Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer stem cells and glioma

Abstract

Despite continued advances in surgical and medical therapies, the outcomes for patients diagnosed with glioblastoma multiforme remain dismal. Recent data suggest that progression of these brain tumors is driven by a small subpopulation of tumor cells, which are termed cancer stem cells (CSCs) because of their capability to self-renew, proliferate and give rise to progeny of multiple neuroepithelial lineages. According to the CSC hypothesis, current therapies that are extremely cytotoxic to the bulk of highly proliferative tumor cells fail to obliterate the relatively quiescent and resistant CSC compartment, thereby allowing these cells to survive and drive tumor recurrence. This Review summarizes current knowledge regarding neural stem cells in the normal adult brain and CSCs in glial tumors and discusses the implications of the CSC hypothesis for the development of future therapies for brain tumors.

Key Points

  • Despite continued advances in surgical and medical therapies, outcomes for patients diagnosed with glioblastoma multiforme (GBM) remain dismal

  • GBM progression is driven by a small subpopulation of tumor cells, termed cancer stem cells because of their capability to self-renew, proliferate and give rise to multiple neuroepithelial lineages

  • Neurogenesis continues throughout life in two germinal regions: the subventricular zone of the lateral ventricle and the dentate gyrus of the hippocampus

  • The cell of origin for GBM remains unclear, though there is evidence to support both NSC transformation and dedifferentiation of mature astrocytes in the genesis of gliomas

  • Brain tumor stem cells (BTSCs) are relatively resistant to current cytotoxic therapies; conventional therapies for high-grade gliomas might be more effective if combined with agents that increase the sensitivity of BTSCs to chemotherapy and radiation therapy

  • Novel therapies targeting BTSC differentiation are likely to be directed by our understanding of signaling pathways involved in normal NSC biology

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurospheres and the neurosphere assay.
Figure 2: The cancer stem cell hypothesis.

Similar content being viewed by others

References

  1. National Cancer Institute: Brain Tumor Home Page [http://www.nci.nih.gov/cancertopics/types/brain]

  2. Stupp R et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996

    Article  CAS  PubMed  Google Scholar 

  3. Jordan CT et al. (2006) Cancer stem cells. N Engl J Med 355: 1253–1261

    Article  CAS  PubMed  Google Scholar 

  4. Gross CG (2000) Neurogenesis in the adult brain: death of a dogma. Nat Rev Neurosci 1: 67–73

    Article  CAS  PubMed  Google Scholar 

  5. Ayuso-Sacido A et al. (2008) Long-term expansion of adult human brain subventricular zone precursors. Neurosurgery 62: 223–229

    Article  PubMed  Google Scholar 

  6. Curtis MA et al. (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315: 1243–1249

    Article  CAS  PubMed  Google Scholar 

  7. Roy NS et al. (2000) Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 59: 321–331

    Article  CAS  PubMed  Google Scholar 

  8. Sanai N et al. (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427: 740–744

    Article  CAS  PubMed  Google Scholar 

  9. Roy NS et al. (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 6: 271–277

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez-Buylla A and Lim DA (2004) For the long run: maintaining germinal niches in the adult brain. Neuron 41: 683–686

    Article  CAS  PubMed  Google Scholar 

  11. Ninkovic J et al. (2007) Distinct modes of neuron addition in adult mouse neurogenesis. J Neurosci 27: 10906–10911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Drapeau E et al. (2007) Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci 27: 6037–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tashiro A et al. (2007) Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 27: 3252–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pereira AC et al. (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104: 5638–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Saxe MD et al. (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103: 17501–17506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aimone JB et al. (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9: 723–727

    Article  CAS  PubMed  Google Scholar 

  17. Quiñones-Hinojosa A et al. (2007) The human brain subventricular zone: stem cells in this niche and its organization. Neurosurg Clin N Am 18: 15–20

    Article  PubMed  Google Scholar 

  18. Lim DA and Alvarez-Buylla A (1999) Interaction between astrocytes and adult subventricular zone precursors stimulates neurogenesis. Proc Natl Acad Sci USA 96: 7526–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lim DA et al. (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28: 713–726

    Article  CAS  PubMed  Google Scholar 

  20. Zhang RL et al. (2007) Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain. J Cereb Blood Flow Metab 27: 1201–1212

    Article  PubMed  Google Scholar 

  21. Leker RR et al. (2007) Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38: 153–161

    Article  PubMed  Google Scholar 

  22. Zhao LR et al. (2007) Brain repair by hematopoietic growth factors in a rat model of stroke. Stroke 38: 2584–2591

    Article  PubMed  Google Scholar 

  23. Zhang RL et al. (2006) Reduction of the cell cycle length by decreasing G1 phase and cell cycle reentry expand neuronal progenitor cells in the subventricular zone of adult rat after stroke. J Cereb Blood Flow Metab 26: 857–863

    Article  PubMed  Google Scholar 

  24. Thored P et al. (2006) Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells 24: 739–747

    Article  CAS  PubMed  Google Scholar 

  25. Komitova M et al. (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36: 1278–1282

    Article  PubMed  Google Scholar 

  26. Hoglinger GU et al. (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7: 726–735

    Article  CAS  PubMed  Google Scholar 

  27. Liu Z and Martin LJ (2006) The adult neural stem and progenitor cell niche is altered in amyotrophic lateral sclerosis mouse brain. J Comp Neurol 497: 468–488

    Article  PubMed  Google Scholar 

  28. Mazurova Y et al. (2006) Proliferation and differentiation of adult endogenous neural stem cells in response to neurodegenerative process within the striatum. Neurodegener Dis 3: 12–18

    Article  PubMed  Google Scholar 

  29. Joyner AL and Zervas M (2006) Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn 235: 2376–2385

    Article  PubMed  Google Scholar 

  30. Zhao C et al. (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132: 645–660

    Article  CAS  PubMed  Google Scholar 

  31. Breunig JJ et al. (2007) Everything that glitters isn't gold: a critical review of postnatal neural precursor analyses. Cell Stem Cell 1: 612–627

    Article  CAS  PubMed  Google Scholar 

  32. Eriksson PS et al. (1998) Neurogenesis in the adult human hippocampus. Nat Med 4: 1313–1317

    Article  CAS  PubMed  Google Scholar 

  33. Lendahl U et al. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60: 585–595

    Article  CAS  PubMed  Google Scholar 

  34. Sakakibara S et al. (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev Biol 176: 230–242

    Article  CAS  PubMed  Google Scholar 

  35. Doetsch F et al. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716

    Article  CAS  PubMed  Google Scholar 

  36. Doetsch F et al. (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36: 1021–1034

    Article  CAS  PubMed  Google Scholar 

  37. Jackson EL et al. (2006) PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron 51: 187–199

    Article  CAS  PubMed  Google Scholar 

  38. Hack MA et al. (2005) Neuronal fate determinants of adult olfactory bulb neurogenesis. Nat Neurosci 8: 865–872

    Article  CAS  PubMed  Google Scholar 

  39. Gleeson JG et al. (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257–271

    Article  CAS  PubMed  Google Scholar 

  40. Zhou Q et al. (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25: 331–343

    Article  CAS  PubMed  Google Scholar 

  41. Reynolds BA et al. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12: 4565–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanahan D and Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    CAS  PubMed  Google Scholar 

  43. Lapidot T et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648

    Article  CAS  PubMed  Google Scholar 

  44. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    Article  CAS  PubMed  Google Scholar 

  45. Castor A et al. (2005) Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia. Nat Med 11: 630–637

    Article  CAS  PubMed  Google Scholar 

  46. Cobaleda C et al. (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95: 1007–1013

    CAS  PubMed  Google Scholar 

  47. Cox CV et al. (2004) Characterization of acute lymphoblastic leukemia progenitor cells. Blood 104: 2919–2925

    Article  CAS  PubMed  Google Scholar 

  48. Holyoake TL et al. (2002) Elucidating critical mechanisms of deregulated stem cell turnover in the chronic phase of chronic myeloid leukemia. Leukemia 16: 549–558

    Article  CAS  PubMed  Google Scholar 

  49. Al-Hajj M et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. O'Brien CA et al. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    Article  CAS  PubMed  Google Scholar 

  51. Ricci-Vitiani L et al. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115

    Article  CAS  PubMed  Google Scholar 

  52. Eramo A et al. (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15: 504–514

    Article  CAS  PubMed  Google Scholar 

  53. Fang D et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65: 9328–9337

    Article  CAS  PubMed  Google Scholar 

  54. Galli R et al. (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–7021

    Article  CAS  PubMed  Google Scholar 

  55. Singh SK et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  CAS  PubMed  Google Scholar 

  56. Taylor MD et al. (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8: 323–335

    Article  CAS  PubMed  Google Scholar 

  57. Singh SK et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    CAS  PubMed  Google Scholar 

  58. Yi L et al. (2007) Isolation and characterization of stem cell-like precursor cells from primary human anaplastic oligoastrocytoma. Mod Pathol 20: 1061–1068

    Article  CAS  PubMed  Google Scholar 

  59. Dirks PB (2008) Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos Trans R Soc Lond B Biol Sci 363: 139–152

    Article  CAS  PubMed  Google Scholar 

  60. Vescovi AL et al. (2006) Brain tumour stem cells. Nat Rev Cancer 6: 425–436

    Article  CAS  PubMed  Google Scholar 

  61. Beier D et al. (2007) CD133+ and CD133 glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 67: 4010–4015

    Article  CAS  PubMed  Google Scholar 

  62. Ogden AT et al. (2008) Identification of A2B5+CD133 tumor-initiating cells in adult human gliomas. Neurosurgery 62: 505–514

    Article  PubMed  Google Scholar 

  63. Wang J et al. (2008) CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer 122: 761–768

    Article  CAS  PubMed  Google Scholar 

  64. Kelly PN et al. (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317: 337

    Article  CAS  PubMed  Google Scholar 

  65. Cushing H and Bailey PA (1926) Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlated Study of Prognosis. Philadelphia: JB Lippincott

    Google Scholar 

  66. Cairncross JG (1987) The biology of astrocytoma: lessons learned from chronic myelogenous leukemia—hypothesis. J Neurooncol 5: 99–104

    Article  CAS  PubMed  Google Scholar 

  67. Copeland DD and Bigner DD (1977) The role of the subependymal plate in avian sarcoma virus brain tumor induction: comparison of incipient tumors in neonatal and adult rats. Acta Neuropathol 38: 1–6

    Article  CAS  PubMed  Google Scholar 

  68. Globus JH and Kuhlenbeck H (1944) The subependymal cell plate (matrix) and its relationship to brain tumors of the ependymal type. J Neuropathol Exp Neurol 3: 1–35

    Article  Google Scholar 

  69. Vick NA et al. (1977) The role of the subependymal plate in glial tumorigenesis. Acta Neuropathol 40: 63–71

    Article  CAS  PubMed  Google Scholar 

  70. Holland EC et al. (2000) Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55–57

    Article  CAS  PubMed  Google Scholar 

  71. Bachoo RM et al. (2002) Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1: 269–277

    Article  CAS  PubMed  Google Scholar 

  72. Sneddon JB et al. (2006) Bone morphogenetic protein antagonist gremlin 1 is widely expressed by cancer-associated stromal cells and can promote tumor cell proliferation. Proc Natl Acad Sci USA 103: 14842–14847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Toni F et al. (2006) A crosstalk between the Wnt and the adhesion-dependent signaling pathways governs the chemosensitivity of acute myeloid leukemia. Oncogene 25: 3113–3122

    Article  CAS  PubMed  Google Scholar 

  74. Kaplan RN et al. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Calabrese C et al. (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82

    Article  CAS  PubMed  Google Scholar 

  76. Giannini C et al. (2005) Patient tumor EGFR and PDGFRA gene amplifications retained in an invasive intracranial xenograft model of glioblastoma multiforme. Neuro Oncol 7: 164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bao S et al. (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66: 7843–7848

    Article  CAS  PubMed  Google Scholar 

  78. Zhao C et al. (2007) Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12: 528–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu G et al. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Eramo A et al. (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ 13: 1238–1241

    Article  CAS  PubMed  Google Scholar 

  81. Kang MK and Kang SK (2007) Tumorigenesis of chemotherapeutic drug-resistant cancer stem-like cells in brain glioma. Stem Cells Dev 16: 837–847

    Article  CAS  PubMed  Google Scholar 

  82. Dean M et al. (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    Article  CAS  PubMed  Google Scholar 

  83. Hirschmann-Jax C et al. (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101: 14228–14233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Salmaggi A et al. (2006) Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia 54: 850–860

    Article  PubMed  Google Scholar 

  85. Bao S et al. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760

    Article  CAS  PubMed  Google Scholar 

  86. Stupp R and Hegi ME (2007) Targeting brain-tumor stem cells. Nat Biotechnol 25: 193–194

    Article  CAS  PubMed  Google Scholar 

  87. Wang ZG et al. (1998) Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547–1551

    Article  CAS  PubMed  Google Scholar 

  88. Clark PA et al. (2007) Developmental signaling pathways in brain tumor-derived stem-like cells. Dev Dyn 236: 3297–3308

    Article  CAS  PubMed  Google Scholar 

  89. Schmierer B and Hill CS (2007) TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8: 970–982

    Article  CAS  PubMed  Google Scholar 

  90. Piccirillo SG et al. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765

    Article  CAS  PubMed  Google Scholar 

  91. Lee J et al. (2008) Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13: 69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunit Das.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Srikanth, M. & Kessler, J. Cancer stem cells and glioma. Nat Rev Neurol 4, 427–435 (2008). https://doi.org/10.1038/ncpneuro0862

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0862

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing