Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A system in the human brain for predicting the actions of others

Abstract

The ability to attribute mental states to others, and therefore to predict others' behavior, is particularly advanced in humans. A controversial but untested idea is that this is achieved by simulating the other person's mental processes in one's own mind. If this is the case, then the same neural systems activated by a mental function should re-activate when one thinks about that function performed by another. Here, using functional magnetic resonance imaging (fMRI), we tested whether the neural processes involved in preparing one's own actions are also used for predicting the future actions of others. We provide compelling evidence that areas within the action control system of the human brain are indeed activated when predicting others' actions, but a different action sub-system is activated when preparing one's own actions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trial structure and experimental design.
Figure 2: First-person preparation-related activity, contrasting predictive versus non-predictive first-person instruction cues.
Figure 3: Main effect of biological agency: all third-person instruction cues compared with all computer-related instruction cues.
Figure 4: Activations for agency × predictability interaction.

Similar content being viewed by others

References

  1. Baron-Cohen, S., Leslie, A.M. & Frith, U. Does the autistic child have a “theory of mind”? Cognition 21, 37–46 (1985).

    Article  CAS  Google Scholar 

  2. Davies, M. & Stone, M.J. (eds.) Mental Simulation: Evaluations and Applications (Blackwell, Oxford, 1995).

    Google Scholar 

  3. Davies, M. & Stone, T. (eds.). Folk Psychology: The Theory of Mind Debate (Blackwell, Oxford, 1995).

    Google Scholar 

  4. Carruthers, P. & Smith, P.K. Theories of Theories of Mind (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  5. Rizzolatti, G., Fadiga, L., Gallese, V. & Fogassi, L. Premotor cortex and the recognition of motor actions. Brain Res. Cogn. Brain Res. 3, 131–141 (1996).

    Article  CAS  Google Scholar 

  6. Gallese, V., Fadiga, L., Fogassi, L. & Rizzolatti, G. Action recognition in the premotor cortex. Brain 119, 593–609 (1996).

    Article  Google Scholar 

  7. Buccino, G. et al. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur. J. Neurosci. 13, 400–404 (2001).

    CAS  PubMed  Google Scholar 

  8. Iacoboni, M. et al. Cortical mechanisms of human imitation. Science 286, 2526–2528 (1999).

    Article  CAS  Google Scholar 

  9. Rizzolatti, G. & Arbib, M.A. Language within our grasp. Trends Neurosci. 21, 188–194 (1998).

    Article  CAS  Google Scholar 

  10. Jeannerod, M., Arbib, M.A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18, 314–320 (1995).

    Article  CAS  Google Scholar 

  11. Rizzolatti, G., Fogassi, L. & Gallese, V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2, 661–670 (2001).

    Article  CAS  Google Scholar 

  12. Gallese, V. & Goldman, A. Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2, 493–501 (1998).

    Article  CAS  Google Scholar 

  13. Wise, S.P., di Pellegrino, G. & Boussaoud, D. The premotor cortex and nonstandard sensorimotor mapping. Can. J. Physiol. Pharmacol. 74, 469–482 (1996).

    CAS  PubMed  Google Scholar 

  14. Petrides, M. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey. Behav. Brain Res. 16, 95–101 (1985).

    Article  CAS  Google Scholar 

  15. Passingham, R.E. Cues for movement in monkeys (Macaca mulatta) with lesions in premotor cortex. Behav. Neurosci. 100, 695–703 (1986).

    Article  CAS  Google Scholar 

  16. Mitz, A.R., Godschalk, M. & Wise, S.P. Learning-dependent neuronal activity in the premotor cortex: activity during the acquisition of conditional motor associations. J. Neurosci. 11, 1855–1872 (1991).

    Article  CAS  Google Scholar 

  17. Ramnani, N. & Miall, C. Instructed delay activity in the human prefrontal cortex is modulated by monetary reward expectation. Cereb. Cortex 13, 318–327 (2003).

    Article  CAS  Google Scholar 

  18. McCabe, K., Houser, D., Ryan, L., Smith, V. & Trouard, T. A functional imaging study of cooperation in two-person reciprocal exchange. Proc. Natl. Acad. Sci. USA 98, 11832–11835 (2001).

    Article  CAS  Google Scholar 

  19. Grafton, S.T., Fagg, A.H. & Arbib, M.A. Dorsal premotor cortex and conditional movement selection: a PET functional mapping study. J. Neurophysiol. 79, 1092–1097 (1998).

    Article  CAS  Google Scholar 

  20. Gallagher, H.L., Jack, A.I., Roepstorff, A. & Frith, C.D. Imaging the intentional stance in a competitive game. Neuroimage 16, 814–821 (2002).

    Article  Google Scholar 

  21. Dennett, D.C. The Intentional Stance (MIT Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  22. Frith, C.D. & Frith, U. Interacting minds—a biological basis. Science 286, 1692–1695 (1999).

    Article  CAS  Google Scholar 

  23. Gallagher, H.L. et al. Reading the mind in cartoons and stories: an fMRI study of 'theory of mind' in verbal and nonverbal tasks. Neuropsychologia 38, 11–21 (2000).

    Article  CAS  Google Scholar 

  24. Happe, F. et al. 'Theory of mind' in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 8, 197–201 (1996).

    Article  CAS  Google Scholar 

  25. Luppino, G., Calzavara, R., Rozzi, S. & Matelli, M. Projections from the superior temporal sulcus to the agranular frontal cortex in the macaque. Eur. J. Neurosci. 14, 1035–1040 (2001).

    Article  CAS  Google Scholar 

  26. Barbas, H. & Pandya, D.N. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J. Comp. Neurol. 256, 211–228 (1987).

    Article  CAS  Google Scholar 

  27. Gallagher, H.L. & Frith, C.D. Functional imaging of 'theory of mind'. Trends Cogn. Sci. 7, 77–83 (2003).

    Article  Google Scholar 

  28. Castelli, F., Happe, F., Frith, U. & Frith, C. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. Neuroimage 12, 314–325 (2000).

    Article  CAS  Google Scholar 

  29. Grossman, E. et al. Brain areas involved in perception of biological motion. J. Cogn. Neurosci. 12, 711–720 (2000).

    Article  CAS  Google Scholar 

  30. Grezes, J. et al. Does perception of biological motion rely on specific brain regions? Neuroimage 13, 775–785 (2001).

    Article  CAS  Google Scholar 

  31. Iacoboni, M. et al. Reafferent copies of imitated actions in the right superior temporal cortex. Proc. Natl. Acad. Sci. USA 98, 13995–13999 (2001).

    Article  CAS  Google Scholar 

  32. Miall, R.C. Connecting mirror neurons and forward models. Neuroreport 14, 2135–2137 (2003).

    Article  CAS  Google Scholar 

  33. Abell, F. et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 10, 1647–1651 (1999).

    Article  CAS  Google Scholar 

  34. Frith, U. Mind blindness and the brain in autism. Neuron 32, 969–979 (2001).

    Article  CAS  Google Scholar 

  35. Barbas, H., Ghashghaei, H., Dombrowski, S.M. & Rempel-Clower, N.L. Medial prefrontal cortices are unified by common connections with superior temporal cortices and distinguished by input from memory-related areas in the rhesus monkey. J. Comp. Neurol. 410, 343–367 (1999).

    Article  CAS  Google Scholar 

  36. Lu, T., Preston, J.B. & Strick, P.L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).

    Article  CAS  Google Scholar 

  37. Passingham, R.E. The Frontal Lobes and Voluntary Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  38. Passingham, R.E. Attention to action. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1473–1479 (1996).

    Article  CAS  Google Scholar 

  39. Petrides, M. & Pandya, D.N. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11, 1011–1036 (1999).

    Article  CAS  Google Scholar 

  40. Hoshi, E. & Tanji, J. Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J. Neurophysiol. 87, 1123–1128 (2002).

    Article  Google Scholar 

  41. Umilta, M.A. et al. I know what you are doing. a neurophysiological study. Neuron 31, 155–165 (2001).

    Article  CAS  Google Scholar 

  42. Chen, R., Cohen, L.G. & Hallett, M. Role of the ipsilateral motor cortex in voluntary movement. Can. J. Neurol. Sci. 24, 284–291 (1997).

    Article  CAS  Google Scholar 

  43. Stich, S. & Nichols, S. Folk psychology: simulation or tacit theory? Mind Lang. 7, 35–71 (1992).

    Article  Google Scholar 

  44. Gerloff, C. et al. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract. J. Physiol. 510, 249–259 (1998).

    Article  CAS  Google Scholar 

  45. Geffen, G.M., Jones, D.L. & Geffen, L.B. Interhemispheric control of manual motor activity. Behav. Brain Res. 64, 131–140 (1994).

    Article  CAS  Google Scholar 

  46. Friston, K. et al. Spatial registration and normalization of images. Hum. Brain Mapp. 2, 185–189 (1995).

    Google Scholar 

  47. Ashburner, J. & Friston, K.J. Nonlinear spatial normalization using basis functions. Hum. Brain Mapp. 7, 254–266 (1999).

    Article  CAS  Google Scholar 

  48. Josephs, O. & Henson, R.N. Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1215–1228 (1999).

    Article  CAS  Google Scholar 

  49. Duvernoy, H.M. & Bourgouin, P. The Human Brain: Surface, Three-Dimensional Sectional Anatomy and MRI (Springer-Verlag, Wein, 1999).

    Book  Google Scholar 

  50. Schmahmann, J.D., Doyon, J., Toga, A., Evans, A. & Petrides, M. MRI Atlas of the Human Cerebellum (Academic, San Diego, 2000).

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants to R.C.M. from the James McDonnell Foundation and the Wellcome Trust. N.R. was supported by a grant to P.M. Matthews (Centre for fMRI of the Brain, University of Oxford) from the Medical Research Council (UK) and a grant to R.C.M. from the James McDonnell Foundation. We thank P.M. Matthews and the FMRIB Centre staff for their invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narender Ramnani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Main effect of first person movements. Trigger-related activity for first person (visual trigger stimulus plus subject action) compared with trigger-related activity for 3rd person and computer (only visual trigger, no movement). (a) SPM{F} map for F-contrast displayed as a maximum intensity projection in a 'glass brain' Activity is evident in the motor system. (b) The same SPM{F} map is superimposed on the canonical brain of the MNI series (axial section, anterior = right). The voxel with maximum Z-score in the primary motor cortex is marked by the red cross-hairs. Activity is also seen medially in the supplementary motor area (SMA). (c) Best-fitting haemodynamic response from the voxel in (b) time-locked to the first-person trigger cue. (JPG 17 kb)

Supplementary Note (PDF 8 kb)

Supplementary Table 1 (PDF 12 kb)

Supplementary Table 2 (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramnani, N., Miall, R. A system in the human brain for predicting the actions of others. Nat Neurosci 7, 85–90 (2004). https://doi.org/10.1038/nn1168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing