Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice

An Erratum to this article was published on 01 October 2002

This article has been updated

Abstract

Williams syndrome is a neurodevelopmental disorder caused by the hemizygous deletion of 1.6 Mb on human chromosome 7q11.23. This region comprises the gene CYLN2, encoding CLIP-115, a microtubule-binding protein of 115 kD. Using a gene-targeting approach, we provide evidence that mice with haploinsufficiency for Cyln2 have features reminiscent of Williams syndrome, including mild growth deficiency, brain abnormalities, hippocampal dysfunction and particular deficits in motor coordination. Absence of CLIP-115 also leads to increased levels of CLIP-170 (a closely related cytoplasmic linker protein) and dynactin at the tips of growing microtubules. This protein redistribution may affect dynein motor regulation and, together with the loss of CLIP-115–specific functions, underlie neurological alterations in Williams syndrome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible targeting of the Cyln2 gene.
Figure 2: Expression of CLIP-115 in CLIP-L and CLIP-T mice.
Figure 3: Growth deficiency and brain abnormalities in Cyln2-knockout mice.
Figure 4: Hippocampal deficits in Cyln2-knockout mice.
Figure 5: Motor coordination in Cyln2-knockout mice.
Figure 6: Competition between CLIP-115 and CLIP-170 at microtubule plus-ends.
Figure 7: Accumulation of CLIP-170 and dynactin at microtubule tips in Cyln2-knockout fibroblasts.

Similar content being viewed by others

Change history

  • 22 August 2002

    Deleted link to Supplementary Movie and also deleted Supplementary Note at end of article

References

  1. Morris, C.A., Demsey, S.A., Leonard, C.O., Dilts, C. & Blackburn, B.L. Natural history of Williams syndrome: physical characteristics. J. Pediatr. 113, 318–326 (1988).

    Article  CAS  Google Scholar 

  2. Bellugi, U., Lichtenberger, L., Mills, D., Galaburda, A. & Korenberg, J.R. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci. 22, 197–207 (1999).

    Article  CAS  Google Scholar 

  3. Francke, U. Williams-Beuren syndrome: genes and mechanisms. Hum. Mol. Genet. 8, 1947–1954 (1999).

    Article  CAS  Google Scholar 

  4. Osborne, L.R. Williams-Beuren syndrome: unraveling the mysteries of a microdeletion disorder. Mol. Genet. Metab. 67, 1–10 (1999).

    Article  CAS  Google Scholar 

  5. Tassabehji, M. et al. Elastin: genomic structure and point mutations in patients with supravalvular aortic stenosis. Hum. Mol. Genet. 6, 1029–1036 (1997).

    Article  CAS  Google Scholar 

  6. Olson, T.M. et al. A 30 kb deletion within the elastin gene results in familial supravalvular aortic stenosis. Hum. Mol. Genet. 4, 1677–1679 (1995).

    Article  CAS  Google Scholar 

  7. Frangiskakis, J.M. et al. LIM-kinase1 hemizygosity implicated in impaired visuospatial constructive cognition. Cell 86, 59–69 (1996).

    Article  CAS  Google Scholar 

  8. Tassabehji, M. et al. Williams syndrome: use of chromosomal microdeletions as a tool to dissect cognitive and physical phenotypes. Am. J. Hum. Genet. 64, 118–125 (1999).

    Article  CAS  Google Scholar 

  9. De Zeeuw, C.I. et al. CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron 19, 1187–1199 (1997).

    Article  CAS  Google Scholar 

  10. Schuyler, S.C. & Pellman, D. Microtubule “plus-end-tracking proteins”: the end is just the beginning. Cell 105, 421–424 (2001).

    Article  CAS  Google Scholar 

  11. Perez, F., Diamantopoulos, G.S., Stalder, R. & Kreis, T.E. CLIP-170 highlights growing microtubule ends in vivo. Cell 96, 517–527 (1999).

    Article  CAS  Google Scholar 

  12. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  Google Scholar 

  13. Brunner, D. & Nurse, P. CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102, 695–704 (2000).

    Article  CAS  Google Scholar 

  14. Valetti, C. et al. Role of dynactin in endocytic traffic: effects of dynamitin overexpression and colocalization with CLIP-170. Mol. Biol. Cell 10, 4107–4120 (1999).

    Article  CAS  Google Scholar 

  15. Vaughan, K.T., Tynan, S.H., Faulkner, N.E., Echeverri, C.J. & Vallee, R.B. Colocalization of cytoplasmic dynein with dynactin and CLIP-170 at microtubule distal ends. J. Cell Sci. 112, 1437–1447 (1999).

    CAS  PubMed  Google Scholar 

  16. Reiner, O. et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein β-subunit-like repeats. Nature 364, 717–721 (1993).

    Article  CAS  Google Scholar 

  17. Coquelle, F.M. et al. LIS1, CLIP-170's key to the dynein/dynactin pathway. Mol. Cell. Biol. 22, 3089–3102 (2002).

    Article  CAS  Google Scholar 

  18. Hoogenraad, C.C. et al. The murine CYLN2 gene: genomic organization, chromosome localization, and comparison to the human gene that is located within the 7q11.23 Williams syndrome critical region. Genomics 53, 348–358 (1998).

    Article  CAS  Google Scholar 

  19. Osborne, L.R. et al. Identification of genes from a 500-kb region at 7q11.23 that is commonly deleted in Williams syndrome patients. Genomics 36, 328–336 (1996).

    Article  CAS  Google Scholar 

  20. Valero, M.C., de Luis, O., Cruces, J. & Perez Jurado, L.A. Fine-scale comparative mapping of the human 7q11.23 region and the orthologous region on mouse chromosome 5G: the low-copy repeats that flank the Williams-Beuren syndrome deletion arose at breakpoint sites of an evolutionary inversion(s). Genomics 69, 1–13 (2000).

    Article  CAS  Google Scholar 

  21. Peoples, R. et al. A physical map, including a BAC/PAC clone contig, of the Williams-Beuren syndrome–deletion region at 7q11.23. Am. J. Hum. Genet. 66, 47–68 (2000).

    Article  CAS  Google Scholar 

  22. Voogd, J. & Glickstein, M. The anatomy of the cerebellum. Trends Neurosci. 21, 370–375 (1998).

    Article  CAS  Google Scholar 

  23. Hoogenraad, C.C., Akhmanova, A., Grosveld, F., De Zeeuw, C.I. & Galjart, N. Functional analysis of CLIP-115 and its binding to microtubules. J. Cell Sci. 113, 2285–2297 (2000).

    CAS  PubMed  Google Scholar 

  24. Pankau, R., Partsch, C.J., Gosch, A., Oppermann, H.C. & Wessel, A. Statural growth in Williams-Beuren syndrome. Eur. J. Pediatr. 151, 751–755 (1992).

    Article  CAS  Google Scholar 

  25. Bourtchuladze, R. et al. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79, 59–68 (1994).

    Article  CAS  Google Scholar 

  26. Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science 256, 675–677 (1992).

    Article  CAS  Google Scholar 

  27. Phillips, R.G. & LeDoux, J.E. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav. Neurosci. 106, 274–285 (1992).

    Article  CAS  Google Scholar 

  28. Armstrong, D.M. Supraspinal contributions to the initiation and control of locomotion in the cat. Prog. Neurobiol. 26, 273–361 (1986).

    Article  CAS  Google Scholar 

  29. Bloedel, J.R. & Courville, J. Handbook of Physiology Vol. II: Motor Control. A Review of Cerebellar Afferent Systems 735–830 (Williams & Wilkins, Baltimore, 1981).

    Google Scholar 

  30. De Zeeuw, C.I. et al. Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20, 495–508 (1998).

    Article  CAS  Google Scholar 

  31. De Zeeuw, C.I. et al. Microcircuitry and function of the inferior olive. Trends Neurosci. 21, 391–400 (1998).

    Article  CAS  Google Scholar 

  32. Silva, A.J. et al. Mutant mice and neuroscience: recommendations concerning genetic background. Banbury Conference on genetic background in mice. Neuron 19, 755–759 (1997).

    Article  Google Scholar 

  33. Tarantino, L.M., Gould, T.J., Druhan, J.P. & Bucan, M. Behavior and mutagenesis screens: the importance of baseline analysis of inbred strains. Mamm. Genome 11, 555–564 (2000).

    Article  CAS  Google Scholar 

  34. Reiss, A.L. et al. IV. Neuroanatomy of Williams syndrome: a high-resolution MRI study. J. Cogn. Neurosci. 12, 65–73 (2000).

    Article  Google Scholar 

  35. Schmitt, J.E., Eliez, S., Warsofsky, I.S., Bellugi, U. & Reiss, A.L. Corpus callosum morphology of Williams syndrome: relation to genetics and behavior. Dev. Med. Child Neurol. 43, 155–159 (2001).

    Article  CAS  Google Scholar 

  36. Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z. & St George, M.I. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12, 7–29 (2000).

    Article  Google Scholar 

  37. Vallee, R.B., Tai, C. & Faulkner, N.E. LIS1: cellular function of a disease-causing gene. Trends Cell Biol. 11, 155–160 (2001).

    Article  CAS  Google Scholar 

  38. Jaegle, M. et al. The POU factor Oct-6 and Schwann cell differentiation. Science 273, 507–510 (1996).

    Article  CAS  Google Scholar 

  39. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual 2nd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  40. Kooy, R.F. et al. Neuroanatomy of the fragile X knockout mouse brain studied using in vivo high resolution magnetic resonance imaging. Eur. J. Hum. Genet. 7, 526–532 (1999).

    Article  CAS  Google Scholar 

  41. Fransen, E. et al. L1 knockout mice show dilated ventricles, vermis hypoplasia and impaired exploration patterns. Hum. Mol. Genet. 7, 999–1009 (1998).

    Article  CAS  Google Scholar 

  42. Yuan, C., Schmiedl, U.P., Weinberger, E., Krueck, W.R. & Rand, S.D. Three-dimensional fast spin-echo imaging: pulse sequence and in vivo image evaluation. J. Magn. Reson. Imaging 3, 894–899 (1993).

    Article  CAS  Google Scholar 

  43. Sijbers, J. et al. Watershed-based segmentation of 3D MR data for volume quantization. Magn. Reson. Imaging 15, 679–688 (1997).

    Article  CAS  Google Scholar 

  44. Storm, D.R., Hansel, C., Hacker, B., Parent, A. & Linden, D.J. Impaired cerebellar long-term potentiation in type I adenylyl cyclase mutant mice. Neuron 20, 1199–1210 (1998).

    Article  CAS  Google Scholar 

  45. Anagnostaras, S.G., Josselyn, S.A., Frankland, P.W. & Silva, A.J. Computer-assisted behavioral assessment of Pavlovian fear conditioning in mice. Learn. Mem. 7, 58–72 (2000).

    Article  CAS  Google Scholar 

  46. van der Horst, G.T. et al. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398, 627–630 (1999).

    Article  CAS  Google Scholar 

  47. Heisler, L.K. et al. Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc. Natl Acad. Sci. USA 95, 15049–15054 (1998).

    Article  CAS  Google Scholar 

  48. Krugers, H.J. et al. Altered synaptic plasticity in hippocampal CA1 area of apolipoprotein E deficient mice. Neuroreport 8, 2505–2510 (1997).

    Article  CAS  Google Scholar 

  49. Kaverina, I., Krylyshkina, O. & Small, J.V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033–1044 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. van Cappellen for his help with the quantification of the fluorescence data and live imaging analysis, M. Rutteman for x-gal staining experiments and A. Langeveld for FISH experiments. This research was supported by the Netherlands Organization for Scientific Research (NWO) and the Royal Dutch Academy of Sciences (KNAW).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chris I. De Zeeuw or Niels Galjart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoogenraad, C., Koekkoek, B., Akhmanova, A. et al. Targeted mutation of Cyln2 in the Williams syndrome critical region links CLIP-115 haploinsufficiency to neurodevelopmental abnormalities in mice. Nat Genet 32, 116–127 (2002). https://doi.org/10.1038/ng954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing