Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A representation of the hazard rate of elapsed time in macaque area LIP

A Corrigendum to this article was published on 01 March 2005

Abstract

The capacity to anticipate the timing of environmental cues allows us to allocate sensory resources at the right time and prepare actions. Such anticipation requires knowledge of elapsed time and of the probability that an event will occur. Here we show that neurons in the parietal cortex represent the probability, as a function of time, that a salient event is likely to occur. Rhesus monkeys were trained to make eye movements to peripheral targets after a light dimmed. Within a block of trials, the 'go' times were drawn from either a bimodal or unimodal distribution of random numbers. Neurons in the lateral intraparietal area showed anticipatory activity that revealed an internal representation of both elapsed time and the probability that the 'go' signal was about to occur (termed the hazard rate). The results indicate that the parietal cortex contains circuitry for representing the time structure of environmental cues over a range of seconds.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods.
Figure 2: Reaction time (RT) is modulated by anticipation of the 'go' cue.
Figure 3: LIP responses represent anticipation as a function of time.
Figure 4: Neural activity is inversely related to reaction time on a trial-by-trial basis.
Figure 5: Time-dependent anticipatory activity is associated with motor preparation.

Similar content being viewed by others

References

  1. Gallistel, C.R. & Gibbon, J. Time, rate and conditioning. Psychol. Rev. 107, 289–344 (2000).

    Article  CAS  Google Scholar 

  2. Mauk, M.D. & Buonomano, D.V. The neural basis of temporal processing. Annu. Rev. Neurosci. 27, 307–340 (2004).

    Article  CAS  Google Scholar 

  3. Meck, W.H. Internal clock and reward pathways share physiologically similar information-processing pathways. in Quantitative Analyses of Behavior: Biological Determinants of Reinforcement vol. 7 (eds. Commons, M.L., Church, R.M., Stellar, J.R. & Wagner, A.R.) 121–138 (Erlbaum, Hillsdale, New Jersey, USA, 1988).

    Google Scholar 

  4. Coull, J.T. & Nobre, A.C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  CAS  Google Scholar 

  5. Leon, M.I. & Shadlen, M.N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  Google Scholar 

  6. Onoe, H. et al. Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. Neuroimage 13, 37–45 (2001).

    Article  CAS  Google Scholar 

  7. Funahashi, S., Chafee, M.V. & Goldman-Rakic, P.S. Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–756 (1993).

    Article  CAS  Google Scholar 

  8. Tanji, J. & Hoshi, E. Behavioral planning in the prefrontal cortex. Curr. Opin. Neurobiol. 11, 164–170 (2001).

    Article  CAS  Google Scholar 

  9. Andersen, R.A. & Buneo, C.A. Intentional maps in posterior parietal cortex. Annu. Rev. Neurosci. 25, 189–220 (2002).

    Article  CAS  Google Scholar 

  10. Shadlen, M.N. & Newsome, W.T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  Google Scholar 

  11. Schall, J.D. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13, 182–186 (2003).

    Article  CAS  Google Scholar 

  12. Platt, M.L. & Glimcher, P.W. Neural correlates of decision variables in parietal cortex. Nature 400, 233–238 (1999).

    Article  CAS  Google Scholar 

  13. Karlin, L. Development of readiness to respond during short foreperiods. J. Exp. Psychol. 72, 505–509 (1966).

    Article  CAS  Google Scholar 

  14. Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  15. Schall, J.S. & Hanes, D.P. Saccade latency in context: regulation of gaze behavior by supplementary eye field. Behav. Brain Sci. 16, 588–589 (1993).

    Article  Google Scholar 

  16. Basso, M.E. & Wurtz, R.H. Modulation of neuronal activity by target uncertainty. Nature 389, 66–69 (1997).

    Article  CAS  Google Scholar 

  17. Dorris, M.C. & Munoz, D.P. Saccadic probability influences motor preparation signals and time to saccadic initiation. J. Neurosci. 18, 7015–7026 (1998).

    Article  CAS  Google Scholar 

  18. Niki, H. & Watanabe, M. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 171, 213–224 (1979).

    Article  CAS  Google Scholar 

  19. Chafee, M.V. & Goldman-Rakic, P.S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  Google Scholar 

  20. Brody, C.D., Hernandez, A., Zainos, A. & Romo, R. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13, 1196–1207 (2003).

    Article  Google Scholar 

  21. Reutimann, J., Yakovlev, V., Fusi, S. & Senn, W. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004).

    Article  CAS  Google Scholar 

  22. Durstewitz, D. Neural representation of interval time. Neuroreport 15, 745–747 (2004).

    Article  Google Scholar 

  23. Loveless, N.E. & Sanford, A.J. Slow potential correlates of preparatory set. Biol. Psychol. 1, 303–314 (1974).

    Article  CAS  Google Scholar 

  24. Bracewell, R.M., Mazzoni, P., Barash, S. & Andersen, R.A. Motor intention activity in the macaque's lateral intraparietal area. II. Changes of motor plan. J. Neurophysiol. 76, 1457–1464 (1996).

    Article  CAS  Google Scholar 

  25. Gnadt, J.W. & Andersen, R.A. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70, 216–220 (1988).

    CAS  Google Scholar 

  26. Colby, C.L. & Goldberg, M.E. Space and attention in parietal cortex. Annu. Rev. Neurosci. 22, 319–349 (1999).

    Article  CAS  Google Scholar 

  27. Lewis, J.W. & Van Essen, D.C. Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. J. Comp. Neurol. 428, 79–111 (2000).

    Article  CAS  Google Scholar 

  28. Bisley, J.W. & Goldberg, M.E. Neuronal activity in the lateral parietal area and spatial attention. Science 299, 81–86 (2003).

    Article  CAS  Google Scholar 

  29. Ghose, G.M. & Maunsell, J.H.R. Attentional modulation in visual cortex depends on task timing. Nature 419, 616–620 (2002).

    Article  CAS  Google Scholar 

  30. Gibbon, J., Malapani, C., Dale, C.L. & Gallistel, C.R. Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997).

    Article  CAS  Google Scholar 

  31. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25, 31–40 (1987).

    Article  CAS  Google Scholar 

  32. Moore, T. & Armstrong, K.M. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421, 370–373 (2003).

    Article  CAS  Google Scholar 

  33. Kowler, E., Anderson, E., Dosher, B. & Blaser, E. The role of attention in the programming of saccades. Vision Res. 35, 1897–1916 (1995).

    Article  CAS  Google Scholar 

  34. Rao, S.M., Mayer, A.R. & Harrington, D.L. The evolution of brain activation during temporal processing. Nat. Neurosci. 4, 317–323 (2001).

    Article  CAS  Google Scholar 

  35. Ivry, R.B. & Spencer, R.M.C. The neural representation of time. Curr. Opin. Neurobiol. 14, 225–232 (2004).

    Article  CAS  Google Scholar 

  36. Ferraina, S., Pare, M. & Wurtz, R. Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. J. Neurophysiol. 87, 845–858 (2002).

    Article  Google Scholar 

  37. Pare, M. & Wurtz, R.H. Monkey posterior parietal cortex neurons antidromically activated from superior colliculus. J. Neurophysiol. 78, 3493–3497 (1997).

    Article  CAS  Google Scholar 

  38. Dorris, M.C., Pare, M. & Munoz, D.P. Neuronal activity in monkey superior colliculus related to the initiation of saccadic eye movements. J. Neurosci. 17, 8566–8579 (1997).

    Article  CAS  Google Scholar 

  39. Everling, S. & Munoz, D.P. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. J. Neurosci. 20, 387–400 (2000).

    Article  CAS  Google Scholar 

  40. Eskandar, E.N. & Assad, J.A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance. Nat. Neurosci. 2, 88–93 (1999).

    Article  CAS  Google Scholar 

  41. Coe, B., Tomihara, K., Matzuzawa, M. & Hikosaka, O. Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci. 22, 5081–5090 (2002).

    Article  CAS  Google Scholar 

  42. Shadlen, M.N. & Newsome, W.T. Motion perception: seeing and deciding. Proc. Natl. Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  Google Scholar 

  43. Roux, S., Coulmance, M. & Riehle, A. Context-related representation of timing processes in monkey motor cortex. Eur. J. Neurosci. 18, 1011–1016 (2003).

    Article  Google Scholar 

  44. Coull, J.T., Vidal, F., Nazarian, B. & Macar, F. Functional anatomy of the attentional modulation of time estimation. Science 303, 1506–1508 (2004).

    Article  CAS  Google Scholar 

  45. Hikosaka, O. & Wurtz, R. Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. J. Neurophysiol. 49, 1268–1284 (1983).

    Article  CAS  Google Scholar 

  46. Toth, L.J. & Assad, J.A. Dynamic coding of behaviourally relevant stimuli in parietal cortex. Nature 415, 165–168 (2002).

    Article  CAS  Google Scholar 

  47. Colby, C.L., Duhamel, J.-R., & Goldberg, M.E. Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J. Neurophysiol. 76, 2841–2852 (1996).

    Article  CAS  Google Scholar 

  48. Meeker, W.Q. & Escobar, L.A. Statistical Methods for Reliability Data (Wiley, New York, 1998).

    Google Scholar 

  49. Rakitin, B.C. et al. Scalar expectancy theory and peak-interval timing in humans. J. Exp. Psychol. Anim. Behav. Process. 24, 15–33 (1998).

    Article  CAS  Google Scholar 

  50. Anderson, T.W. An Introduction to Multivariate Statistical Analysis edn. 2 (Wiley, New York, 1984).

    Google Scholar 

Download references

Acknowledgements

We thank M. Mihali and L. Jasinski for technical assistance, and T. Yang, T. Hanks, M. Leon and J. Palmer for helpful comments on the manuscript. Work was supported by Howard Hughes Medical Institute, the International Human Frontiers Science Program Organization, the Fonds voor Wetenschappelijk Onderzoek Vlaanderen, the National Center for Research Resources (RR00166) and the National Eye Institute (EY11378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael N Shadlen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, P., Shadlen, M. A representation of the hazard rate of elapsed time in macaque area LIP. Nat Neurosci 8, 234–241 (2005). https://doi.org/10.1038/nn1386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing