Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interval time coding by neurons in the presupplementary and supplementary motor areas

Abstract

Interval timing is an essential guiding force of behavior. Previous reports have implicated the prefrontal and parietal cortex as being involved in time perception and in temporal decision making. We found that neurons in the medial motor areas, in particular the presupplementary motor area, participate in interval timing in the range of seconds. Monkeys were trained to perform an interval-generation task that required them to determine waiting periods of three different durations. Neuronal activity contributed to the process of retrieving time instructions from visual cues, signaled the initiation of action in a time-selective manner, and developed activity to represent the passage of time. These results specify how medial motor areas take part in initiating actions on the basis of self-generated time estimates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task sequence and distribution of waiting periods.
Figure 2: Three examples of preSMA cells showing instruction responses that were selective for one of the three interval times.
Figure 3: An example of preSMA cells exhibiting instruction responses with graded magnitudes depending on time intervals.
Figure 4: Three examples of pre-SMA cells showing interval-selective preparatory activity before motor initiation.
Figure 5: An example of pre-SMA cells showing preparatory neuronal activity with graded magnitudes that depended on time intervals.
Figure 6: Time courses for averaged normalized responses of time-specific and time-graded preSMA cell populations exhibiting either decay or buildup activity.
Figure 7: Results of exponential curve fitting for population activity including time-specific and time-graded preSMA cell.

Similar content being viewed by others

References

  1. Gibbon, J. Timing and Time Perception. (New York Academy of Sciences, New York, 1984).

    Google Scholar 

  2. Gallistel, C.R. The Organization of Learning (Learning, Development, and Conceptual Change). (MIT Press, Cambridge, Massachusetts, 1993).

    Google Scholar 

  3. Buhusi, C.V. & Meck, W.H. What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765 (2005).

    Article  CAS  Google Scholar 

  4. Meck, W.H. Attentional bias between modalities: effect on the internal clock, memory, and decision stages used in animal time discrimination. Ann. NY Acad. Sci. 423, 528–541 (1984).

    Article  CAS  Google Scholar 

  5. Church, R.M., Meck, W.H. & Gibbon, J. Application of scalar timing theory to individual trials. J. Exp. Psychol. Anim. Behav. Process. 20, 135–155 (1994).

    Article  CAS  Google Scholar 

  6. Hinton, S.C. & Meck, W.H. The 'internal clocks' of circadian and interval timing. Endeavour 21, 3–8 (1997).

    Article  CAS  Google Scholar 

  7. Rao, S.M., Mayer, A.R. & Harrington, D.L. The evolution of brain activation during temporal processing. Nat. Neurosci. 4, 317–323 (2001).

    Article  CAS  Google Scholar 

  8. Matell, M.S., Meck, W.H. & Nicolelis, M.A.L. Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav. Neurosci. 117, 760–773 (2003).

    Article  Google Scholar 

  9. Meck, W.H., Penney, T.B. & Pouthas, V. Cortico-striatal representation of time in animals and humans. Curr. Opin. Neurobiol. 18, 145–152 (2008).

    Article  CAS  Google Scholar 

  10. Lewis, P.A. & Miall, R.C. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr. Opin. Neurobiol. 13, 250–255 (2003).

    Article  CAS  Google Scholar 

  11. Ivry, R.B. & Spencer, R.M.C. The neural representation of time. Curr. Opin. Neurobiol. 14, 225–232 (2004).

    Article  CAS  Google Scholar 

  12. Leon, M.I. & Shadlen, M.N. Representation of time by neurons in the posterior parietal cortex of the macaque. Neuron 38, 317–327 (2003).

    Article  CAS  Google Scholar 

  13. Janssen, P. & Shadlen, M.N. A representation of the hazard rate of elapsed time in macaque area LIP. Nat. Neurosci. 8, 234–241 (2005).

    Article  CAS  Google Scholar 

  14. Genovesio, A., Tsujimoto, S. & Wise, S.P. Neuronal activity related to elapsed time in prefrontal cortex. J. Neurophysiol. 95, 3281–3285 (2006).

    Article  Google Scholar 

  15. Sakurai, Y. Working memory for temporal and nontemporal events in monkeys. Learn. Mem. 8, 309–316 (2001).

    Article  CAS  Google Scholar 

  16. Oshio, K., Chiba, A. & Inase, M. Delay period activity of monkey prefrontal neurones during duration-discrimination task. Eur. J. Neurosci. 23, 2779–2790 (2006).

    Article  Google Scholar 

  17. Okano, K. & Tanji, J. Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement. Exp. Brain Res. 66, 155–166 (1987).

    Article  CAS  Google Scholar 

  18. Mushiake, H., Inase, M. & Tanji, J. Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. J. Neurophysiol. 66, 705–718 (1991).

    Article  CAS  Google Scholar 

  19. Shima, K. et al. Role for cells in the presupplementary motor area in updating motor plans. Proc. Natl. Acad. Sci. USA. 93, 8694–8698 (1996).

    Article  CAS  Google Scholar 

  20. Shima, K. & Tanji, J. Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements. J. Neurophysiol. 80, 3247–3260 (1998).

    Article  CAS  Google Scholar 

  21. Nakamura, K., Sakai, K. & Hikosaka, O. Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. J. Neurophysiol. 82, 1063–1068 (1999).

    Article  CAS  Google Scholar 

  22. Tanji, J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu. Rev. Neurosci. 24, 631–651 (2001).

    Article  CAS  Google Scholar 

  23. Macar, F., Vidal, F. & Casini, L. The supplementary motor area in motor and sensory timing: evidence from slow brain potential changes. Exp. Brain Res. 125, 271–280 (1999).

    Article  CAS  Google Scholar 

  24. Coull, J.T. et al. Functional anatomy of the attentional modulation of time estimation. Science 303, 1506–1508 (2004).

    Article  CAS  Google Scholar 

  25. Matell, M.S. & Meck, W.H. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res. Cogn. Brain Res. 21, 139–170 (2004).

    Article  Google Scholar 

  26. Onoe, H. et al. Cortical networks recruited for time perception: a monkey positron emission tomography (PET) study. Neuroimage 13, 37–45 (2001).

    Article  CAS  Google Scholar 

  27. Harrington, D.L. et al. Neural representation of interval encoding and decision making. Brain Res. Cogn. Brain Res. 21, 193–205 (2004).

    Article  Google Scholar 

  28. Pouthas, V. et al. Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum. Brain Mapp. 25, 433–441 (2005).

    Article  Google Scholar 

  29. Koch, G. et al. Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology 59, 1658–1659 (2002).

    Article  Google Scholar 

  30. Jones, C.R.G. et al. The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp. Brain Res. 158, 366–372 (2004).

    Article  Google Scholar 

  31. Macar, F., Coull, J. & Vidal, F. The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn. Process. 7, 89–94 (2006).

    Article  Google Scholar 

  32. Lucchetti, C. & Bon, L. Time-modulated neuronal activity in the premotor cortex of macaque monkeys. Exp. Brain Res. 141, 254–260 (2001).

    Article  CAS  Google Scholar 

  33. Akkal, D. et al. Time predictability modulates pre-supplementary motor area neuronal activity. Neuroreport 15, 1283–1286 (2004).

    Article  CAS  Google Scholar 

  34. Gibbon, J. et al. Toward a neurobiology of temporal cognition: advances and challenges. Curr. Opin. Neurobiol. 7, 170–184 (1997).

    Article  CAS  Google Scholar 

  35. Buonomano, D.V. & Karmarkar, U.R. How do we tell time? Neuroscientist 8, 42–51 (2002).

    Article  Google Scholar 

  36. Gallistel, C.R. & Gibbon, J. Time, rate and conditioning. Psychol. Rev. 107, 289–344 (2000).

    Article  CAS  Google Scholar 

  37. Ivry, R.B. & Richardson, T.C. Temporal control and coordination: the multiple timer model. Brain Cogn. 48, 117–132 (2002).

    Article  Google Scholar 

  38. Staddon, J.E.R. Interval timing: memory, not a clock. Trends Cogn. Sci. 9, 312–314 (2005).

    Article  CAS  Google Scholar 

  39. Reutimann, J. et al. Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–3303 (2004).

    Article  CAS  Google Scholar 

  40. Sohn, J.W. & Lee, D. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. J. Neurosci. 27, 13655–13666 (2007).

    Article  CAS  Google Scholar 

  41. Matsuzaka, Y. & Tanji, J. Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. J. Neurophysiol. 76, 2327–2342 (1996).

    Article  CAS  Google Scholar 

  42. Fujii, N., Mushiake, H. & Tanji, J. Distribution of eye- and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys. J. Neurophysiol. 87, 2158–2166 (2002).

    Article  Google Scholar 

  43. Nachev, P. et al. The role of the pre-supplementary motor area in the control of action. Neuroimage 36 (Suppl 2): T155–T163 (2007).

    Article  Google Scholar 

  44. Sumner, P. et al. Human medial frontal cortex mediates unconscious inhibition of voluntary action. Neuron 54, 697–711 (2007).

    Article  CAS  Google Scholar 

  45. Isoda, M. & Tanji, J. Participation of the primate presupplementary motor area in sequencing multiple saccades. J. Neurophysiol. 92, 653–659 (2004).

    Article  Google Scholar 

  46. Shima, K. & Tanji, J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J. Neurophysiol. 84, 2148–2160 (2000).

    Article  CAS  Google Scholar 

  47. Isoda, M. & Hikosaka, O. Switching from automatic to controlled action by monkey medial frontal cortex. Nat. Neurosci. 10, 240–248 (2007).

    Article  CAS  Google Scholar 

  48. Lu, M.T., Preston, J.B. & Strick, P.L. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341, 375–392 (1994).

    Article  CAS  Google Scholar 

  49. Tanné, J., Boussaoud, D., Boyer-Zeller, N. & Rouiller, E.M. Direct visual pathways for reaching movements in the macaque monkey. Neuroreport 7, 267–272 (1995).

    Article  Google Scholar 

  50. Matsuzaka, Y., Aizawa, H. & Tanji, J. A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J. Neurophysiol. 68, 653–662 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M. and K.S. conducted the experiments, H.M. and Y.M. conducted the data analyses, H.M. and J.T. supervised the project and J.T. wrote the manuscript.

Corresponding author

Correspondence to Jun Tanji.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 268 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mita, A., Mushiake, H., Shima, K. et al. Interval time coding by neurons in the presupplementary and supplementary motor areas. Nat Neurosci 12, 502–507 (2009). https://doi.org/10.1038/nn.2272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing