Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulation of activity in medial frontal and motor cortices during error observation

Abstract

We used measures of the human event-related brain potential (ERP) to investigate the neural mechanisms underlying error processing during action observation. Participants took part in two conditions, a task execution condition and a task observation condition. We found that activity in both the medial frontal cortex and the motor cortices, as measured via the error-related negativity and the lateralized readiness potential, respectively, was modulated by the correctness of observed behavior. These data suggest that similar neural mechanisms are involved in monitoring one's own actions and the actions of others.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: Error-related negativities.
Figure 3: ERN source localization.
Figure 4: Lateralized readiness potentials.

Similar content being viewed by others

References

  1. Falkenstein, M., Hohnsbein, J., Hoormann, J. & Blanke, L. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. in Psychophysiological Brain Research (eds. Brunia, C., Gaillard, A. & Kok, A.) 192–195 (Tilburg Univ. Press, Tilburg, The Netherlands, 1990).

    Google Scholar 

  2. Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E. & Donchin, E. A neural system for error detection and compensation. Psychol. Sci. 4, 385–390 (1993).

    Article  Google Scholar 

  3. Miltner, W.H.R., Braun, C.H. & Coles, M.G.H. Event-related brain potentials following incorrect feedback in a time-estimation task. Evidence for a “generic” neural system for error detection. J. Cogn. Neurosci. 9, 788–798 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  4. Dehaene, S., Posner, M.I. & Tucker, D.M. Localization of a neural system for error detection and compensation. Psychol. Sci. 5, 303–305 (1994).

    Article  Google Scholar 

  5. Carter, C.S. et al. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280, 747–749 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  6. Kiehl, K.A., Liddle, P.F. & Hopfinger, J.B. Error processing and the rostral anterior cingulate. Psychophysiology 37, 216–223 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  7. Ullsperger, M. & Von Cramon, D.Y. Subprocesses of performance monitoring: A dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage 14, 1387–1401 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  8. Ullsperger, M. & Von Cramon, D.Y. Error monitoring using external feedback: Specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J. Neurosci. 23, 4308–4314 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  9. Posner, M.I. & DiGirolamo, G.J. Executive attention: conflict, target detection, and cognitive control. in The Attentive Brain (ed. Parasuraman, R.) 401–423 (The MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  10. Paus, T. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2, 417–424 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  11. Hadland, K.A., Rushworth, M.F.S., Gaffan, D. & Passingham, R.E. The anterior cingulate and the reward-guided selection of actions. J. Neurophysiol. 89, 1161–1164 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  12. Matsumoto, K., Suzuki, W. & Tanaka, K. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301, 229–232 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  13. Holroyd, C.B., Nieuwenhuis, S., Mars, R.B. & Coles, M.G.H. Anterior cingulate cortex, selection for action, and error processing. in Cognitive Neuroscience of Attention (ed. Posner, M.I.) (Guilford Publications, New York, in press).

  14. Shima, K. & Tanji, J. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282, 1335–1338 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  15. Bush, G. et al. Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc. Natl. Acad. Sci. USA 99, 523–528 (2002).

    Article  CAS  Google Scholar 

  16. Holroyd, C.B. & Coles, M.G.H. The neural basis of error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109, 679–709 (2002).

    Article  PubMed Central  Google Scholar 

  17. Piaget, J. Play, Dreams and Imitation in Childhood (Norton Library, New York, 1962).

    Google Scholar 

  18. Tomasello, M., Kruger, A.C. & Ratner, H.H. Cultural learning. Behav. Brain Sci. 16, 495–552 (1993).

    Article  Google Scholar 

  19. Petrosini, L. et al. Watch how to do it! New advances in learning by observation. Brain Res. Rev. 42, 252–264 (2003).

    Article  Google Scholar 

  20. Blandin, Y. & Proteau, L. On the cognitive basis of observational learning: development of mechanisms for the detection and correction of errors. Q. J. Exp. Psychol. Hum. Exp. Psychol. 53A, 846–867 (2000).

    Article  Google Scholar 

  21. Flanagan, J.R. & Johansson, R. Action plans used in action observation. Nature 424, 769–771 (2003).

    Article  CAS  Google Scholar 

  22. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (2001).

    Article  Google Scholar 

  23. Hari, R. et al. Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc. Natl. Acad. Sci. USA 95, 15061–15065 (1998).

    Article  CAS  Google Scholar 

  24. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    Article  CAS  Google Scholar 

  25. Miltner, W.H.R., Brauer, J., Hecht, H., Trippe, R. & Coles, M.G.H. Parallel brain activity for self-generated and observed errors. in Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring (eds. Ullsperger, M. & Falkenstein, M.) 124–129 (MPI of Cognitive Neuroscience, Leipzig, 2004).

    Google Scholar 

  26. Coles, M.G.H. Modern mind-brain reading: psychophysiology, physiology, and cognition. Psychophysiology 26, 251–269 (1989).

    Article  CAS  PubMed Central  Google Scholar 

  27. Leuthold, H. & Jentzsch, I. Distinguishing neural sources of movement preparation and execution. An electrophysiological analysis. Biol. Psychol. 60, 173–198 (2002).

    Article  PubMed Central  Google Scholar 

  28. Eriksen, B.A. & Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a non-search task. Percept. Psychophys. 16, 143–149 (1974).

    Article  Google Scholar 

  29. Holroyd, C.B. A note on the oddball N200 and the feedback ERN. in Errors, Conflicts, and the Brain. Current Opinions on Performance Monitoring (eds. Ullsperger, M. & Falkenstein, M.) 211–218 (MPI of Cognitive Neuroscience, Leipzig, 2004).

    Google Scholar 

  30. Babiloni, C. et al. Human cortical electroencephalography (EEG) rhythms during the observation of simple aimless movements: a high-resolution EEG study. NeuroImage 17, 559–572 (2002).

    Article  Google Scholar 

  31. Decety, J. & Grezes, J. Neural mechanisms subserving the perception of human actions. Trends. Cogn. Sci. 3, 172–178 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  32. Maeda, F., Kleiner-Fisman, G. & Pascual-Leone, A. Motor facilitation while observing hand actions: specificity of the effect and role of observer's orientation. J. Neurophysiol. 87, 1329–1335 (2002).

    Article  PubMed Central  Google Scholar 

  33. Bekkering, H., Wohlschläger, A. & Gattis, M. Imitation of actions in children is goal-directed. Q. J. Exp. Psychol. 53A, 153–164 (2000).

    Article  Google Scholar 

  34. Baldissera, F., Cavallari, P., Craighero, L. & Fadiga, L. Modulation of spinal excitability during observation of hand actions in humans. Eur. J. Neurosci. 13, 190–194 (2001).

    Article  CAS  Google Scholar 

  35. Nieuwenhuis, S., Yeung, N., Van den Wildenberg, W. & Ridderinkhof, K.R. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial-type frequency. Cogn. Affect. Beh. Neurosci. 3, 17–26, (2003).

    Article  Google Scholar 

  36. Miller, J., Coles, M.G.H. & Chakraborty, S. Dissociation between behavioural and psychophysiological measures of response preparation. Acta Psychol. 94, 189–208 (1996).

    Article  CAS  Google Scholar 

  37. Gratton, G., Coles, M.G.H. & Donchin, E. A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. 55, 468–484 (1983).

    Article  CAS  Google Scholar 

  38. Coles, M.G.H., Scheffers, M.K. & Holroyd, C.B. Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biol. Psychol. 56, 173–189 (2001).

    Article  CAS  Google Scholar 

  39. Wasserman, S. & Bockenholt, U. Bootstrapping: Applications to psychophysiology. Psychophysiology 26, 208–221 (1989).

    Article  CAS  Google Scholar 

  40. Scherg, M. & Berg, P. BESA-Brain Electric Source Analysis Handbook (Max-Planck Institute for Psychiatry, Munich, 1996).

    Google Scholar 

Download references

Acknowledgements

We thank P. de Water and N. Hermesdorf for help in constructing the joysticks and LED-device, and K. Roze, A. Peijnenborgh and C. van den Brom for their assistance in data collection. H.T.v.S. and H.B. were supported by the European Science Foundation (IST-2000-29689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hein T van Schie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Schie, H., Mars, R., Coles, M. et al. Modulation of activity in medial frontal and motor cortices during error observation. Nat Neurosci 7, 549–554 (2004). https://doi.org/10.1038/nn1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing