Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Less attention is more in the preparation of antisaccades, but not prosaccades

Abstract

To make a saccadic eye movement to a target we must first attend to it. It is therefore not surprising that diverting attention increases saccade latency, but is latency increased in all cases? We show that attending to a peripheral discrimination task has a paradoxical effect. If the stimulus to be attended appears shortly (100 to 300 ms) before an eye movement is made in a direction opposite to that of a presented stimulus (an antisaccade), its latency is reduced to well below baseline performance. In contrast, latencies for saccades toward the stimulus (prosaccades) are increased under similar conditions. This paradoxical effect may arise from competition between the processes mediating prosaccades and antisaccades. When the discrimination task is presented at the critical moment, it interferes with a reflexive prosaccade, allowing faster antisaccades. The results suggest that the suppression of sensorimotor reflexes can facilitate volitional motor acts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimuli and results for experiment 1.
Figure 2: Stimuli and results for experiment 2.
Figure 3: Stimuli and results for experiment 3.
Figure 4: The results from experiment 4.
Figure 5: A proposal for a functional explanation of the results.

Similar content being viewed by others

References

  1. Hallett, P. E. & Adams, B. D. The predictability of saccadic latency in a novel voluntary oculomotor task. Vision Res. 20, 329–339 (1980).

    Article  CAS  Google Scholar 

  2. Everling, S. & Fischer, B. The antisaccade: a review of basic research and clinical studies. Neuropsychologia 36, 885–899 (1998).

    Article  CAS  Google Scholar 

  3. Amador, N., Schlag-Rey, M. & Schlag, J. Primate antisaccades. I. Behavioral characteristics. J. Neurophysiol. 80, 1775–1786 (1998).

    Article  CAS  Google Scholar 

  4. Funahashi, S., Chaffee, M. V. & Goldman-Rakic, P. S. Prefrontal neural activity in rhesus monkeys performing a delayed antisaccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  5. Schlag-Rey, M., Amador, N., Sanchez, H. & Schlag, J. Antisaccade performance predicted by neuronal activity in the supplementary eye field. Nature 390, 398–401 (1997).

    Article  CAS  Google Scholar 

  6. Forbes, K. & Klein, R. M. The magnitude of the fixation offset effect with endogenously and exogenously controlled saccades. J. Cogn. Neurosci. 8, 344–352 (1996).

    Article  CAS  Google Scholar 

  7. Everling, S., Dorris, M. C. & Munoz, D. P. Reflex suppression in the anti-saccade task is dependent on prestimulus neural processes. J. Neurophysiol. 80, 1584–1589 (1998).

    Article  CAS  Google Scholar 

  8. Hoffman, J. E. & Subramaniam, B. The role of visual attention in saccadic eye movements. Percept. Psychophys. 57, 787–795 (1995).

    Article  CAS  Google Scholar 

  9. Kowler, E., Anderson, E., Dosher B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  Google Scholar 

  10. Deubel, H. & Schneider, W. X. Saccade target selection and object recognition: evidence for a common attentional mechanism. Vision Res. 36, 1827–1837 (1996).

    Article  CAS  Google Scholar 

  11. Kustov, A. A. & Robinson, D. L. Shared neural control of attentional shifts and eye movements. Nature 384, 74–77 (1996).

    Article  CAS  Google Scholar 

  12. Broadbent, D. Successive responses to simultaneous stimuli. Q. J. Exp. Psychol. 8, 145–152 (1956).

    Article  Google Scholar 

  13. Posner, M. I. & Boies, S. J. Components of attention. Psychol. Rev. 78, 391–408 (1971).

    Article  Google Scholar 

  14. Greenwald, A. G. & Shulman, H. G. On doing two things at once: II. Elimination of the psychological refractory period effect. J. Exp. Psychol. 101, 70–76 (1973).

    Article  CAS  Google Scholar 

  15. Norman, D. A. & Bobrow, D. G. On data limited and resource limited processes. Cognit. Psychol. 7, 44–64 (1975).

    Article  Google Scholar 

  16. Joseph, J. S., Chun, M. M. & Nakayama, K. Attentional requirements in a 'preattentive' feature search task. Nature 387, 805–807 (1997).

    Article  CAS  Google Scholar 

  17. Duncan, J., Martens, S. & Ward, R. Restricted attentional capacity within but not between sensory modalities. Nature 387, 808–810 (1997).

    Article  CAS  Google Scholar 

  18. Pashler, H. & Johnston, J. C. in Attention (ed. H. Pashler) 155–189 (Psychology, Hove, UK, 1998).

    Google Scholar 

  19. Hoffman, J. E. in Attention (ed. H. Pashler) 119–153 (Psychology, Hove, UK, 1998).

    Google Scholar 

  20. Yantis, S. Stimulus-driven attentional capture and attentional control settings. J. Exp. Psychol. Hum. Percept. Perform. 19, 676–681 (1993).

    Article  CAS  Google Scholar 

  21. Theeuwes, J. Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. J. Exp. Psychol. Hum. Percept. Perform. 20, 799–806 (1994).

    Article  CAS  Google Scholar 

  22. Bacon, W. F. & Egeth, H. E. Overriding stimulus-driven attentional capture. Percept. Psychophys. 56, 485–496 (1994).

    Article  Google Scholar 

  23. Folk, C. L. & Remington, R. Can new objects override attentional control settings? Percept. Psychophys. 61, 727–739 (1999).

    Article  CAS  Google Scholar 

  24. Kristjánsson, Á., Mackeben, M. & Nakayama, K. Rapid learning in the deployment of transient attention. Perception (in press).

  25. Ross, L. E. & Ross, S. M. Saccade latency and warning signals: stimulus onset, offset, and change as warning events. Percept. Psychophys. 27, 251–257 (1980).

    Article  CAS  Google Scholar 

  26. Fischer, B. & Weber, H. Express saccades and visual attention. Behav. Brain Sci. 16, 553–610 (1993).

    Article  Google Scholar 

  27. Neisser, U. Cognitive Psychology (Appleton-Century-Crofts, New York, 1967).

    Google Scholar 

  28. Pashler, H., Carrier, M. & Hoffman, J. Saccadic eye movements and dual-task interference. Q. J. Exp. Psychol. A 46, 51–82 (1993).

    Article  CAS  Google Scholar 

  29. Stuyven, E., Van der Goten, K., Vandierendonck, A., Claeys, K. & Crevits, L. The effect of cognitive load on saccadic eye movements. Acta Psychol. 104, 69–85 (2000).

    Article  CAS  Google Scholar 

  30. Duncan, J., Humphreys, G. & Ward, R. Competitive brain activity in visual attention. Curr. Opin. Neurobiol. 7, 255–261 (1997).

    Article  CAS  Google Scholar 

  31. Goldberg, M. E. in Principles of Neural Science 4th edn. (eds. Kandel, E., Schwartz, J. H. & Jessel, T. M.) 782–800 (McGraw-Hill, New York, 2000).

    Google Scholar 

  32. Sparks, D. L. & Barton, E. J. Neural control of saccadic eye movements. Curr. Opin. Neurobiol. 3, 966–972 (1993).

    Article  CAS  Google Scholar 

  33. Schall, J. D. & Thompson, K. G. Neural selection and control of visually guided eye movements. Annu. Rev. Neurosci. 22, 241–259 (1999).

    Article  CAS  Google Scholar 

  34. Dorris, M. C., Pare, M. & Munoz, D. P. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 17, 8566–8579 (1997).

    Article  CAS  Google Scholar 

  35. Goldberg, M. E. & Bushnell, M. C. Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J. Neurophysiol. 46, 773–787 (1981).

    Article  CAS  Google Scholar 

  36. Guitton, D., Buchtel, H. A. & Douglas, R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp. Brain. Res. 58, 455–472 (1985).

    Article  CAS  Google Scholar 

  37. Schiller, P. H., Sandell, J. H. & Maunsell, J. H. The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J. Neurophysiol. 57, 1033–1049 (1987).

    Article  CAS  Google Scholar 

  38. Chen, L. L. & Wise, S. P. Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. J. Physiol. (Lond.) 73, 1101–1121 (1995).

    CAS  Google Scholar 

  39. Bruce, C. J. & Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  40. Schall, J. D. Neuronal activity related to visually guided saccades in the frontal eye fields of rhesus monkeys: comparison with supplementary eye fields. J. Neurophysiol. 66, 559–579 (1991).

    Article  CAS  Google Scholar 

  41. Everling, S. & Munoz, D. P. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J. Neurosci. 20, 387–400 (2000).

    Article  CAS  Google Scholar 

  42. Everling, S., Dorris, M. C., Klein, R. M. & Munoz, D. P. Role of primate superior colliculus in preparation and execution of anti-saccades and pro-saccades. J. Neurosci. 19, 2740–2754 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by a Fulbright graduate award and a Thor Thors graduate award to A.K., an NIH grant to Y.C. and an AFOSR grant to K.N. We thank J. Edelman, C. Stromeyer and P. Cavanagh for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Árni Kristjánsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kristjánsson, Á., Chen, Y. & Nakayama, K. Less attention is more in the preparation of antisaccades, but not prosaccades. Nat Neurosci 4, 1037–1042 (2001). https://doi.org/10.1038/nn723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing