Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functional skeletal muscle regeneration from differentiating embryonic stem cells

Abstract

Little progress has been made toward the use of embryonic stem (ES) cells to study and isolate skeletal muscle progenitors. This is due to the paucity of paraxial mesoderm formation during embryoid body (EB) in vitro differentiation and to the lack of reliable identification and isolation criteria for skeletal muscle precursors. Here we show that expression of the transcription factor Pax3 during embryoid body differentiation enhances both paraxial mesoderm formation and the myogenic potential of the cells within this population. Transplantation of Pax3-induced cells results in teratomas, however, indicating the presence of residual undifferentiated cells. By sorting for the PDGF-α receptor, a marker of paraxial mesoderm, and for the absence of Flk-1, a marker of lateral plate mesoderm, we derive a cell population from differentiating ES cell cultures that has substantial muscle regeneration potential. Intramuscular and systemic transplantation of these cells into dystrophic mice results in extensive engraftment of adult myofibers with enhanced contractile function without the formation of teratomas. These data demonstrate the therapeutic potential of ES cells in muscular dystrophy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of iPax3 ES cells.
Figure 2: Transplantation of unpurified iPax3 EB-derived cells into cardiotoxin-injured Rag2−/−γc−/− mice.
Figure 3: Effects of Pax3 induction on paraxial mesoderm formation during EB development.
Figure 4: Characterization of Pax3-induced PDGF-αR+Flk-1 derived cells.
Figure 5: Robust engraftment on transplantation of Pax3-induced PDGFαR+Flk1 EB-derived cells into cardiotoxin-injured Rag2−/−γc−/− and dystrophic mice.
Figure 6: Systemic cell transplantation improves contractile properties of tibialis anterior muscles in mdx mice.

Similar content being viewed by others

References

  1. Robertson, E.J. Pluripotential stem cell lines as a route into the mouse germ line. Trends Genet. 2, 9–13 (1986).

    Article  Google Scholar 

  2. Rohwedel, J. et al. Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101 (1994).

    Article  CAS  Google Scholar 

  3. Weitzer, G., Milner, D.J., Kim, J.U., Bradley, A. & Capetanaki, Y. Cytoskeletal control of myogenesis: a desmin null mutation blocks the myogenic pathway during embryonic stem cell differentiation. Dev. Biol. 172, 422–439 (1995).

    Article  CAS  Google Scholar 

  4. Ridgeway, A.G. & Skerjanc, I.S. Pax3 is essential for skeletal myogenesis and the expression of Six1 and Eya2. J. Biol. Chem. 276, 19033–19039 (2001).

    Article  CAS  Google Scholar 

  5. Armour, C., Garson, K. & McBurney, M.W. Cell-cell interaction modulates myoD-induced skeletal myogenesis of pluripotent P19 cells in vitro. Exp. Cell Res. 251, 79–91 (1999).

    Article  CAS  Google Scholar 

  6. Bhagavati, S. & Xu, W. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem. Biophys. Res. Commun. 333, 644–649 (2005).

    Article  CAS  Google Scholar 

  7. Barberi, T. et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat. Med. 13, 642–648 (2007).

    Article  CAS  Google Scholar 

  8. Christ, B. & Ordahl, C.P. Early stages of chick somite development. Anat. Embryol. (Berl.) 191, 381–396 (1995).

    Article  CAS  Google Scholar 

  9. Bailey, P., Holowacz, T. & Lassar, A.B. The origin of skeletal muscle stem cells in the embryo and the adult. Curr. Opin. Cell Biol. 13, 679–689 (2001).

    Article  CAS  Google Scholar 

  10. Goulding, M., Lumsden, A. & Paquette, A.J. Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120, 957–971 (1994).

    CAS  PubMed  Google Scholar 

  11. Denetclaw, W.F.J., Christ, B. & Ordahl, C.P. Location and growth of epaxial myotome precursor cells. Development 124, 1601–1610 (1997).

    CAS  PubMed  Google Scholar 

  12. Ordahl, C.P. & Le Douarin, N.M. Two myogenic lineages within the developing somite. Development 114, 339–353 (1992).

    CAS  PubMed  Google Scholar 

  13. Maroto, M. et al. Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89, 139–148 (1997).

    Article  CAS  Google Scholar 

  14. Bajard, L. et al. A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev. 20, 2450–2464 (2006).

    Article  CAS  Google Scholar 

  15. Relaix, F., Rocancourt, D., Mansouri, A. & Buckingham, M.A. Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435, 948–953 (2005).

    Article  CAS  Google Scholar 

  16. Kassar-Duchossoy, L. et al. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 19, 1426–1431 (2005).

    Article  CAS  Google Scholar 

  17. Kyba, M., Perlingeiro, R.C. & Daley, G.Q. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109, 29–37 (2002).

    Article  CAS  Google Scholar 

  18. Fehling, H.J. et al. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development 130, 4217–4227 (2003).

    Article  CAS  Google Scholar 

  19. Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    Article  CAS  Google Scholar 

  20. Ema, M., Takahashi, S. & Rossant, J. Deletion of the selection cassette, but not cis-acting elements, in targeted Flk-1-lacZ allele reveals Flk-1 expression in multipotent mesodermal progenitors. Blood 107, 111–117 (2006).

    Article  CAS  Google Scholar 

  21. Takakura, N. et al. PDGFRα expression during mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFRα antibody APA5. J. Histochem. Cytochem. 45, 883–893 (1997).

    Article  CAS  Google Scholar 

  22. Sakurai, H. et al. In vitro modeling of paraxial and lateral mesoderm differentiation reveals early reversibility. Stem Cells 24, 575–586 (2006).

    Article  CAS  Google Scholar 

  23. Tortorella, L.L., Milasincic, D.J. & Pilch, P.F. Critical proliferation-independent window for basic fibroblast growth factor repression of myogenesis via the p42/p44 MAPK signaling pathway. J. Biol. Chem. 276, 13709–13717 (2001).

    Article  CAS  Google Scholar 

  24. Sampaolesi, M. et al. Cell therapy of α-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301, 487–492 (2003).

    Article  CAS  Google Scholar 

  25. Bachrach, E. et al. Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle Nerve 34, 44–52 (2006).

    Article  Google Scholar 

  26. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    Article  CAS  Google Scholar 

  27. Partridge, T.A., Morgan, J.E., Coulton, G.R., Hoffman, E.P. & Kunkel, L.M. Conversion of mdx myofibers from dystrophin-negative to positive by injection of normal myoblasts. Nature 337, 176–179 (1989).

    Article  CAS  Google Scholar 

  28. Gussoni, E., Blau, H.M. & Kunkel, L.M. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nat. Med. 3, 970–977 (1997).

    Article  CAS  Google Scholar 

  29. Qu, Z. et al. Development of approaches to improve cell survival in myoblast transfer therapy. J. Cell Biol. 142, 1257–1267 (1998).

    Article  CAS  Google Scholar 

  30. Tremblay, J.P. et al. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant. 2, 99–112 (1993).

    Article  CAS  Google Scholar 

  31. Mendell, J.R. et al. Myoblast transfer in the treatment of Duchenne's muscular dystrophy. N. Engl. J. Med. 333, 832–838 (1995).

    Article  CAS  Google Scholar 

  32. Partridge, T., Lu, Q.L., Morris, G. & Hoffman, E. Is myoblast transplantation effective? Nat. Med. 4, 1208–1209 (1998).

    Article  CAS  Google Scholar 

  33. Asakura, A., Seale, P., Girgis-Gabardo, A. & Rudnicki, M.A. Myogenic specification of side population cells in skeletal muscle. J. Cell Biol. 159, 123–134 (2002).

    Article  CAS  Google Scholar 

  34. Rando, T.A. & Blau, H.M. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy. J. Cell Biol. 125, 1275–1287 (1994).

    Article  CAS  Google Scholar 

  35. Lee, J.Y. et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J. Cell Biol. 150, 1085–1100 (2000).

    Article  CAS  Google Scholar 

  36. Sampaolesi, M. et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444, 574–579 (2006).

    Article  CAS  Google Scholar 

  37. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    Article  CAS  Google Scholar 

  38. Sherwood, R.I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554 (2004).

    Article  CAS  Google Scholar 

  39. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  40. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science published online, doi:10.1126/science.1151526 (20 November 2007).

  41. Fujikawa, T. et al. Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell–derived insulin-producing cells. Am. J. Pathol. 166, 1781–1791 (2005).

    Article  CAS  Google Scholar 

  42. Eventov-Friedman, S. et al. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc. Natl. Acad. Sci. USA 102, 2928–2933 (2005).

    Article  CAS  Google Scholar 

  43. Cornelison, D.D. & Wold, B.J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–283 (1997).

    Article  CAS  Google Scholar 

  44. Cornelison, D.D., Filla, M.S., Stanley, H.M., Rapraeger, A.C. & Olwin, B.B. Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev. Biol. 239, 79–94 (2001).

    Article  CAS  Google Scholar 

  45. Sherwood, R.I., Christensen, J.L., Weissman, I.L. & Wagers, A.J. Determinants of skeletal muscle contributions from circulating cells, bone marrow cells, and hematopoietic stem cells. Stem Cells 22, 1292–1304 (2004).

    Article  Google Scholar 

  46. Beauchamp, J.R. et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151, 1221–1234 (2000).

    Article  CAS  Google Scholar 

  47. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M.A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  Google Scholar 

  48. Yoshimura, M. et al. AAV vector-mediated microdystrophin expression in a relatively small percentage of mdx myofibers improved the mdx phenotype. Mol. Ther. 10, 821–828 (2004).

    Article  CAS  Google Scholar 

  49. Gross, J.G. & Morgan, J.E. Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 22, 174–185 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Stull for discussion and M. Rudnicki for technical advice. The monoclonal antibody to MHC was obtained from the Developmental Studies Hybridoma Bank, which was developed under the auspices of the National Institute of Child Health and Human Development and is maintained by the University of Iowa. This work was supported by the Dr. Bob and Jean Smith Foundation.

Author information

Authors and Affiliations

Authors

Contributions

R.D. designed and conducted the in vitro and in vivo experiments with iPax3 ES cells. R.D. also performed the final analysis of the data and contributed to writing the paper. K.G. generated the iPax3 ES cell line. R.M.B. performed the i.a. transplantations. S.K. performed quantifications for dystrophin and assisted R.D. with some of the staining. M.O. performed the i.v. transplantations. K.E.K. supervised and assisted on interpretation of the muscle functional analyses. M.K. provided materials, supervised K.G. on generating the cell line and analyzed the data. R.C.R.P. supervised the overall project, designed experiments, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Rita C R Perlingeiro.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 928 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darabi, R., Gehlbach, K., Bachoo, R. et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med 14, 134–143 (2008). https://doi.org/10.1038/nm1705

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1705

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing