic dilated cardiomyopathy and functional study of the PLN −42 C>G mutation. Eur. J. Heart Fail. 9, 37–43 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Garcia-Pavia, P. et al. Desmosomal protein gene mutations in patients with idiopathic dilated cardiomyopathy undergoing cardiac transplantation: a clinicopathological study. Heart 97, 1744–1752 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Norton, N. et al. Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 88, 273–282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Villard, E. et al. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 32, 1065–1076 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Inagaki, N. et al. Alpha B-crystallin mutation in dilated cardiomyopathy. Biochem. Biophys. Res. Commun. 342, 379–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Schonberger, J. et al. Mutation in the transcriptional coactivator EYA4 causes dilated cardiomyopathy and sensorineural hearing loss. Nat. Genet. 37, 418–422 (2005).

    Article  PubMed  CAS  Google Scholar 

  124. National Heart, Lung, and Blood Institute. NHLBI Grand Opportunities Exome Sequencing Project (ESP) [online], (2013).

  125. National Heart, Lung, and Blood Institute. NHLBI Exome Sequencing Project (ESP) Exome Variant Server [online], (2013).

  126. 1000 Genomes. A Deep Catalog of Human Genetic Variation [online], (2013).

  127. Fu, W. et al. Analysis of 6,515 exomes reveals the recent origin of most human protein-coding variants. Nature 493, 216–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Manolio, T. A. et al. Prevalence and etiology of idiopathic dilated cardiomyopathy (summary of a National Heart, Lung, and Blood Institute workshop). Am. J. Cardiol. 69, 1458–1466 (1992).

    Article  CAS  PubMed  Google Scholar 

  129. Caforio, A. L. et al. Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management. Heart Fail. Rev. http://dx.doi.org/10.1007/s10741-012-9364-5.

  130. Hershberger, R. E. et al. Clinical and functional characterization of TNNT2 mutations identified in patients with dilated cardiomyopathy. Circ. Cardiovasc. Genet. 2, 306–313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH award HL58626 (R. E. Hershberger).

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed substantially to researching and writing this manuscript, and to reviewing/editing it before submission.

Corresponding author

Correspondence to Ray E. Hershberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hershberger, R., Hedges, D. & Morales, A. Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10, 531–547 (2013). https://doi.org/10.1038/nrcardio.2013.105

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrcardio.2013.105

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing