Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The translation of translational control by FMRP: therapeutic targets for FXS

This article has been updated

Abstract

De novo protein synthesis is necessary for long-lasting modifications in synaptic strength and dendritic spine dynamics that underlie cognition. Fragile X syndrome (FXS), characterized by intellectual disability and autistic behaviors, holds promise for revealing the molecular basis for these long-term changes in neuronal function. Loss of function of the fragile X mental retardation protein (FMRP) results in defects in synaptic plasticity and cognition in many models of the disease. FMRP is a polyribosome-associated RNA-binding protein that regulates the synthesis of a set of plasticity-reated proteins by stalling ribosomal translocation on target mRNAs. The recent identification of mRNA targets of FMRP and its upstream regulators, and the use of small molecules to stall ribosomes in the absence of FMRP, have the potential to be translated into new therapeutic avenues for the treatment of FXS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FMRP and small molecules act to stall ribosomal elongation.
Figure 2: Signaling pathways controlling translation in normal and FXS model mice.

Similar content being viewed by others

Change history

  • 13 May 2013

    In the version of this article initially published online, a section heading read “Novel therapy for FXS directed at its molecular function.” The correct heading is “Novel therapy for FXS directed at FMRP function.” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Klann, E. & Sweatt, J.D. Altered protein synthesis is a trigger for long-term memory formation. Neurobiol. Learn. Mem. 89, 247–259 (2008).

    CAS  PubMed  Google Scholar 

  2. Bhakar, A.L., Dolen, G. & Bear, M.F. The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Santoro, M.R., Bray, S.M. & Warren, S.T. Molecular mechanisms of fragile X syndrome: a twenty-year perspective. Annu. Rev. Pathol. 7, 219–245 (2012).

    CAS  PubMed  Google Scholar 

  4. Gatto, C.L. & Broadie, K. The fragile X mental retardation protein in circadian rhythmicity and memory consolidation. Mol. Neurobiol. 39, 107–129 (2009).

    CAS  PubMed  Google Scholar 

  5. Comery, T.A. et al. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc. Natl. Acad. Sci. USA 94, 5401–5404 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Nimchinsky, E.A., Oberlander, A.M. & Svoboda, K. Abnormal development of dendritic spines in FMR1 knock-out mice. J. Neurosci. 21, 5139–5146 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cruz-Martin, A., Crespo, M. & Portera-Cailliau, C. Delayed stabilization of dendritic spines in fragile X mice. J. Neurosci. 30, 7793–7803 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan, F., Aldridge, G.M., Greenough, W.T. & Gan, W.B. Dendritic spine instability and insensitivity to modulation by sensory experience in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 107, 17768–17773 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nosyreva, E.D. & Huber, K.M. Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J. Neurophysiol. 95, 3291–3295 (2006).

    CAS  PubMed  Google Scholar 

  10. Hou, L. et al. Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51, 441–454 (2006).

    CAS  PubMed  Google Scholar 

  11. Harlow, E.G. et al. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 65, 385–398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Till, S.M. et al. Altered maturation of the primary somatosensory cortex in a mouse model of fragile X syndrome. Hum. Mol. Genet. 21, 2143–2156 (2012).

    CAS  PubMed  Google Scholar 

  13. Christie, S.B., Akins, M.R., Schwob, J.E. & Fallon, J.R. The FXG: a presynaptic fragile X granule expressed in a subset of developing brain circuits. J. Neurosci. 29, 1514–1524 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stefani, G., Fraser, C.E., Darnell, J.C. & Darnell, R.B. Fragile X mental retardation protein is associated with translating polyribosomes in neuronal cells. J. Neurosci. 24, 7272–7276 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Khandjian, E.W. et al. Biochemical evidence for the association of fragile X mental retardation protein with brain polyribosomal ribonucleoparticles. Proc. Natl. Acad. Sci. USA 101, 13357–13362 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Darnell, J.C. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–261 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Verkerk, A.J. et al. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914 (1991).

    CAS  PubMed  Google Scholar 

  18. Siomi, H., Siomi, M.C., Nussbaum, R.L. & Dreyfuss, G. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74, 291–298 (1993).

    CAS  PubMed  Google Scholar 

  19. De Boulle, K. et al. A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat. Genet. 3, 31–35 (1993).

    CAS  PubMed  Google Scholar 

  20. Lewis, H.A. et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323–332 (2000).

    CAS  PubMed  Google Scholar 

  21. Feng, Y. et al. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol. Cell 1, 109–118 (1997).

    CAS  PubMed  Google Scholar 

  22. Zang, J.B. et al. A mouse model of the human Fragile X syndrome I304N mutation. PLoS Genet. 5, e1000758 (2009).

    PubMed  PubMed Central  Google Scholar 

  23. Bolduc, F.V., Bell, K., Cox, H., Broadie, K.S. & Tully, T. Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat. Neurosci. 11, 1143–1145 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ramos, A., Hollingworth, D. & Pastore, A. The role of a clinically important mutation in the fold and RNA-binding properties of KH motifs. RNA 9, 293–298 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Darnell, J.C. et al. Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev. 19, 903–918 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ashley, C.T., Wilkinson, K.D., Reines, D. & Warren, S.T. FMR-1 protein: conserved RNP family domains and selective RNA binding. Science 262, 563–566 (1993).

    CAS  PubMed  Google Scholar 

  27. Corbin, F. et al. The fragile X mental retardation protein is associated with poly(A)+ mRNA in actively translating polyribosomes. Hum. Mol. Genet. 6, 1465–1472 (1997).

    CAS  PubMed  Google Scholar 

  28. Darnell, J.C. & Richter, J.D. Cytoplasmic RNA-binding proteins and the control of complex brain function. Cold Spring Harb. Perspect. Biol. 4, a012344 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Darnell, R.B. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip. Rev. RNA 1, 266–286 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shanks, N.F. et al. Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. Cell Rep. 1, 590–598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Akins, M.R., Berk-Rauch, H.E. & Fallon, J.R. Presynaptic translation: stepping out of the postsynaptic shadow. Front. Neural Circuits 3, 17 (2009).

    PubMed  PubMed Central  Google Scholar 

  32. Hanson, J.E. & Madison, D.V. Presynaptic FMR1 genotype influences the degree of synaptic connectivity in a mosaic mouse model of fragile X syndrome. J. Neurosci. 27, 4014–4018 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng, P.Y., Sojka, D. & Klyachko, V.A. Abnormal presynaptic short-term plasticity and information processing in a mouse model of fragile X syndrome. J. Neurosci. 31, 10971–10982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J., Hou, L., Klann, E. & Nelson, D.L. Altered hippocampal synaptic plasticity in the FMR1 gene family knockout mouse models. J. Neurophysiol. 101, 2572–2580 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gibson, J.R., Bartley, A.F., Hays, S.A. & Huber, K.M. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J. Neurophysiol. 100, 2615–2626 (2008).

    PubMed  PubMed Central  Google Scholar 

  36. Suvrathan, A., Hoeffer, C.A., Wong, H., Klann, E. & Chattarji, S. Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 107, 11591–11596 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sebeo, J. et al. Requirement for protein synthesis at developing synapses. J. Neurosci. 29, 9778–9793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Antar, L.N., Li, C., Zhang, H., Carroll, R.C. & Bassell, G.J. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol. Cell Neurosci. 32, 37–48 (2006).

    CAS  PubMed  Google Scholar 

  39. Laggerbauer, B., Ostareck, D., Keidel, E.M., Ostareck-Lederer, A. & Fischer, U. Evidence that fragile X mental retardation protein is a negative regulator of translation. Hum. Mol. Genet. 10, 329–338 (2001).

    CAS  PubMed  Google Scholar 

  40. Li, Z. et al. The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Res. 29, 2276–2283 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gross, C. et al. Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J. Neurosci. 30, 10624–10638 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gross, C. & Bassell, G.J. Excess protein synthesis in FXS patient lymphoblastoid cells can be rescued with a p110beta-selective inhibitor. Mol. Med. 18, 336–345 (2012).

    CAS  PubMed  Google Scholar 

  43. Dölen, G. et al. Correction of fragile X syndrome in mice. Neuron 56, 955–962 (2007).

    PubMed  PubMed Central  Google Scholar 

  44. Bhattacharya, A. et al. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic and behavioral phenotypes in Fragile X syndrome mice. Neuron 76, 325–337 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Qin, M., Kang, J., Burlin, T.V., Jiang, C. & Smith, C.B. Postadolescent changes in regional cerebral protein synthesis: an in vivo study in the FMR1 null mouse. J. Neurosci. 25, 5087–5095 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Osterweil, E.K., Krueger, D.D., Reinhold, K. & Bear, M.F. Hypersensitivity to mGluR5 and ERK1/2 leads to excessive protein synthesis in the hippocampus of a mouse model of fragile X syndrome. J. Neurosci. 30, 15616–15627 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, Y.Q. et al. Drosophila fragile X–related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001).

    CAS  PubMed  Google Scholar 

  48. Zalfa, F. et al. The fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses. Cell 112, 317–327 (2003).

    CAS  PubMed  Google Scholar 

  49. Goebel-Goody, S.M. et al. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model. Genes Brain Behav. 11, 586–600 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Strumbos, J.G., Brown, M.R., Kronengold, J., Polley, D.B. & Kaczmarek, L.K. Fragile X mental retardation protein is required for rapid experience-dependent regulation of the potassium channel Kv3.1b. J. Neurosci. 30, 10263–10271 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, H.Y. et al. Bidirectional regulation of dendritic voltage-gated potassium channels by the fragile X mental retardation protein. Neuron 72, 630–642 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sharma, A. et al. Dysregulation of mTOR signaling in fragile X syndrome. J. Neurosci. 30, 694–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schütt, J., Falley, K., Richter, D., Kreienkamp, H.J. & Kindler, S. Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities. J. Biol. Chem. 284, 25479–25487 (2009).

    PubMed  PubMed Central  Google Scholar 

  54. Hoeffer, C.A. et al. Altered mTOR signaling and enhanced CYFIP2 expression levels in subjects with fragile X syndrome. Genes Brain Behav. 11, 332–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Krueger, D.D., Osterweil, E.K., Chen, S.P., Tye, L.D. & Bear, M.F. Cognitive dysfunction and prefrontal synaptic abnormalities in a mouse model of fragile X syndrome. Proc. Natl. Acad. Sci. USA 108, 2587–2592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bear, M.F., Huber, K.M. & Warren, S.T. The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377 (2004).

    CAS  PubMed  Google Scholar 

  57. Michalon, A. et al. Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74, 49–56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Berry-Kravis, E. et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J. Med. Genet. 46, 266–271 (2009).

    CAS  PubMed  Google Scholar 

  59. Klann, E. & Dever, T.E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004).

    CAS  PubMed  Google Scholar 

  60. Hoeffer, C.A. & Klann, E. mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci. 33, 67–75 (2010).

    CAS  PubMed  Google Scholar 

  61. Kelleher, R.J.r. & Bear, M.F. The autistic neuron: troubled translation? Cell 135, 401–406 (2008).

    CAS  PubMed  Google Scholar 

  62. Kelley, D.J. et al. The cyclic AMP cascade is altered in the fragile X nervous system. PLoS ONE 2, e931 (2007).

    PubMed  PubMed Central  Google Scholar 

  63. Berry-Kravis, E. & Sklena, P. Demonstration of abnormal cyclic AMP production in platelets from patients with fragile X syndrome. Am. J. Med. Genet. 45, 81–87 (1993).

    CAS  PubMed  Google Scholar 

  64. Li, J., Pelletier, M.R., Perez Velazquez, J.L. & Carlen, P.L. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol. Cell Neurosci. 19, 138–151 (2002).

    PubMed  Google Scholar 

  65. Newey, S.E., Velamoor, V., Govek, E.E. & Van Aelst, L. Rho GTPases, dendritic structure and mental retardation. J. Neurobiol. 64, 58–74 (2005).

    CAS  PubMed  Google Scholar 

  66. Rumbaugh, G., Adams, J.P., Kim, J.H. & Huganir, R.L. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl. Acad. Sci. USA 103, 4344–4351 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Huber, K.M., Kayser, M.S. & Bear, M.F. Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288, 1254–1257 (2000).

    CAS  PubMed  Google Scholar 

  69. Huber, K.M., Gallagher, S.M., Warren, S.T. & Bear, M.F. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc. Natl. Acad. Sci. USA 99, 7746–7750 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. McBride, S.M. et al. Pharmacological rescue of synaptic plasticity, courtship behavior and mushroom body defects in a Drosophila model of fragile X syndrome. Neuron 45, 753–764 (2005).

    CAS  PubMed  Google Scholar 

  71. El Idrissi, A. et al. Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci. Lett. 377, 141–146 (2005).

    CAS  PubMed  Google Scholar 

  72. D'Hulst, C. et al. Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res. 1121, 238–245 (2006).

    CAS  PubMed  Google Scholar 

  73. Adusei, D.C., Pacey, L.K., Chen, D. & Hampson, D.R. Early developmental alterations in GABAergic protein expression in fragile X knockout mice. Neuropharmacology 59, 167–171 (2010).

    CAS  PubMed  Google Scholar 

  74. Chang, S. et al. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol. 4, 256–263 (2008).

    CAS  PubMed  Google Scholar 

  75. Heulens, I., D'Hulst, C., Van Dam, D., De Deyn, P.P. & Kooy, R.F. Pharmacological treatment of fragile X syndrome with GABAergic drugs in a knockout mouse model. Behav. Brain Res. 229, 244–249 (2012).

    CAS  PubMed  Google Scholar 

  76. Henderson, C. et al. Reversal of disease-related pathologies in the fragile X mouse model by selective activation of GABA(B) receptors with arbaclofen. Sci. Transl. Med. 4, 152ra128 (2012).

    PubMed  PubMed Central  Google Scholar 

  77. Berry-Kravis, E.M. et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl. Med. 4, 152ra127 (2012).

    PubMed  Google Scholar 

  78. Richter, J.D. & Klann, E. Making synaptic plasticity and memory last: mechanisms of translational regulation. Genes Dev. 23, 1–11 (2009).

    CAS  PubMed  Google Scholar 

  79. Klann, E., Antion, M.D., Banko, J.L. & Hou, L. Synaptic plasticity and translation initiation. Learn. Mem. 11, 365–372 (2004).

    PubMed  Google Scholar 

  80. Costa-Mattioli, M., Sossin, W.S., Klann, E. & Sonenberg, N. Translational control of long-lasting synaptic plasticity and memory. Neuron 61, 10–26 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ronesi, J.A. et al. Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat. Neurosci. 15, 431–440 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Romanelli, A., Martin, K.A., Toker, A. & Blenis, J. p70 S6 kinase is regulated by protein kinase Czeta and participates in a phosphoinositide 3-kinase–regulated signaling complex. Mol. Cell Biol. 19, 2921–2928 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Osterweil, E.K. et al. Lovastatin corrects excess protein synthesis and prevents epileptogenesis in a mouse model of fragile X syndrome. Neuron 77, 243–250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Kwiatkowski, D.J. & Manning, B.D. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum. Mol. Genet. 14, 251–258 (2005).

    Google Scholar 

  85. Auerbach, B.D., Osterweil, E.K. & Bear, M.F. Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature 480, 63–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ozcan, U. et al. Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol. Cell 29, 541–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Mines, M.A., Yuskaitis, C.J., King, M.K., Beurel, E. & Jope, R.S. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS ONE 5, e9706 (2010).

    PubMed  PubMed Central  Google Scholar 

  88. Guo, W. et al. Inhibition of GSK3beta improves hippocampus-dependent learning and rescues neurogenesis in a mouse model of fragile X syndrome. Hum. Mol. Genet. 21, 681–691 (2012).

    CAS  PubMed  Google Scholar 

  89. Ronesi, J.A. & Huber, K.M. Homer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation. J. Neurosci. 28, 543–547 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Neves-Pereira, M. et al. Deregulation of EIF4E: a novel mechanism for autism. J. Med. Genet. 46, 759–765 (2009).

    CAS  PubMed  Google Scholar 

  91. Napoli, I. et al. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042–1054 (2008).

    CAS  PubMed  Google Scholar 

  92. Santini, E. et al. Exaggerated translation causes synaptic and behavioural aberrations associated with autism. Nature 493, 411–415 (2013).

    CAS  PubMed  Google Scholar 

  93. Bilousova, T.V. et al. Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J. Med. Genet. 46, 94–102 (2009).

    CAS  PubMed  Google Scholar 

  94. Siller, S.S. & Broadie, K. Neural circuit architecture defects in a Drosophila model of Fragile X syndrome are alleviated by minocycline treatment and genetic removal of matrix metalloproteinase. Dis. Model Mech. 4, 673–685 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim, H.S. & Suh, Y.H. Minocycline and neurodegenerative diseases. Behav. Brain Res. 196, 168–179 (2009).

    CAS  PubMed  Google Scholar 

  96. Budkevich, T.V., El'skaya, A.V. & Nierhaus, K.H. Features of 80S mammalian ribosome and its subunits. Nucleic Acids Res. 36, 4736–4744 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Paribello, C. et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 10, 91 (2010).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grants HD040647 (J.C.D.) and NS047384 (E.K.), and Congressionally Directed Medical Research Program Award W81-XWH-11-1-0389 from the US Department of Defense (E.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jennifer C Darnell or Eric Klann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darnell, J., Klann, E. The translation of translational control by FMRP: therapeutic targets for FXS. Nat Neurosci 16, 1530–1536 (2013). https://doi.org/10.1038/nn.3379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.3379

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing