Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex

Abstract

Although emotional learning affects sensory acuity, little is known about how these changes are facilitated in the brain. We found that auditory fear conditioning in mice elicited either an increase or a decrease in frequency discrimination acuity depending on how specific the learned response was to the conditioned tone. Using reversible pharmacological inactivation, we found that the auditory cortex mediated learning-evoked changes in acuity in both directions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFC resulting in low and high learning specificity led to an increase and a decrease in frequency discrimination threshold (θ), respectively.
Figure 2: Learning specificity following fine AFC was negatively correlated with the frequency discrimination threshold.
Figure 3: Inactivation of the auditory cortex reversibly canceled the effect of AFC on θ, but did not affect learning specificity.

Similar content being viewed by others

References

  1. Asutay, E. & Vastfjall, D. PLoS ONE 7, e38660 (2012).

    Article  CAS  Google Scholar 

  2. Krusemark, E.A. & Li, W. Chemosens. Percept. 5, 37–45 (2012).

    Article  Google Scholar 

  3. Li, W., Howard, J., Parrish, T. & Gottfried, J. Science 319, 1842–1845 (2008).

    Article  CAS  Google Scholar 

  4. Resnik, J., Sobel, N. & Paz, R. Nat. Neurosci. 14, 791–796 (2011).

    Article  CAS  Google Scholar 

  5. Chapuis, J. & Wilson, D. Nat. Neurosci. 15, 155–161 (2011).

    Article  Google Scholar 

  6. Clause, A., Nguyen, T. & Kandler, K. J. Neurosci. Methods 200, 63–67 (2011).

    Article  Google Scholar 

  7. Weinberger, N.M. Nat. Rev. Neurosci. 5, 279–290 (2004).

    Article  CAS  Google Scholar 

  8. Froemke, R.C. & Martins, A. Hear. Res. 279, 149–161 (2011).

    Article  Google Scholar 

  9. Butler, R.A., Diamond, I.T. & Neff, W.D. J. Neurophysiol. 20, 108–120 (1957).

    Article  CAS  Google Scholar 

  10. Shaban, H. et al. Nat. Neurosci. 9, 1028–1035 (2006).

    Article  CAS  Google Scholar 

  11. Koch, M. & Schnitzler, H.U. Behav. Brain Res. 89, 35–49 (1997).

    Article  CAS  Google Scholar 

  12. Li, L., Du, Y., Li, N., Wu, X. & Wu, Y. Neurosci. Biobehav. Rev. 33, 1157–1167 (2009).

    Article  Google Scholar 

  13. Basavaraj, S. & Yan, J. PLoS ONE 7, e45123 (2012).

    Article  CAS  Google Scholar 

  14. Suga, N. Neurosci. Biobehav. Rev. 36, 969–988 (2012).

    Article  Google Scholar 

  15. Bajo, V.M., Nodal, F.R., Moore, D.R. & King, A.J. Nat. Neurosci. 13, 253–260 (2010).

    Article  CAS  Google Scholar 

  16. Dahmen, J.C., Hartley, D.E. & King, A.J. J. Neurosci. 28, 13629–13639 (2008).

    Article  CAS  Google Scholar 

  17. Fritz, J.B., David, S.V., Radtke-Schuller, S., Yin, P. & Shamma, S.A. Nat. Neurosci. 13, 1011–1019 (2010).

    Article  CAS  Google Scholar 

  18. Pape, H.C. & Pare, D. Physiol. Rev. 90, 419–463 (2010).

    Article  CAS  Google Scholar 

  19. Xu, W. & Sudhof, T.C. Science 339, 1290–1295 (2013).

    Article  CAS  Google Scholar 

  20. Allen, T.A. et al. J. Neurosci. Methods 171, 30–38 (2008).

    Article  CAS  Google Scholar 

  21. Krupa, D.J., Ghazanfar, A. & Nicolelis, M. Proc. Natl. Acad. Sci. USA 96, 8200–8205 (1999).

    Article  CAS  Google Scholar 

  22. Talwar, S.K., Musial, P. & Gerstein, G. J. Neurophysiol. 85, 2350–2358 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Mwilambwe-Tshilobo, D. Mohabir, A. Nguyen and L. Liu for technical assistance. M.N.G. is the recipient of the Burroughs Wellcome Fund Career Award at the Scientific Interface. The work was supported by the Klingenstein Award in Neuroscience, the Pennsylvania Lions Club Hearing Fellowship and the Penn Medicine Neuroscience Center Pilot grant to M.N.G.

Author information

Authors and Affiliations

Authors

Contributions

M.A. and M.N.G. designed the experiments, analyzed the data, prepared the figures and wrote the manuscript. M.A. carried out the experiments.

Corresponding author

Correspondence to Maria Neimark Geffen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Text

Supplementary Figures 1–10 (PDF 5857 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aizenberg, M., Geffen, M. Bidirectional effects of aversive learning on perceptual acuity are mediated by the sensory cortex. Nat Neurosci 16, 994–996 (2013). https://doi.org/10.1038/nn.3443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3443

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing