Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp

Abstract

Adaptive motor behavior requires efficient error detection and correction. The posterior parietal cortex is critical for on-line control of reach-to-grasp movements. Here we show a causal relationship between disruption of cortical activity within the anterior intraparietal sulcus (aIPS) by transcranial magnetic stimulation (TMS) and disruption of goal-directed prehensile actions (either grip size or forearm rotation, depending on the task goal, with reaching preserved in either case). Deficits were elicited by applying TMS within 65 ms after object perturbation, which attributes a rapid control process on the basis of visual feedback to aIPS. No aperture deficits were produced when TMS was applied to a more caudal region within the intraparietal sulcus, to the parieto-occipital complex (putative V6, V6A) or to the hand area of primary motor cortex. We contend that aIPS is critical for dynamic error detection during goal-dependent reach-to-grasp action that is visually guided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reach-to-grasp adjustments required in Experiments 1 and 2.
Figure 2: Mean grasp aperture profiles for one subject in Experiment 1.
Figure 3: Mean aperture profiles for the remaining eight subjects (shown only for aIPS).
Figure 4: Group mean (± s.e.m.) for grasp- and reach-related kinematics.
Figure 5: Mean (± s.d.) grasp movement times in Experiment 1a.
Figure 6: Movement kinematics for Experiment 2.

Similar content being viewed by others

References

  1. Johnson, S.H. & Grafton, S.T. From 'acting on' to 'acting with': the functional anatomy of object-oriented action schemata. Prog. Brain Res. 142, 127–139 (2003).

    Article  Google Scholar 

  2. Marconi, B. et al. Eye-hand coordination during reaching. I. Anatomical relationships between parietal and frontal cortex. Cereb. Cortex 11, 513–527 (2001).

    Article  CAS  Google Scholar 

  3. Rizzolatti, G. & Matelli, M. Two different streams form the dorsal visual system: anatomy and functions. Exp. Brain Res. 153, 146–157 (2003).

    Article  Google Scholar 

  4. Luppino, G., Murata, A., Govoni, P. & Matelli, M. Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4). Exp. Brain Res. 128, 181–187 (1999).

    Article  CAS  Google Scholar 

  5. Rizzolatti, G. & Luppino, G. The cortical motor system. Neuron 31, 889–901 (2001).

    Article  CAS  Google Scholar 

  6. Taira, M., Mine, S., Georgopoulos, A.P., Murata, A. & Sakata, H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp. Brain Res. 83, 29–36 (1990).

    Article  CAS  Google Scholar 

  7. Sakata, H., Taira, M., Murata, A. & Mine, S. Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. Cereb. Cortex 5, 429–438 (1995).

    Article  CAS  Google Scholar 

  8. Murata, A., Gallese, V., Luppino, G., Kaseda, M. & Sakata, H. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580–2601 (2000).

    Article  CAS  Google Scholar 

  9. Sakata, H. et al. Neural coding of 3D features of objects for hand action in the parietal cortex of the monkey. Phil. Trans. R. Soc. Lond. B Biol. Sci. 353, 1363–1373 (1998).

    Article  CAS  Google Scholar 

  10. Sakata, H. et al. Neural representation of three-dimensional feature of manipulation of objects with stereopsis. Exp. Brain Res. 128, 160–169 (1999).

    Article  CAS  Google Scholar 

  11. Murata, A., Gallese, V., Kaseda, M. & Sakata, H. Parietal neurons related to memory-guided hand manipulation. J. Neurophysiol. 75, 2180–2186 (1996).

    Article  CAS  Google Scholar 

  12. Gallese, V., Murata, A., Kaseda, M., Niki, N. & Sakata, H. Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5, 1525–1529 (1994).

    Article  CAS  Google Scholar 

  13. Binkofski, F. et al. Human anterior intraparietal area subserves prehension. Neurology 50, 1253–1259 (1998).

    Article  CAS  Google Scholar 

  14. Binkofski, F. et al. A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study. Eur. J. Neurosci. 11, 3276–3286 (1999).

    Article  CAS  Google Scholar 

  15. Culham, J.C. et al. Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Exp. Brain Res. 153, 180–189 (2003).

    Article  Google Scholar 

  16. Johnson-Frey, S., Vinton, D., Newman-Norlund, R. & Grafton, S.T. Cortical topography of human anterior intraparietal cortex active during visually-guided grasping. Brain Res. Cogn. Brain Res. (in the press).

  17. Pisella, L. et al. An 'automatic pilot' for the hand in human posterior parietal cortex: toward reinterpreting optic ataxia. Nat. Neurosci. 3, 729–736 (2000).

    Article  CAS  Google Scholar 

  18. Gréa, H. et al. A lesion of the posterior parietal cortex disrupts on-line adjustments during aiming movements. Neuropsychologia 40, 2471–2480 (2002).

    Article  Google Scholar 

  19. Desmurget, M. et al. Role of the posterior parietal cortex in updating reaching movements to a visual target. Nat. Neurosci. 2, 563–567 (1999).

    Article  CAS  Google Scholar 

  20. Morand, S. et al. Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cereb. Cortex 10, 817–825 (2000).

    Article  CAS  Google Scholar 

  21. Foxe, J.J. & Simpson, G.V. Flow of activation from V1 to frontal cortex in humans: A framework for defining “early” visual processing. Exp. Brain Res. 142, 139–150 (2002).

    Article  Google Scholar 

  22. Rodriguez-Fornells, A., Kurzbuch, A.R. & Münte, T.F. Time course of error detection and correction in humans: Neurophysiological evidence. J. Neurosci. 22, 9990–9996 (2002).

    Article  CAS  Google Scholar 

  23. Schroeder, C.E., Mehta, A.D. & Givre, S.J. A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. Cereb. Cortex 8, 575–592 (1998).

    Article  CAS  Google Scholar 

  24. Martinez, A. et al. Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Res. 41, 1437–1457 (2001).

    Article  CAS  Google Scholar 

  25. Paulignan, Y., Jeannerod, M., MacKenzie, C. & Marteniuk, R. Selective perturbation of visual input during prehension movements. 2. The effects of changing object size. Exp. Brain Res. 87, 407–420 (1991).

    Article  CAS  Google Scholar 

  26. Castiello, U., Bennett, K.M. & Stelmach, G.E. Reach to grasp: the natural response to perturbation of object size. Exp. Brain Res. 94, 163–178 (1993).

    Article  CAS  Google Scholar 

  27. Jeannerod, M. Coordination mechanisms in prehension movements. in Tutorials in Motor Behavior II. Advances in Psychology Vol. 87 (eds. Stelmach, G.E. & Recquin, J.) 265–286 (Elsevier, New York, 1992).

    Google Scholar 

  28. MacKenzie, C.L. & Iberall, T. The grasping hand. in Advances in Psychology Vol. 104 (eds. Stelmach, G. & Vroon, P.) 162–166 (Elsevier, New York, 1994).

    Google Scholar 

  29. Clower, D.M., Dum, R.P. & Strick, P.L. Basal ganglia and cerebellar inputs to 'AIP'. Cereb. Cortex advance online publication, 30 September 2004 (10.1093/cercor/bhh190).

  30. Smith, M.A., Brandt, J. & Shadmehr, R. Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403, 544–549 (2000).

    Article  CAS  Google Scholar 

  31. Desmurget, M. et al. On-line motor control in patients with Parkinson's disease. Brain 127, 1755–1773 (2004).

    Article  CAS  Google Scholar 

  32. Tunik, E., Adamovich, S.V., Poizner, H. & Feldman, A.G. Deficits in rapid adjustments of movements according to task constraints in Parkinson's disease. Mov. Disord. 19, 897–906 (2004).

    Article  Google Scholar 

  33. Tunik, E., Poizner, H., Adamovich, S.V., Levin, M.F. & Feldman, A.G. Deficits in adaptive upper limb control in response to trunk perturbations in Parkinson's disease. Exp. Brain Res. 159, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  34. Della-Maggiore, V., Malfait, N., Ostry, D.J. & Paus, T. Stimulation of the posterior parietal cortex interferes with arm trajectory adjustments during the learning of new dynamics. J. Neurosci. 24, 9971–9976 (2004).

    Article  CAS  Google Scholar 

  35. Glover, S., Miall, R.C. & Rushworth, M.F. Parietal rTMS disrupts the initiation but not the execution of on-line adjustments to a perturbation of object size. J. Cogn. Neurosci. 17, 124–136 (2005).

    Article  Google Scholar 

  36. Johnson, S.H. et al. Selective activation of a parieto-frontal circuit during implicitly imagined prehension. Neuroimage 17, 1693–1704 (2002).

    Article  CAS  Google Scholar 

  37. Anderson, R.A. & Buneo, C.A. Sensorimotor integration in posterior parietal cortex. in Advances in Neurology. The Parietal Lobes Vol. 93 (eds. Siegel, A.M., Anderson, R.A., Freund, H.-J. & Spencer, D.D.) 159–177 (Lippincott Williams & Wilkins, New York, 2003).

    Google Scholar 

  38. Monzee, J. & Smith, A.M. Responses of cerebellar interpositus neurons to predictable perturbations applied to an object held in a precision grip. J. Neurophysiol. 91, 1230–1239 (2004).

    Article  Google Scholar 

  39. Shikata, E. et al. Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. J. Neurophysiol. 85, 1309–1314 (2001).

    Article  CAS  Google Scholar 

  40. Shikata, E. et al. functional properties and interaction of the anterior and posterior intraparietal areas in humans. Eur. J. Neurosci. 17, 1105–1110 (2003).

    Article  Google Scholar 

  41. Saito, D.N., Okada, T., Morita, Y., Yonekura, Y. & Sadato, N. Tactile-visual cross-modal shape matching: a functional MRI study. Brain Res. Cogn. Brain Res. 17, 14–25 (2003).

    Article  Google Scholar 

  42. Sakata, H., Taira, M., Kusunoki, M., Murata, A. & Tanaka, Y. The TINS Lecture. The parietal association cortex in depth perception and visual control of hand action. Trends Neurosci. 20, 350–357 (1997).

    Article  CAS  Google Scholar 

  43. Galletti, C., Fattori, P., Kutz, D.F. & Battaglini, P.P. Arm movement-related neurons in the visual area V6A of the macaque superior parietal lobule. Eur. J. Neurosci. 9, 410–413 (1997).

    Article  CAS  Google Scholar 

  44. Galletti, C., Kutz, D.F., Gamberini, M., Breveglieri, R. & Fattori, P. Role of the medial parieto-occipital cortex in the control of reaching and grasping movements. Exp. Brain Res. 153, 158–170 (2003).

    Article  Google Scholar 

  45. Zangaladze, A., Epstein, C.M., Grafton, S.T. & Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 (1999).

    Article  CAS  Google Scholar 

  46. Battaglini, P.P. et al. Effects of lesions to area V6A in monkeys. Exp. Brain Res. 144, 419–422 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

S.H. Frey was formerly S.H. Johnson. P. Schmitt provided critical technical assistance. This work was supported by Public Health Service grant NS044393 to S.T.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T Grafton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunik, E., Frey, S. & Grafton, S. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nat Neurosci 8, 505–511 (2005). https://doi.org/10.1038/nn1430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing