Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Neurobiology of social behavior abnormalities in autism and Williams syndrome

Abstract

Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomical and functional brain areas related to social behavior.
Figure 2: Synaptic proteins at the glutamatergic synapse encoded by ASD-related genes.

Similar content being viewed by others

References

  1. Frith, C.D. The social brain? Phil. Trans. R. Soc. Lond. B 362, 671–678 (2007).

    Article  Google Scholar 

  2. Couture, S.M. et al. Comparison of social cognitive functioning in schizophrenia and high functioning autism: more convergence than divergence. Psychol. Med. 40, 569–579 (2010).

    Article  PubMed  Google Scholar 

  3. Esbensen, A.J., Seltzer, M.M., Lam, K.S. & Bodfish, J.W. Age-related differences in restricted repetitive behaviors in autism spectrum disorders. J. Autism Dev. Disord. 39, 57–66 (2009).

    Article  PubMed  Google Scholar 

  4. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-V) (American Psychiatric Publishing, 2013).

  5. Kanner, L. Autistic disturbances of affective contact. Nervous Child 2, 217–250 (1943).

    Google Scholar 

  6. Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators & Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years — autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill. Summ. 63, 1–21 (2014).

  7. Elsabbagh, M. et al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 5, 160–179 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lai, M.-C. et al. Cognition in males and females with autism: similarities and differences. PLoS One 7, e47198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ma, D. et al. A genome-wide association study of autism reveals a common novel risk locus at 5p14.1. Ann. Hum. Genet. 73, 263–273 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Merikangas, A.K. et al. The phenotypic manifestations of rare genic CNVs in autism spectrum disorder. Mol. Psychiatry 20, 1366–1372 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Pinto, D. et al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders. Am. J. Hum. Genet. 94, 677–694 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanders, S.J. et al. Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron 87, 1215–1233 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weiss, L.A., Arking, D.E., Daly, M.J. & Chakravarti, A. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461, 802–808 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuen, R.K. et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 21, 185–191 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Zoghbi, H.Y. & Bear, M.F. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4, pii: a009886 (2012).

    Article  CAS  Google Scholar 

  16. Peça, J. & Feng, G. Cellular and synaptic network defects in autism. Curr. Opin. Neurobiol. 22, 866–872 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sigman, M.D., Kasari, C., Kwon, J.H. & Yirmiya, N. Responses to the negative emotions of others by autistic, mentally retarded, and normal children. Child Dev. 63, 796–807 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Lord, C. et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J. Autism Dev. Disord. 30, 205–223 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Bauminger, N., Shulman, C. & Agam, G. Peer interaction and loneliness in high-functioning children with autism. J. Autism Dev. Disord. 33, 489–507 (2003).

    Article  PubMed  Google Scholar 

  20. Mills, M. & Melhuish, E. Recognition of mother's voice in early infancy. Nature 252, 123–124 (1974).

    Article  CAS  PubMed  Google Scholar 

  21. Volkmar, F.R. & Mayes, L.C. Gaze behavior in autism. Dev. Psychopathol. 2, 61–69 (1990).

    Article  Google Scholar 

  22. Mundy, P., Sigman, M. & Kasari, C. A longitudinal study of joint attention and language development in autistic children. J. Autism Dev. Disord. 20, 115–128 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Black, M., Freeman, B.J. & Montgomery, J. Systematic observation of play behavior in autistic children. J. Autism Child. Schizophr. 5, 363–371 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Williams, J.C., Barratt-Boyes, B.G. & Lowe, J.B. Supravalvular aortic stenosis. Circulation 24, 1311–1318 (1961).

    Article  CAS  PubMed  Google Scholar 

  25. Mervis, C.B. & John, A.E. Cognitive and behavioral characteristics of children with Williams syndrome: implications for intervention approaches. Am. J. Med. Genet. C. Semin. Med. Genet. 154C, 229–248 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fishman, I., Yam, A., Bellugi, U. & Mills, D. Language and sociability: insights from Williams syndrome 3, 185–192 (2011).

  27. Mervis, C.B., Robinson, B.F. & Pani, J.R. Visuospatial construction. Am. J. Hum. Genet. 65, 1222–1229 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dykens, E.M., Rosner, B.A., Ly, T. & Sagun, J. Music and anxiety in Williams syndrome: a harmonious or discordant relationship? Am. J. Ment. Retard. 110, 346–358 (2005).

    Article  PubMed  Google Scholar 

  29. Dykens, E.M. Anxiety, fears, and phobias in persons with Williams syndrome. Dev. Neuropsychol. 23, 291–316 (2003).

    Article  PubMed  Google Scholar 

  30. Strømme, P., Bjørnstad, P.G. & Ramstad, K. Prevalence estimation of Williams syndrome. J. Child Neurol. 17, 269–271 (2002).

    Article  PubMed  Google Scholar 

  31. Pober, B.R. Williams-Beuren syndrome. N. Engl. J. Med. 362, 239–252 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Korenberg, J.R. et al. VI. Genome structure and cognitive map of Williams syndrome. J. Cogn. Neurosci. 12 (suppl. 1), 89–107 (2000).

    Article  PubMed  Google Scholar 

  33. Bayés, M., Magano, L.F., Rivera, N., Flores, R. & Pérez Jurado, L.A. Mutational mechanisms of Williams-Beuren syndrome deletions. Am. J. Hum. Genet. 73, 131–151 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Edelmann, L. et al. An atypical deletion of the Williams-Beuren syndrome interval implicates genes associated with defective visuospatial processing and autism. J. Med. Genet. 44, 136–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Antonell, A. et al. Partial 7q11.23 deletions further implicate GTF2I and GTF2IRD1 as the main genes responsible for the Williams-Beuren syndrome neurocognitive profile. J. Med. Genet. 47, 312–320 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Fusco, C. et al. Smaller and larger deletions of the Williams Beuren syndrome region implicate genes involved in mild facial phenotype, epilepsy and autistic traits. Eur. J. Hum. Genet. 22, 64–70 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Howald, C. et al. Two high throughput technologies to detect segmental aneuploidies identify new Williams-Beuren syndrome patients with atypical deletions. J. Med. Genet. 43, 266–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Beunders, G. et al. A triplication of the Williams-Beuren syndrome region in a patient with mental retardation, a severe expressive language delay, behavioural problems and dysmorphisms. J. Med. Genet. 47, 271–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Depienne, C. et al. Autism, language delay and mental retardation in a patient with 7q11 duplication. J. Med. Genet. 44, 452–458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malenfant, P. et al. Association of GTF2i in the Williams-Beuren syndrome critical region with autism spectrum disorders. J. Autism Dev. Disord. 42, 1459–1469 (2012).

    Article  PubMed  Google Scholar 

  41. Sanders, S.J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Somerville, M.J. et al. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N. Engl. J. Med. 353, 1694–1701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beuren, A.J., Apitz, J. & Harmjanz, D. Supravalvular aortic stenosis in association with mental retardation and a certain facial appearance. Circulation 26, 1235–1240 (1962).

    Article  CAS  PubMed  Google Scholar 

  44. Gosch, A. & Pankau, R. Social-emotional and behavioral adjustment in children with Williams-Beuren syndrome. Am. J. Med. Genet. 53, 335–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Klein-Tasman, B.P. & Mervis, C.B. Distinctive personality characteristics of 8-, 9-, and 10-year-olds with Williams syndrome. Dev. Neuropsychol. 23, 269–290 (2003).

    Article  PubMed  Google Scholar 

  46. Gosch, A. & Pankau, R. Personality characteristics and behaviour problems in individuals of different ages with Williams syndrome. Dev. Med. Child Neurol. 39, 527–533 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Riby, D. & Hancock, P.J. Looking at movies and cartoons: eye-tracking evidence from Williams syndrome and autism. J. Intellect. Disabil. Res. 53, 169–181 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Dodd, H.F., Porter, M.A., Peters, G.L. & Rapee, R.M. Social approach in pre-school children with Williams syndrome: the role of the face. J. Intellect. Disabil. Res. 54, 194–203 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Mervis, C.B. et al. Attentional characteristics of infants and toddlers with Williams syndrome during triadic interactions. Dev. Neuropsychol. 23, 243–268 (2003).

    Article  PubMed  Google Scholar 

  50. Doherty-Sneddon, G., Riby, D.M., Calderwood, L. & Ainsworth, L. Stuck on you: face-to-face arousal and gaze aversion in Williams syndrome. Cogn. Neuropsychiatry 14, 510–523 (2009).

    Article  PubMed  Google Scholar 

  51. Doyle, T.F., Bellugi, U., Korenberg, J.R. & Graham, J. “Everybody in the world is my friend” hypersociability in young children with Williams syndrome. Am. J. Med. Genet. A. 124A, 263–273 (2004).

    Article  PubMed  Google Scholar 

  52. Laing, E. et al. Atypical development of language and social communication in toddlers with Williams syndrome. Dev. Sci. 5, 233–246 (2002).

    Article  Google Scholar 

  53. Elison, S., Stinton, C. & Howlin, P. Health and social outcomes in adults with Williams syndrome: findings from cross-sectional and longitudinal cohorts. Res. Dev. Disabil. 31, 587–599 (2010).

    Article  PubMed  Google Scholar 

  54. Plesa-Skwerer, D., Faja, S., Schofield, C., Verbalis, A. & Tager-Flusberg, H. Perceiving facial and vocal expressions of emotion in individuals with Williams syndrome. Am. J. Ment. Retard. 111, 15–26 (2006).

    Article  PubMed  Google Scholar 

  55. Plesa Skwerer, D. et al. A multimeasure approach to investigating affective appraisal of social information in Williams syndrome. J. Neurodev. Disord. 3, 325–334 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Dodd, H.F. & Porter, M.A. I see happy people: attention bias towards happy but not angry facial expressions in Williams syndrome. Cogn. Neuropsychiatry 15, 549–567 (2010).

    Article  PubMed  Google Scholar 

  57. Frigerio, E. et al. Is everybody always my friend? Perception of approachability in Williams syndrome. Neuropsychologia 44, 254–259 (2006).

    Article  PubMed  Google Scholar 

  58. Bellugi, U., Adolphs, R., Cassady, C. & Chiles, M. Towards the neural basis for hypersociability in a genetic syndrome. Neuroreport 10, 1653–1657 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Bayarsaihan, D. et al. Genomic organization of the genes Gtf2ird1, Gtf2i, and Ncf1 at the mouse chromosome 5 region syntenic to the human chromosome 7q11.23 Williams syndrome critical region. Genomics 79, 137–143 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Botta, A. et al. Expression analysis and protein localization of the human HPC-1/syntaxin 1A, a gene deleted in Williams syndrome. Genomics 62, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Heller, R., Rauch, A., Lüttgen, S., Schröder, B. & Winterpacht, A. Partial deletion of the critical 1.5 Mb interval in Williams-Beuren syndrome. J. Med. Genet. 40, e99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Morris, C.A. et al. GTF2I hemizygosity implicated in mental retardation in Williams syndrome: genotype-phenotype analysis of five families with deletions in the Williams syndrome region. Am. J. Med. Genet. A. 123A, 45–59 (2003).

    Article  PubMed  Google Scholar 

  63. van Hagen, J.M. et al. Contribution of CYLN2 and GTF2IRD1 to neurological and cognitive symptoms in Williams Syndrome. Neurobiol. Dis. 26, 112–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Hinsley, T.A., Cunliffe, P., Tipney, H.J., Brass, A. & Tassabehji, M. Comparison of TFII-I gene family members deleted in Williams-Beuren syndrome. Protein Sci. 13, 2588–2599 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roy, A.L. Biochemistry and biology of the inducible multifunctional transcription factor TFII-I. Gene 274, 1–13 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Dai, L. et al. Is it Williams syndrome? GTF2IRD1 implicated in visual-spatial construction and GTF2I in sociability revealed by high resolution arrays. Am. J. Med. Genet. A. 149A, 302–314 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tassabehji, M. et al. GTF2IRD1 in craniofacial development of humans and mice. Science 310, 1184–1187 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Enkhmandakh, B. et al. Essential functions of the Williams-Beuren syndrome-associated TFII-I genes in embryonic development. Proc. Natl. Acad. Sci. USA 106, 181–186 (2009).

    Article  PubMed  Google Scholar 

  69. Sakurai, T. et al. Haploinsufficiency of Gtf2i, a gene deleted in Williams Syndrome, leads to increases in social interactions. Autism Res. 4, 28–39 (2011).

    Article  PubMed  Google Scholar 

  70. Adamo, A. et al. 7q11.23 dosage-dependent dysregulation in human pluripotent stem cells affects transcriptional programs in disease-relevant lineages. Nat. Genet. 47, 132–141 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Fletcher, P.C. et al. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 57, 109–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Colle, L., Baron-Cohen, S. & Hill, J. Do children with autism have a theory of mind? A non-verbal test of autism vs. specific language impairment. J. Autism Dev. Disord. 37, 716–723 (2007).

    Article  PubMed  Google Scholar 

  73. Embregts, P. & van Nieuwenhuijzen, M. Social information processing in boys with autistic spectrum disorder and mild to borderline intellectual disabilities. J. Intellect. Disabil. Res. 53, 922–931 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Johnson, M.H. Interactive specialization: a domain-general framework for human functional brain development? Dev. Cogn. Neurosci. 1, 7–21 (2011).

    Article  PubMed  Google Scholar 

  75. Nelson, S.B. & Valakh, V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87, 684–698 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leekam, S.R., Nieto, C., Libby, S.J., Wing, L. & Gould, J. Describing the sensory abnormalities of children and adults with autism. J. Autism Dev. Disord. 37, 894–910 (2007).

    Article  PubMed  Google Scholar 

  77. Yirmiya, N. & Charman, T. The prodrome of autism: early behavioral and biological signs, regression, peri- and post-natal development and genetics. J. Child Psychol. Psychiatry 51, 432–458 (2010).

    Article  PubMed  Google Scholar 

  78. Jones, E.J., Gliga, T., Bedford, R., Charman, T. & Johnson, M.H. Developmental pathways to autism: a review of prospective studies of infants at risk. Neurosci. Biobehav. Rev. 39, 1–33 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wolff, J.J. et al. Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 138, 2046–2058 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wolff, J.J. et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am. J. Psychiatry 169, 589–600 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hazlett, H.C. et al. Early brain overgrowth in autism associated with an increase in cortical surface area before age 2 years. Arch. Gen. Psychiatry 68, 467–476 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Schumann, C.M. et al. Longitudinal magnetic resonance imaging study of cortical development through early childhood in autism. J. Neurosci. 30, 4419–4427 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hazlett, H.C. et al. Brain volume findings in 6-month-old infants at high familial risk for autism. Am. J. Psychiatry 169, 601–608 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Carper, R.A., Moses, P., Tigue, Z.D. & Courchesne, E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage 16, 1038–1051 (2002).

    Article  PubMed  Google Scholar 

  85. Murdaugh, D.L. et al. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS One 7, e50064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Redcay, E. et al. Atypical brain activation patterns during a face-to-face joint attention game in adults with autism spectrum disorder. Hum. Brain Mapp. 34, 2511–2523 (2013).

    Article  PubMed  Google Scholar 

  87. Travers, B.G. et al. Diffusion tensor imaging in autism spectrum disorder: a review. Autism Res. 5, 289–313 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dajani, D.R. & Uddin, L.Q. Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation. Autism Res. 9, 43–54 (2016).

    Article  PubMed  Google Scholar 

  89. Venkataraman, A., Duncan, J.S., Yang, D.Y. & Pelphrey, K.A. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism. Neuroimage Clin. 8, 356–366 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bailey, A. et al. A clinicopathological study of autism. Brain 121, 889–905 (1998).

    Article  PubMed  Google Scholar 

  91. Buxhoeveden, D.P. et al. Reduced minicolumns in the frontal cortex of patients with autism. Neuropathol. Appl. Neurobiol. 32, 483–491 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Meyer-Lindenberg, A. et al. Neural correlates of genetically abnormal social cognition in Williams syndrome. Nat. Neurosci. 8, 991–993 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Mobbs, D. et al. Frontostriatal dysfunction during response inhibition in Williams syndrome. Biol. Psychiatry 62, 256–261 (2007).

    Article  PubMed  Google Scholar 

  94. Porter, M.A., Coltheart, M. & Langdon, R. The neuropsychological basis of hypersociability in Williams and Down syndrome. Neuropsychologia 45, 2839–2849 (2007).

    Article  PubMed  Google Scholar 

  95. Little, K. et al. Heterogeneity of social approach behaviour in Williams syndrome: the role of response inhibition. Res. Dev. Disabil. 34, 959–967 (2013).

    Article  PubMed  Google Scholar 

  96. Mimura, M. et al. A preliminary study of orbitofrontal activation and hypersociability in Williams syndrome. J. Neurodev. Disord. 2, 93–98 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Baroncelli, L. et al. Brain plasticity and disease: a matter of inhibition. Neural Plast. 2011, 286073 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gogolla, N., Takesian, A.E., Feng, G., Fagiolini, M. & Hensch, T.K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron 83, 894–905 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, J. et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front. Cell. Neurosci. 9, 94 (2015).

    PubMed  PubMed Central  Google Scholar 

  102. Kim, E. et al. GKAP, a novel synaptic protein that interacts with the guanylate kinase-like domain of the PSD-95/SAP90 family of channel clustering molecules. J. Cell Biol. 136, 669–678 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Boeckers, T.M., Bockmann, J., Kreutz, M.R. & Gundelfinger, E.D. ProSAP/Shank proteins - a family of higher order organizing molecules of the postsynaptic density with an emerging role in human neurological disease. J. Neurochem. 81, 903–910 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Takeuchi, M. et al. SAPAPs. A family of PSD-95/SAP90-associated proteins localized at postsynaptic density. J. Biol. Chem. 272, 11943–11951 (1997).

    Article  CAS  PubMed  Google Scholar 

  105. Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol. Autism 1, 15 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmeisser, M.J. et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature 486, 256–260 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet. 20, 3093–3108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Won, H. et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature 486, 261–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Yang, M. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci. 32, 6525–6541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhou, Y. et al. Mice with Shank3 Mutations associated with ASD and schizophrenia display both shared and distinct defects. Neuron 89, 147–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Banerjee, A., Castro, J. & Sur, M. Rett syndrome: genes, synapses, circuits, and therapeutics. Front. Psychiatry 3, 34 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chao, H.T. et al. Dysfunction in GABA signaling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature 468, 263–269 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Silverman, J.L. et al. GABAB receptor agonist R-baclofen reverses social deficits and reduces repetitive behavior in two mouse models of autism. Neuropsychopharmacology 40, 2228–2239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cellot, G. & Cherubini, E. Reduced inhibitory gate in the barrel cortex of Neuroligin3R451C knock-in mice, an animal model of autism spectrum disorders. Physiol. Rep. 2, pii: e12077 (2014).

    Article  CAS  Google Scholar 

  115. Fried, I., MacDonald, K.A. & Wilson, C.L. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765 (1997).

    Article  CAS  PubMed  Google Scholar 

  116. Spezio, M.L., Huang, P.Y., Castelli, F. & Adolphs, R. Amygdala damage impairs eye contact during conversations with real people. J. Neurosci. 27, 3994–3997 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Adolphs, R., Sears, L. & Piven, J. Abnormal processing of social information from faces in autism. J. Cogn. Neurosci. 13, 232–240 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Adolphs, R., Tranel, D. & Damasio, A.R. The human amygdala in social judgment. Nature 393, 470–474 (1998).

    Article  CAS  PubMed  Google Scholar 

  119. Sturm, V. et al. DBS in the basolateral amygdala improves symptoms of autism and related self-injurious behavior: a case report and hypothesis on the pathogenesis of the disorder. Front. Hum. Neurosci. 6, 341 (2012).

    PubMed  Google Scholar 

  120. Schumann, C.M. et al. The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392–6401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Haas, B.W., Sheau, K., Kelley, R.G., Thompson, P.M. & Reiss, A.L. Regionally specific increased volume of the amygdala in Williams syndrome: Evidence from surface-based modeling. Hum. Brain Mapp. 35, 866–874 (2014).

    Article  PubMed  Google Scholar 

  122. Martens, M.A., Wilson, S.J., Dudgeon, P. & Reutens, D.C. Approachability and the amygdala: insights from Williams syndrome. Neuropsychologia 47, 2446–2453 (2009).

    Article  PubMed  Google Scholar 

  123. Dalton, K.M. et al. Gaze fixation and the neural circuitry of face processing in autism. Nat. Neurosci. 8, 519–526 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kliemann, D., Dziobek, I., Hatri, A., Baudewig, J. & Heekeren, H.R. The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders. J. Neurosci. 32, 9469–9476 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Baron-Cohen, S. et al. Social intelligence in the normal and autistic brain: an fMRI study. Eur. J. Neurosci. 11, 1891–1898 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Ashwin, C., Baron-Cohen, S., Wheelwright, S., O'Riordan, M. & Bullmore, E.T. Differential activation of the amygdala and the 'social brain' during fearful face-processing in Asperger Syndrome. Neuropsychologia 45, 2–14 (2007).

    Article  PubMed  Google Scholar 

  127. Haas, B.W. et al. Genetic influences on sociability: heightened amygdala reactivity and event-related responses to positive social stimuli in Williams syndrome. J. Neurosci. 29, 1132–1139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Paul, B.M. et al. Amygdala response to faces parallels social behavior in Williams syndrome. Soc. Cogn. Affect. Neurosci. 4, 278–285 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hong, W., Kim, D.W. & Anderson, D.J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Muñoz, K.E. et al. Abnormalities in neural processing of emotional stimuli in Williams syndrome vary according to social vs. non-social content. Neuroimage 50, 340–346 (2010).

    Article  PubMed  Google Scholar 

  131. Bishop, S.J. Neurocognitive mechanisms of anxiety: an integrative account. Trends Cogn. Sci. 11, 307–316 (2007).

    Article  PubMed  Google Scholar 

  132. Quirk, G.J., Likhtik, E., Pelletier, J.G. & Paré, D. Stimulation of medial prefrontal cortex decreases the responsiveness of central amygdala output neurons. J. Neurosci. 23, 8800–8807 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Amaral, D.G. The amygdala, social behavior, and danger detection. Ann. NY Acad. Sci. 1000, 337–347 (2003).

    Article  PubMed  Google Scholar 

  134. Machado, C.J., Kazama, A.M. & Bachevalier, J. Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion 9, 147–163 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Avery, S.N., Thornton-Wells, T.A., Anderson, A.W. & Blackford, J.U. White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome. Neuroimage 59, 887–894 (2012).

    Article  PubMed  Google Scholar 

  136. Binelli, C. et al. Common and distinct neural correlates of facial emotion processing in social anxiety disorder and Williams syndrome: a systematic review and voxel-based meta-analysis of functional resonance imaging studies. Neuropsychologia 64C, 205–217 (2014).

    Article  Google Scholar 

  137. White, S.W., Oswald, D., Ollendick, T. & Scahill, L. Anxiety in children and adolescents with autism spectrum disorders. Clin. Psychol. Rev. 29, 216–229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Riby, D.M. et al. The interplay between anxiety and social functioning in Williams syndrome. J. Autism Dev. Disord. 44, 1220–1229 (2014).

    Article  PubMed  Google Scholar 

  139. Chevallier, C., Kohls, G., Troiani, V., Brodkin, E.S. & Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 16, 231–239 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Scott-Van Zeeland, A.A., Dapretto, M., Ghahremani, D.G., Poldrack, R.A. & Bookheimer, S.Y. Reward processing in autism. Autism Res. 3, 53–67 (2010).

    PubMed  PubMed Central  Google Scholar 

  141. Kohls, G. et al. Atypical brain responses to reward cues in autism as revealed by event-related potentials. J. Autism Dev. Disord. 41, 1523–1533 (2011).

    Article  PubMed  Google Scholar 

  142. Heinrichs, M., von Dawans, B. & Domes, G. Oxytocin, vasopressin, and human social behavior. Front. Neuroendocrinol. 30, 548–557 (2009).

    Article  CAS  PubMed  Google Scholar 

  143. Dölen, G., Darvishzadeh, A., Huang, K.W. & Malenka, R.C. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501, 179–184 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ferguson, J.N. et al. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  145. Gunaydin, L.A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Aragona, B.J. et al. Nucleus accumbens dopamine differentially mediates the formation and maintenance of monogamous pair bonds. Nat. Neurosci. 9, 133–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  147. Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Niu, Y. et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 156, 836–843 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Okano, H., Hikishima, K., Iriki, A. & Sasaki, E. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin. Fetal Neonatal Med. 17, 336–340 (2012).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge L. McGrath, F. Dobie, P. Monteiro, A. Krol and Y. Mei for insightful comments on the manuscript. Research in the laboratory of G.F. was supported by the Poitras Center for Affective Disorders Research at MIT, Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, National Institute of Mental Health (NIMH), Nancy Lurie Marks Family Foundation, Simons Foundation Autism Research Initiative (SFARI), and Simons Center for the Social Brain at MIT. B.B. was supported by postdoctoral fellowships from the Simons Center for the Social Brain at MIT and from the Autism Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Feng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barak, B., Feng, G. Neurobiology of social behavior abnormalities in autism and Williams syndrome. Nat Neurosci 19, 647–655 (2016). https://doi.org/10.1038/nn.4276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing