Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin

Abstract

Extensive research has failed to clarify the mechanism of action of nitrous oxide (N2O, laughing gas), a widely used inhalational anesthetic and drug of abuse. Other general anesthetics are thought to act by one of two mechanisms—blockade of NMDA glutamate receptors or enhancement of CABAergic inhibition1. Here we show that N2O, at anesthetically-relevant concentrations, inhibits both ionic currents and excitotoxic neurodegeneration mediated through NMDA receptors and, like other NMDA antagonists, produces neurotoxic side effects which can be prevented by drugs that enhance CABAergic inhibition. The favorable safety record of N2O may be explained by the low concentrations typically used and by the fact that it is usually used in combination with CABAergic anesthetics that counteract its neurotoxic potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Franks, N.P. & Lieb, W.R. Molecular and cellular mechanisms of general anaesthesia. Nature 367, 607–614 (1994).

    Article  CAS  Google Scholar 

  2. Lodge, D. & Anis, N.A. Effects of phencyclidine on excitatory amino acid activation of spinal interneurons in the cat. Eur. J. Pharmacol. 77, 203–204 (1982).

    Article  CAS  Google Scholar 

  3. Lodge, D. et al. Excitatory amino acids and Phencyclidine-like drugs. In: Excitatory Amino Acid Transmission . Hicks TP, Lodge D and McLennan H (Eds). (New York: Alan R. LissInc), pp 83-90 (1987).

    Google Scholar 

  4. Rothman, S.M. The neurotoxicity of excitatory amino acids is produced by passive chloride influx. J.Neumsci. 4, 1483–1489 (1991).

    Google Scholar 

  5. Choi, D.W. Glutamate neurotoxicity and disease of the nervous system. Neuron 1, 623–634 (1988).

    Article  CAS  Google Scholar 

  6. Olney, J.W. Excitatory amino acids and neuropsychiatric disorders. Biol. Psychiatry 26, 505–525 (1989).

    Article  CAS  Google Scholar 

  7. Olney, J.W., Labruyere, J. & Price, M.T. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 244, 1360–1362 (1989).

    Article  CAS  Google Scholar 

  8. Fix, A.S. et al. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-D-aspartate (NMDA) antagonist MK(+)801 (Dizocilpine maleate): A light and electron microscopic evaluation of the rat retrosplenial cortex. Exp. Neural. 123, 204–215 (1993).

    Article  CAS  Google Scholar 

  9. Farber, N.B. et al. Age-specific neurotoxicity in the rat associated with NMDA receptor blockade: Potential relevance to schizophrenia? Biol. Psychiatry 38 788–796 (1995).

    Article  CAS  Google Scholar 

  10. Olney, J.W. et al. NMDA antagonist neurotoxicity: Mechanism and prevention. Science 254, 1515–1518 (1991).

    Article  CAS  Google Scholar 

  11. Ishimaru, M., Fukamauchi, F. & Olney, J.W. Halothane prevents MK-801 neurotoxicity in the rat cingulate cortex. Neurosci. Lett. 193, 1–4 (1995).

    Article  CAS  Google Scholar 

  12. Jevtovic-Todorovic, V., Kirby, C.O. & Olney, J.W. Isoflurane and propofol block neurotoxicity caused by MK-801 in the rat posterior cingulate/retrosplenial cortex. J. Cereb. Blood Flow and Met. 17, 168–174 (1997).

    Article  CAS  Google Scholar 

  13. Stevens, R.K. & Scheller, M. Anesthesia as a Speciality: Past, Present and Future. In Clinical Anesthesia, Barash PG et al., Ed. (Philadelphia, JB Lippincott), pp. 6 (1992).

    Google Scholar 

  14. Little, H.J. & Thomas, D.L. The effects of anaesthetics and high pressure on the responses of the rat superior cervical ganglion in vitro. J. Physiol. 374, 387–399 (1986).

    Article  CAS  Google Scholar 

  15. Koblin, D.D., Deady, J.E., Nelson, N.T., Eger, E.I. & Bainton, C.R. Mice tolerant to nitrous oxide are not tolerant to barbiturates. Anesth. Analg. 60, 138–141 (1981).

    CAS  PubMed  Google Scholar 

  16. Olney, J.W. & Price, M.T. Excitotoxic amino acids as neuroendocrine research tools. In: Neuroendocrine Peptide Methodology, P. Michael Conn, (Ed.) (San Diego, California: Academic Press), pp.891-905 (1989).

    Google Scholar 

  17. Wong, E.H. et al. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. U.S.A. 83, 7104–7108 (1986).

    Article  CAS  Google Scholar 

  18. Olney, J.W., Price, M.T., Shahid Salles, K., Labruyere, J. & Frierdich, G. MK-801 powerfully protects against N-methyl aspartate neurotoxicity.Eur. J. Pharmacol. 141, 357–361 (1987).

    Article  CAS  Google Scholar 

  19. Mennerick, S., Que, J., Benz, A., A. & Zorumski, C.F. Passive and synaptic properties of hippocampal neurons grown in microcultures and in mass cultures. J. Neurophysiology 73, 320–332 (1995).

    Article  CAS  Google Scholar 

  20. Stevens, W.C. & Kingston, H.C.G., Inhalation Anesthesia In Clinical Anesthesia Barash P.G. et al., (Ed.) (Philadelphia, JB Lippincott), 439–465 (1992).

    Google Scholar 

  21. Fragen, R.J. & Avram, M.J., Nonopioid Intravenous AnestheTics. Clinical Anesthesia, Barash, P.G. et al. (Eds.) (Philadelphia: JB Lippincott), 385–412 (1992).

    Google Scholar 

  22. Hornbein, T.F. et al. The minimum alveolar concentration of nitrous oxide in man. Anest. Analg. 61, 553–556 (1982).

    Article  CAS  Google Scholar 

  23. Gonsowski, C.T. & Eger II, E.I. Nitrous oxide minimum alveolar anesthetic concentration in rats is greater than previously reported. Anesth. Analg. 79, 710–712 (1994).

    Article  CAS  Google Scholar 

  24. Mahmoudi, N.W., Cole, D.J. & Shapiro, H.M. Insufficient anesthetic potency of nitrous oxide in the rat. Anesthesiology 70, 345 (1989).

    Article  CAS  Google Scholar 

  25. Dohm, C.S. et al. Reinforcing effects of extended inhalation of nitrous oxide in humans. Drug Alcohol Depend. 31, 265–280 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jevtović-Todorović, V., Todorovć, S., Mennerick, S. et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 4, 460–463 (1998). https://doi.org/10.1038/nm0498-460

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0498-460

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing