Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reward and motivation in pain and pain relief

Abstract

Pain is fundamentally unpleasant, a feature that protects the organism by promoting motivation and learning. Relief of aversive states, including pain, is rewarding. The aversiveness of pain, as well as the reward from relief of pain, is encoded by brain reward/motivational mesocorticolimbic circuitry. In this Review, we describe current knowledge of the impact of acute and chronic pain on reward/motivation circuits gained from preclinical models and from human neuroimaging. We highlight emerging clinical evidence suggesting that anatomical and functional changes in these circuits contribute to the transition from acute to chronic pain. We propose that assessing activity in these conserved circuits can offer new outcome measures for preclinical evaluation of analgesic efficacy to improve translation and speed drug discovery. We further suggest that targeting reward/motivation circuits may provide a path for normalizing the consequences of chronic pain to the brain, surpassing symptomatic management to promote recovery from chronic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The corticolimbic circuit integrates motivationally salient information, including pain, and makes decisions about action selection.
Figure 2: Relief of ongoing pain produces CPP.
Figure 3: Pain relief produces CPP through activation of mesolimbic reward/motivation circuitry.

Similar content being viewed by others

References

  1. Gold, M.S. & Gebhart, G.F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fields, H.L. Pain: an unpleasant topic. Pain 6 (suppl.): S61–S69 (1999).

    Article  PubMed  Google Scholar 

  3. Lee, M.C. & Tracey, I. Imaging pain: a potent means for investigating pain mechanisms in patients. Br. J. Anaesth. 111, 64–72 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, M.C. & Tracey, I. Unravelling the mystery of pain, suffering, and relief with brain imaging. Curr. Pain Headache Rep. 14, 124–131 (2010).

    Article  PubMed  Google Scholar 

  5. Redgrave, P., Gurney, K. & Reynolds, J. What is reinforced by phasic dopamine signals? Brain Res. Rev. 58, 322–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Woolf, C.J. & Ma, Q. Nociceptors–noxious stimulus detectors. Neuron 55, 353–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Kehlet, H., Jensen, T.S. & Woolf, C.J. Persistent postsurgical pain: risk factors and prevention. Lancet 367, 1618–1625 (2006).

    Article  PubMed  Google Scholar 

  8. Tracey, I. & Bushnell, M.C. How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J. Pain 10, 1113–1120 (2009).

    Article  PubMed  Google Scholar 

  9. Johannes, C.B., Le, T.K., Zhou, X., Johnston, J.A. & Dworkin, R.H. The prevalence of chronic pain in United States adults: results of an Internet-based survey. J. Pain 11, 1230–1239 (2010).

    Article  PubMed  Google Scholar 

  10. van Hecke, O., Torrance, N. & Smith, B.H. Chronic pain epidemiology and its clinical relevance. Br. J. Anaesth. 111, 13–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Denk, F., McMahon, S.B. & Tracey, I. Pain vulnerability: a neurobiological perspective. Nat. Neurosci. 17, 192–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Woolf, C.J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  13. Apkarian, A.V., Baliki, M.N. & Farmer, M.A. Predicting transition to chronic pain. Curr. Opin. Neurol. 26, 360–367 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bushnell, M.C., Ceko, M. & Low, L.A. Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Apkarian, A.V., Baliki, M.N. & Geha, P.Y. Towards a theory of chronic pain. Prog. Neurobiol. 87, 81–97 (2009).

    Article  PubMed  Google Scholar 

  16. Berger, J.V. et al. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res. Rev. 67, 282–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Burgess, G. & Williams, D. The discovery and development of analgesics: new mechanisms, new modalities. J. Clin. Invest. 120, 3753–3759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dodick, D.W. et al. Safety and efficacy of LY2951742, a monoclonal antibody to calcitonin gene-related peptide, for the prevention of migraine: a phase 2, randomised, double-blind, placebo-controlled study. Lancet Neurol. 13, 885–892 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Craig, A.D. How do you feel–now? The anterior insula and human awareness. Nat. Rev. Neurosci. 10, 59–70 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Denton, D.A., McKinley, M.J., Farrell, M. & Egan, G.F. The role of primordial emotions in the evolutionary origin of consciousness. Conscious. Cogn. 18, 500–514 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Wiech, K. & Tracey, I. Pain, decisions, and actions: a motivational perspective. Front. Neurosci. 7, 46 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rushworth, M.F. & Behrens, T.E. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Fields, H.L. in 11th World Congress on Pain (eds. Flor, H., Kalso, E. & Dostrovsky, J.O.) 449–459 (IASP Press, Seattle, 2006).

  24. Sprenger, C. et al. Attention modulates spinal cord responses to pain. Curr. Biol. 22, 1019–1022 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Villemure, C. & Bushnell, M.C. Mood influences supraspinal pain processing separately from attention. J. Neurosci. 29, 705–715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Porreca, F., Ossipov, M.H. & Gebhart, G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 25, 319–325 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Simons, L.E., Elman, I. & Borsook, D. Psychological processing in chronic pain: a neural systems approach. Neurosci. Biobehav. Rev. 39, 61–78 (2014).

    Article  PubMed  Google Scholar 

  28. Levenson, R.W. Basic emotion questions. Emot. Rev. 3, 379–386 (2011).

    Article  Google Scholar 

  29. Leknes, S., Brooks, J.C., Wiech, K. & Tracey, I. Pain relief as an opponent process: a psychophysical investigation. Eur. J. Neurosci. 28, 794–801 (2008).

    Article  PubMed  Google Scholar 

  30. Leknes, S., Lee, M., Berna, C., Andersson, J. & Tracey, I. Relief as a reward: hedonic and neural responses to safety from pain. PLoS ONE 6, e17870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Navratilova, E. et al. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc. Natl. Acad. Sci. USA 109, 20709–20713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Becerra, L., Navratilova, E., Porreca, F. & Borsook, D. Analogous responses in the nucleus accumbens and cingulate cortex to pain onset (aversion) and offset (relief) in rats and humans. J. Neurophysiol. 110, 1221–1226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gerber, B. et al. Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learn. Mem. 21, 232–252 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 12, 1364–1366 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Andreatta, M. et al. Onset and offset of aversive events establish distinct memories requiring fear and reward networks. Learn. Mem. 19, 518–526 (2012).

    Article  PubMed  Google Scholar 

  36. Brotis, A.G., Kapsalaki, E.Z., Paterakis, K., Smith, J.R. & Fountas, K.N. Historic evolution of open cingulectomy and stereotactic cingulotomy in the management of medically intractable psychiatric disorders, pain and drug addiction. Stereotact. Funct. Neurosurg. 87, 271–291 (2009).

    Article  PubMed  Google Scholar 

  37. Leknes, S. & Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 9, 314–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Apkarian, A.V., Bushnell, M.C., Treede, R.D. & Zubieta, J.K. Human brain mechanisms of pain perception and regulation in health and disease. Eur. J. Pain 9, 463–484 (2005).

    Article  PubMed  Google Scholar 

  39. Wager, T.D. et al. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23, 229–238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. Frontal cortex and reward-guided learning and decision-making. Neuron 70, 1054–1069 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Noonan, M.P. et al. Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proc. Natl. Acad. Sci. USA 107, 20547–20552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Narita, M. et al. Implication of dopaminergic projection from the ventral tegmental area to the anterior cingulate cortex in mu-opioid-induced place preference. Addict. Biol. 15, 434–447 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Lim, S.L., O'Doherty, J.P. & Rangel, A. The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. J. Neurosci. 31, 13214–13223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wanigasekera, V. et al. Baseline reward circuitry activity and trait reward responsiveness predict expression of opioid analgesia in healthy subjects. Proc. Natl. Acad. Sci. USA 109, 17705–17710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scott, D.J., Heitzeg, M.M., Koeppe, R.A., Stohler, C.S. & Zubieta, J.K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Burstein, R. & Giesler, G.J. Jr. Retrograde labeling of neurons in spinal cord that project directly to nucleus accumbens or the septal nuclei in the rat. Brain Res. 497, 149–154 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Brischoux, F., Chakraborty, S., Brierley, D.I. & Ungless, M.A. Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. USA 106, 4894–4899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Budygin, E.A. et al. Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 201, 331–337 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Becerra, L. & Borsook, D. Signal valence in the nucleus accumbens to pain onset and offset. Eur. J. Pain 12, 866–869 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baliki, M.N., Geha, P.Y., Fields, H.L. & Apkarian, A.V. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron 66, 149–160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johansen, J.P. & Fields, H.L. Glutamatergic activation of anterior cingulate cortex produces an aversive teaching signal. Nat. Neurosci. 7, 398–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, J.Y., Luo, F., Chang, J.Y., Woodward, D.J. & Han, J.S. Parallel pain processing in freely moving rats revealed by distributed neuron recording. Brain Res. 992, 263–271 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. LaGraize, S.C., Labuda, C.J., Rutledge, M.A., Jackson, R.L. & Fuchs, P.N. Differential effect of anterior cingulate cortex lesion on mechanical hypersensitivity and escape/avoidance behavior in an animal model of neuropathic pain. Exp. Neurol. 188, 139–148 (2004).

    Article  PubMed  Google Scholar 

  55. Johansen, J.P., Fields, H.L. & Manning, B.H. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077–8082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rainville, P., Duncan, G.H., Price, D.D., Carrier, B. & Bushnell, M.C. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277, 968–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Villemure, C., Laferriere, A.C. & Bushnell, M.C. The ventral striatum is implicated in the analgesic effect of mood changes. Pain Res. Manag. 17, 69–74 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Latremoliere, A. & Woolf, C.J. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J. Pain 10, 895–926 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Gjerstad, A.C., Wagner, K., Henrichsen, T. & Storm, H. Skin conductance versus the modified COMFORT sedation score as a measure of discomfort in artificially ventilated children. Pediatrics 122, e848–e853 (2008).

    Article  PubMed  Google Scholar 

  60. Kender, R.G., Harte, S.E., Munn, E.M. & Borszcz, G.S. Affective analgesia following muscarinic activation of the ventral tegmental area in rats. J. Pain 9, 597–605 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sotocinal, S.G. et al. The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions. Mol. Pain 7, 55 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. King, C.D., Devine, D.P., Vierck, C.J., Mauderli, A. & Yezierski, R.P. Opioid modulation of reflex versus operant responses following stress in the rat. Neuroscience 147, 174–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. LaBuda, C.J. & Fuchs, P.N. A behavioral test paradigm to measure the aversive quality of inflammatory and neuropathic pain in rats. Exp. Neurol. 163, 490–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Anderson, E.M. et al. Use of the Operant Orofacial Pain Assessment Device (OPAD) to measure changes in nociceptive behavior. J. Vis. Exp. 10.3791/50336 (2013).

  65. Martin, T.J., Kim, S.A. & Eisenach, J.C. Clonidine maintains intrathecal self-administration in rats following spinal nerve ligation. Pain 125, 257–263 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Ewan, E.E. & Martin, T.J. Analgesics as reinforcers with chronic pain: evidence from operant studies. Neurosci. Lett. 557A, 60–64 (2013).

  67. Navratilova, E., Xie, J.Y., King, T. & Porreca, F. Evaluation of reward from pain relief. Ann. NY Acad. Sci. 1282, 1–11 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Sufka, K.J. Conditioned place preference paradigm: a novel approach for analgesic drug assessment against chronic pain. Pain 58, 355–366 (1994).

    Article  CAS  PubMed  Google Scholar 

  69. Qu, C. et al. Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain 152, 1641–1648 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Okun, A. et al. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents. Mol. Pain 7, 4 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Okun, A. et al. Afferent drive elicits ongoing pain in a model of advanced osteoarthritis. Pain 153, 924–933 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  72. De Felice, M. et al. Capturing the aversive state of cephalic pain preclinically. Ann. Neurol. 74, 257–265 (2013).

    CAS  PubMed  Google Scholar 

  73. He, Y., Tian, X., Hu, X., Porreca, F. & Wang, Z.J. Negative reinforcement reveals non-evoked ongoing pain in mice with tissue or nerve injury. J. Pain 13, 598–607 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Davoody, L. et al. Conditioned place preference reveals tonic pain in an animal model of central pain. J. Pain 12, 868–874 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Park, H.J. et al. Persistent hyperalgesia in the Cisplatin-treated mouse as defined by threshold measures, the conditioned place preference paradigm, and changes in dorsal root Ganglia activated transcription factor 3: the effects of gabapentin, ketorolac, and etanercept. Anesth. Analg. 116, 224–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Xie, J.Y. et al. Activation of mesocorticolimbic reward circuits for assessment of relief of ongoing pain: A potential biomarker of efficacy. Pain 155, 1659–1666 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wiech, K. & Tracey, I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage 47, 987–994 (2009).

    Article  PubMed  Google Scholar 

  78. Atlas, L.Y. & Wager, T.D. How expectations shape pain. Neurosci. Lett. 520, 140–148 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Tracey, I. Getting the pain you expect: mechanisms of placebo, nocebo and reappraisal effects in humans. Nat. Med. 16, 1277–1283 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Eippert, F., Finsterbusch, J., Bingel, U. & Buchel, C. Direct evidence for spinal cord involvement in placebo analgesia. Science 326, 404 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Fields, H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 5, 565–575 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Watson, A. et al. Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain 145, 24–30 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Scott, D.J. et al. Placebo and nocebo effects are defined by opposite opioid and dopaminergic responses. Arch. Gen. Psychiatry 65, 220–231 (2008).

    Article  PubMed  Google Scholar 

  84. Scott, D.J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Zubieta, J.K. et al. Placebo effects mediated by endogenous opioid activity on mu-opioid receptors. J. Neurosci. 25, 7754–7762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wager, T.D., Davidson, M.L., Hughes, B.L., Lindquist, M.A. & Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 1037–1050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lanz, S., Seifert, F. & Maihofner, C. Brain activity associated with pain, hyperalgesia and allodynia: an ALE meta-analysis. J. Neural Transm. 118, 1139–1154 (2011).

    Article  PubMed  Google Scholar 

  88. Altier, N. & Stewart, J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–2287 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Lorenz, J. et al. A unique representation of heat allodynia in the human brain. Neuron 35, 383–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Wiech, K. et al. Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage 27, 59–69 (2005).

    Article  PubMed  Google Scholar 

  91. Seymour, B. et al. Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat. Neurosci. 8, 1234–1240 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Apkarian, A.V. The brain in chronic pain: clinical implications. Pain Manag. 1, 577–586 (2011).

    Article  PubMed  Google Scholar 

  93. Seminowicz, D.A. et al. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 47, 1007–1014 (2009).

    Article  PubMed  Google Scholar 

  94. May, A. Chronic pain may change the structure of the brain. Pain 137, 7–15 (2008).

    Article  PubMed  Google Scholar 

  95. Geha, P.Y. et al. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron 60, 570–581 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Harris, R.E. et al. Decreased central mu-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wood, P.B. et al. Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J. Pain 8, 51–58 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Rodriguez-Raecke, R., Niemeier, A., Ihle, K., Ruether, W. & May, A. Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J. Neurosci. 29, 13746–13750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Seminowicz, D.A. et al. Effective treatment of chronic low back pain in humans reverses abnormal brain anatomy and function. J. Neurosci. 31, 7540–7550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Baliki, M.N. et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15, 1117–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Neugebauer, V., Galhardo, V., Maione, S. & Mackey, S.C. Forebrain pain mechanisms. Brain Res. Rev. 60, 226–242 (2009).

    Article  PubMed  Google Scholar 

  102. Singh, G. Recent considerations in nonsteroidal anti-inflammatory drug gastropathy. Am. J. Med. 105, 31S–38S (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Wager, T.D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yen, C.P. et al. Stereotactic bilateral anterior cingulotomy for intractable pain. J. Clin. Neurosci. 12, 886–890 (2005).

    Article  PubMed  Google Scholar 

  105. Foltz, E.L. & White, L.E. Jr. Pain “relief” by frontal cingulumotomy. J. Neurosurg. 19, 89–100 (1962).

    Article  CAS  PubMed  Google Scholar 

  106. Mohseni, H.R. et al. MEG can map short and long-term changes in brain activity following deep brain stimulation for chronic pain. PLoS ONE 7, e37993 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Chapin, H., Bagarinao, E. & Mackey, S. Real-time fMRI applied to pain management. Neurosci. Lett. 520, 174–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Apkarian, A.V., Hashmi, J.A. & Baliki, M.N. Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152, S49–S64 (2011).

    Article  PubMed  Google Scholar 

  109. Gear, R.W. & Levine, J.D. Nucleus accumbens facilitates nociception. Exp. Neurol. 229, 502–506 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge comments and suggestions from I. Tracey and H. Fields. We thank P. Navratilova for help with illustrations. This work was funded by grants NS066958 and DA034975 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Porreca.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navratilova, E., Porreca, F. Reward and motivation in pain and pain relief. Nat Neurosci 17, 1304–1312 (2014). https://doi.org/10.1038/nn.3811

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3811

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research